Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t3fv_10.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:38:55 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include t3f.h */ | |
29 | |
30 /* | |
31 * This function contains 57 FP additions, 52 FP multiplications, | |
32 * (or, 39 additions, 34 multiplications, 18 fused multiply/add), | |
33 * 57 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "t3f.h" | |
36 | |
37 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 { | |
44 INT m; | |
45 R *x; | |
46 x = ri; | |
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { | |
48 V T1, T7, Th, Tx, Tr, Td, Tp, T6, Tv, Tc, Te, Ti, Tl, T2, T3; | |
49 V T5; | |
50 T2 = LDW(&(W[0])); | |
51 T3 = LDW(&(W[TWVL * 2])); | |
52 T5 = LDW(&(W[TWVL * 4])); | |
53 T1 = LD(&(x[0]), ms, &(x[0])); | |
54 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
55 { | |
56 V To, Tw, Tq, Tu, Ta, T4, Tt, Tk, Tb; | |
57 To = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
58 Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
59 Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
60 Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
61 Ta = VZMULJ(T2, T3); | |
62 T4 = VZMUL(T2, T3); | |
63 Th = VZMULJ(T2, T5); | |
64 Tt = VZMULJ(T3, T5); | |
65 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
66 Tx = VZMULJ(T2, Tw); | |
67 Tr = VZMULJ(T5, Tq); | |
68 Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
69 Td = VZMULJ(Ta, T5); | |
70 Tp = VZMULJ(T4, To); | |
71 T6 = VZMULJ(T4, T5); | |
72 Tv = VZMULJ(Tt, Tu); | |
73 Tc = VZMULJ(Ta, Tb); | |
74 Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
75 Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
76 Tl = VZMULJ(T3, Tk); | |
77 } | |
78 { | |
79 V TN, Ts, T8, Ty, TO, Tf, Tj; | |
80 TN = VADD(Tp, Tr); | |
81 Ts = VSUB(Tp, Tr); | |
82 T8 = VZMULJ(T6, T7); | |
83 Ty = VSUB(Tv, Tx); | |
84 TO = VADD(Tv, Tx); | |
85 Tf = VZMULJ(Td, Te); | |
86 Tj = VZMULJ(Th, Ti); | |
87 { | |
88 V T9, TJ, TP, TU, Tz, TF, Tg, TK, Tm, TL; | |
89 T9 = VSUB(T1, T8); | |
90 TJ = VADD(T1, T8); | |
91 TP = VADD(TN, TO); | |
92 TU = VSUB(TN, TO); | |
93 Tz = VADD(Ts, Ty); | |
94 TF = VSUB(Ts, Ty); | |
95 Tg = VSUB(Tc, Tf); | |
96 TK = VADD(Tc, Tf); | |
97 Tm = VSUB(Tj, Tl); | |
98 TL = VADD(Tj, Tl); | |
99 { | |
100 V TM, TV, Tn, TE; | |
101 TM = VADD(TK, TL); | |
102 TV = VSUB(TK, TL); | |
103 Tn = VADD(Tg, Tm); | |
104 TE = VSUB(Tg, Tm); | |
105 { | |
106 V TW, TY, TS, TQ, TG, TI, TC, TA, TR, TB; | |
107 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU)); | |
108 TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV)); | |
109 TS = VSUB(TM, TP); | |
110 TQ = VADD(TM, TP); | |
111 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE)); | |
112 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF)); | |
113 TC = VSUB(Tn, Tz); | |
114 TA = VADD(Tn, Tz); | |
115 ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0])); | |
116 TR = VFNMS(LDK(KP250000000), TQ, TJ); | |
117 ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)])); | |
118 TB = VFNMS(LDK(KP250000000), TA, T9); | |
119 { | |
120 V TX, TT, TH, TD; | |
121 TX = VFMA(LDK(KP559016994), TS, TR); | |
122 TT = VFNMS(LDK(KP559016994), TS, TR); | |
123 TH = VFNMS(LDK(KP559016994), TC, TB); | |
124 TD = VFMA(LDK(KP559016994), TC, TB); | |
125 ST(&(x[WS(rs, 8)]), VFNMSI(TW, TT), ms, &(x[0])); | |
126 ST(&(x[WS(rs, 2)]), VFMAI(TW, TT), ms, &(x[0])); | |
127 ST(&(x[WS(rs, 6)]), VFNMSI(TY, TX), ms, &(x[0])); | |
128 ST(&(x[WS(rs, 4)]), VFMAI(TY, TX), ms, &(x[0])); | |
129 ST(&(x[WS(rs, 9)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)])); | |
130 ST(&(x[WS(rs, 1)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)])); | |
131 ST(&(x[WS(rs, 7)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)])); | |
132 ST(&(x[WS(rs, 3)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)])); | |
133 } | |
134 } | |
135 } | |
136 } | |
137 } | |
138 } | |
139 } | |
140 VLEAVE(); | |
141 } | |
142 | |
143 static const tw_instr twinstr[] = { | |
144 VTW(0, 1), | |
145 VTW(0, 3), | |
146 VTW(0, 9), | |
147 {TW_NEXT, VL, 0} | |
148 }; | |
149 | |
150 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {39, 34, 18, 0}, 0, 0, 0 }; | |
151 | |
152 void XSIMD(codelet_t3fv_10) (planner *p) { | |
153 X(kdft_dit_register) (p, t3fv_10, &desc); | |
154 } | |
155 #else /* HAVE_FMA */ | |
156 | |
157 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include t3f.h */ | |
158 | |
159 /* | |
