Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t3bv_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:18 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include t3b.h -sign 1 */ | |
29 | |
30 /* | |
31 * This function contains 98 FP additions, 86 FP multiplications, | |
32 * (or, 64 additions, 52 multiplications, 34 fused multiply/add), | |
33 * 70 stack variables, 3 constants, and 32 memory accesses | |
34 */ | |
35 #include "t3b.h" | |
36 | |
37 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT m; | |
44 R *x; | |
45 x = ii; | |
46 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { | |
47 V T13, Tg, TY, T14, T1A, T1q, T1f, T1x, T1r, T1i, Tt, T16, TB, T1j, T1k; | |
48 V TH; | |
49 { | |
50 V T2, T8, Tu, T3; | |
51 T2 = LDW(&(W[0])); | |
52 T8 = LDW(&(W[TWVL * 2])); | |
53 Tu = LDW(&(W[TWVL * 6])); | |
54 T3 = LDW(&(W[TWVL * 4])); | |
55 { | |
56 V Ty, T1o, Tf, T1b, T7, Tr, TQ, TX, T1g, Tl, To, Tw, TG, Tz, T1p; | |
57 V T1e, TC; | |
58 { | |
59 V T1, T5, Ta, Td; | |
60 T1 = LD(&(x[0]), ms, &(x[0])); | |
61 T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
62 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
63 Td = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
64 { | |
65 V TR, TN, TM, TE, Tb, Tp, Tm, Te, T6, TW, TO, TS; | |
66 { | |
67 V TL, Tx, T9, TU, Tc, T4, TV; | |
68 TL = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
69 Tx = VZMULJ(T2, T8); | |
70 T9 = VZMUL(T2, T8); | |
71 TR = VZMULJ(T2, Tu); | |
72 TU = VZMULJ(T8, T3); | |
73 Tc = VZMUL(T8, T3); | |
74 T4 = VZMULJ(T2, T3); | |
75 TN = VZMUL(T2, T3); | |
76 TV = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
77 TM = VZMUL(Tx, TL); | |
78 Ty = VZMULJ(Tx, T3); | |
79 TE = VZMUL(Tx, T3); | |
80 Tb = VZMUL(T9, Ta); | |
81 Tp = VZMUL(T9, T3); | |
82 Tm = VZMULJ(T9, T3); | |
83 Te = VZMUL(Tc, Td); | |
84 T6 = VZMUL(T4, T5); | |
85 TW = VZMUL(TU, TV); | |
86 } | |
87 TO = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
88 TS = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
89 { | |
90 V TP, TT, Ti, Tk, Tn, Th, Tq, Tj; | |
91 Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
92 Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
93 Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
94 T1o = VSUB(Tb, Te); | |
95 Tf = VADD(Tb, Te); | |
96 T1b = VSUB(T1, T6); | |
97 T7 = VADD(T1, T6); | |
98 TP = VZMUL(TN, TO); | |
99 TT = VZMUL(TR, TS); | |
100 Ti = VZMUL(T2, Th); | |
101 Tr = VZMUL(Tp, Tq); | |
102 Tk = VZMUL(T3, Tj); | |
103 Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
104 { | |
105 V T1c, T1d, Tv, TF; | |
106 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
107 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
108 T1c = VSUB(TM, TP); | |
109 TQ = VADD(TM, TP); | |
110 T1d = VSUB(TT, TW); | |
111 TX = VADD(TT, TW); | |
112 T1g = VSUB(Ti, Tk); | |
113 Tl = VADD(Ti, Tk); | |
114 To = VZMUL(Tm, Tn); | |
115 Tw = VZMUL(Tu, Tv); | |
116 TG = VZMUL(TE, TF); | |
117 Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
118 T1p = VSUB(T1c, T1d); | |
119 T1e = VADD(T1c, T1d); | |
120 TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
121 } | |
122 } | |
123 } | |
124 } | |
125 { | |
126 V T1h, Ts, TA, TD; | |
127 T13 = VADD(T7, Tf); | |
128 Tg = VSUB(T7, Tf); | |
129 T1h = VSUB(To, Tr); | |
130 Ts = VADD(To, Tr); | |
131 TY = VSUB(TQ, TX); | |
132 T14 = VADD(TQ, TX); | |
133 TA = VZMUL(Ty, Tz); | |
134 T1A = VFNMS(LDK(KP707106781), T1p, T1o); | |
135 T1q = VFMA(LDK(KP707106781), T1p, T1o); | |
136 T1f = VFMA(LDK(KP707106781), T1e, T1b); | |
137 T1x = VFNMS(LDK(KP707106781), T1e, T1b); | |
138 TD = VZMUL(T8, TC); | |
139 T1r = VFMA(LDK(KP414213562), T1g, T1h); | |
140 T1i = VFNMS(LDK(KP414213562), T1h, T1g); | |
141 Tt = VSUB(Tl, Ts); | |
142 T16 = VADD(Tl, Ts); | |
143 TB = VADD(Tw, TA); | |
144 T1j = VSUB(Tw, TA); | |
145 T1k = VSUB(TG, TD); | |
146 TH = VADD(TD, TG); | |
147 } | |
148 } | |
149 } | |
150 { | |
151 V T15, T19, T1l, T1s, TI, T17; | |
152 T15 = VSUB(T13, T14); | |