160 * This function contains 57 FP additions, 42 FP multiplications, | |
161 * (or, 51 additions, 36 multiplications, 6 fused multiply/add), | |
162 * 41 stack variables, 4 constants, and 20 memory accesses | |
163 */ | |
164 #include "t3f.h" | |
165 | |
166 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
167 { | |
168 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
169 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
170 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
171 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
172 { | |
173 INT m; | |
174 R *x; | |
175 x = ri; | |
176 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { | |
177 V T1, T2, T3, Ti, T6, T7, Tx, Tb, To; | |
178 T1 = LDW(&(W[0])); | |
179 T2 = LDW(&(W[TWVL * 2])); | |
180 T3 = VZMULJ(T1, T2); | |
181 Ti = VZMUL(T1, T2); | |
182 T6 = LDW(&(W[TWVL * 4])); | |
183 T7 = VZMULJ(T3, T6); | |
184 Tx = VZMULJ(Ti, T6); | |
185 Tb = VZMULJ(T1, T6); | |
186 To = VZMULJ(T2, T6); | |
187 { | |
188 V TA, TQ, Tn, Tt, Tu, TJ, TK, TS, Ta, Tg, Th, TM, TN, TR, Tw; | |
189 V Tz, Ty; | |
190 Tw = LD(&(x[0]), ms, &(x[0])); | |
191 Ty = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
192 Tz = VZMULJ(Tx, Ty); | |
193 TA = VSUB(Tw, Tz); | |
194 TQ = VADD(Tw, Tz); | |
195 { | |
196 V Tk, Ts, Tm, Tq; | |
197 { | |
198 V Tj, Tr, Tl, Tp; | |
199 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
200 Tk = VZMULJ(Ti, Tj); | |
201 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
202 Ts = VZMULJ(T1, Tr); | |
203 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
204 Tm = VZMULJ(T6, Tl); | |
205 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
206 Tq = VZMULJ(To, Tp); | |
207 } | |
208 Tn = VSUB(Tk, Tm); | |
209 Tt = VSUB(Tq, Ts); | |
210 Tu = VADD(Tn, Tt); | |
211 TJ = VADD(Tk, Tm); | |
212 TK = VADD(Tq, Ts); | |
213 TS = VADD(TJ, TK); | |
214 } | |
215 { | |
216 V T5, Tf, T9, Td; | |
217 { | |
218 V T4, Te, T8, Tc; | |
219 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
220 T5 = VZMULJ(T3, T4); | |
221 Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
222 Tf = VZMULJ(T2, Te); | |
223 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
224 T9 = VZMULJ(T7, T8); | |
225 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
226 Td = VZMULJ(Tb, Tc); | |
227 } | |
228 Ta = VSUB(T5, T9); | |
229 Tg = VSUB(Td, Tf); | |
230 Th = VADD(Ta, Tg); | |
231 TM = VADD(T5, T9); | |
232 TN = VADD(Td, Tf); | |
233 TR = VADD(TM, TN); | |
234 } | |
235 { | |
236 V Tv, TB, TC, TG, TI, TE, TF, TH, TD; | |
237 Tv = VMUL(LDK(KP559016994), VSUB(Th, Tu)); | |
238 TB = VADD(Th, Tu); | |
239 TC = VFNMS(LDK(KP250000000), TB, TA); | |
240 TE = VSUB(Ta, Tg); | |
241 TF = VSUB(Tn, Tt); | |
242 TG = VBYI(VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TF))); | |
243 TI = VBYI(VFNMS(LDK(KP587785252), TE, VMUL(LDK(KP951056516), TF))); | |
244 ST(&(x[WS(rs, 5)]), VADD(TA, TB), ms, &(x[WS(rs, 1)])); | |
245 TH = VSUB(TC, Tv); | |
246 ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)])); | |
247 ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)])); | |
248 TD = VADD(Tv, TC); | |
249 ST(&(x[WS(rs, 1)]), VSUB(TD, TG), ms, &(x[WS(rs, 1)])); | |
250 ST(&(x[WS(rs, 9)]), VADD(TG, TD), ms, &(x[WS(rs, 1)])); | |
251 } | |
252 { | |
253 V TV, TT, TU, TP, TX, TL, TO, TY, TW; | |
254 TV = VMUL(LDK(KP559016994), VSUB(TR, TS)); | |
255 TT = VADD(TR, TS); | |
256 TU = VFNMS(LDK(KP250000000), TT, TQ); | |
257 TL = VSUB(TJ, TK); | |
258 TO = VSUB(TM, TN); | |
259 TP = VBYI(VFNMS(LDK(KP587785252), TO, VMUL(LDK(KP951056516), TL))); | |
260 TX = VBYI(VFMA(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL))); | |
261 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0])); | |
262 TY = VADD(TV, TU); | |
263 ST(&(x[WS(rs, 4)]), VADD(TX, TY), ms, &(x[0])); | |
264 ST(&(x[WS(rs, 6)]), VSUB(TY, TX), ms, &(x[0])); | |
265 TW = VSUB(TU, TV); | |
266 ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0])); | |
267 ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0])); | |
268 } | |
269 } | |
270 } | |
271 } | |
272 VLEAVE(); | |
273 } | |
274 | |
275 static const tw_instr twinstr[] = { | |
276 VTW(0, 1), | |
277 VTW(0, 3), | |
278 VTW(0, 9), | |
279 {TW_NEXT, VL, 0} | |
280 }; | |
281 | |
282 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {51, 36, 6, 0}, 0, 0, 0 }; | |
283 | |
284 void XSIMD(codelet_t3fv_10) (planner *p) { | |
285 X(kdft_dit_register) (p, t3fv_10, &desc); | |
286 } | |
287 #endif /* HAVE_FMA */ |