153 T19 = VADD(T13, T14); | |
154 T1l = VFNMS(LDK(KP414213562), T1k, T1j); | |
155 T1s = VFMA(LDK(KP414213562), T1j, T1k); | |
156 TI = VSUB(TB, TH); | |
157 T17 = VADD(TB, TH); | |
158 { | |
159 V T1y, T1t, T1B, T1m; | |
160 T1y = VADD(T1r, T1s); | |
161 T1t = VSUB(T1r, T1s); | |
162 T1B = VSUB(T1i, T1l); | |
163 T1m = VADD(T1i, T1l); | |
164 { | |
165 V T18, T1a, TJ, TZ; | |
166 T18 = VSUB(T16, T17); | |
167 T1a = VADD(T16, T17); | |
168 TJ = VADD(Tt, TI); | |
169 TZ = VSUB(Tt, TI); | |
170 { | |
171 V T1u, T1w, T1z, T1D; | |
172 T1u = VFNMS(LDK(KP923879532), T1t, T1q); | |
173 T1w = VFMA(LDK(KP923879532), T1t, T1q); | |
174 T1z = VFNMS(LDK(KP923879532), T1y, T1x); | |
175 T1D = VFMA(LDK(KP923879532), T1y, T1x); | |
176 { | |
177 V T1n, T1v, T1C, T1E; | |
178 T1n = VFNMS(LDK(KP923879532), T1m, T1f); | |
179 T1v = VFMA(LDK(KP923879532), T1m, T1f); | |
180 T1C = VFMA(LDK(KP923879532), T1B, T1A); | |
181 T1E = VFNMS(LDK(KP923879532), T1B, T1A); | |
182 ST(&(x[WS(rs, 8)]), VSUB(T19, T1a), ms, &(x[0])); | |
183 ST(&(x[0]), VADD(T19, T1a), ms, &(x[0])); | |
184 ST(&(x[WS(rs, 4)]), VFMAI(T18, T15), ms, &(x[0])); | |
185 ST(&(x[WS(rs, 12)]), VFNMSI(T18, T15), ms, &(x[0])); | |
186 { | |
187 V T10, T12, TK, T11; | |
188 T10 = VFNMS(LDK(KP707106781), TZ, TY); | |
189 T12 = VFMA(LDK(KP707106781), TZ, TY); | |
190 TK = VFNMS(LDK(KP707106781), TJ, Tg); | |
191 T11 = VFMA(LDK(KP707106781), TJ, Tg); | |
192 ST(&(x[WS(rs, 15)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)])); | |
193 ST(&(x[WS(rs, 1)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)])); | |
194 ST(&(x[WS(rs, 9)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)])); | |
195 ST(&(x[WS(rs, 7)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)])); | |
196 ST(&(x[WS(rs, 3)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)])); | |
197 ST(&(x[WS(rs, 13)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)])); | |
198 ST(&(x[WS(rs, 11)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)])); | |
199 ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)])); | |
200 ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0])); | |
201 ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0])); | |
202 ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0])); | |
203 ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0])); | |
204 } | |
205 } | |
206 } | |
207 } | |
208 } | |
209 } | |
210 } | |
211 } | |
212 VLEAVE(); | |
213 } | |
214 | |
215 static const tw_instr twinstr[] = { | |
216 VTW(0, 1), | |
217 VTW(0, 3), | |
218 VTW(0, 9), | |
219 VTW(0, 15), | |
220 {TW_NEXT, VL, 0} | |
221 }; | |
222 | |
223 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 }; | |
224 | |
225 void XSIMD(codelet_t3bv_16) (planner *p) { | |
226 X(kdft_dit_register) (p, t3bv_16, &desc); | |
227 } | |
228 #else /* HAVE_FMA */ | |
229 | |
230 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include t3b.h -sign 1 */ | |
231 | |
232 /* | |
233 * This function contains 98 FP additions, 64 FP multiplications, | |
234 * (or, 94 additions, 60 multiplications, 4 fused multiply/add), | |
235 * 51 stack variables, 3 constants, and 32 memory accesses | |
236 */ | |
237 #include "t3b.h" | |
238 | |
239 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
240 { | |
241 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
242 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
243 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
244 { | |
245 INT m; | |
246 R *x; | |
247 x = ii; | |
248 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { | |
249 V T1, T8, T9, Tl, Ti, TE, T4, Ta, TO, TV, Td, Tm, TA, TH, Ts; | |
250 T1 = LDW(&(W[0])); | |
251 T8 = LDW(&(W[TWVL * 2])); | |
252 T9 = VZMUL(T1, T8); | |
253 Tl = VZMULJ(T1, T8); | |
254 Ti = LDW(&(W[TWVL * 6])); | |
255 TE = VZMULJ(T1, Ti); | |
256 T4 = LDW(&(W[TWVL * 4])); | |
257 Ta = VZMULJ(T9, T4); | |
258 TO = VZMUL(T8, T4); | |
259 TV = VZMULJ(T1, T4); | |
260 Td = VZMUL(T9, T4); | |
261 Tm = VZMULJ(Tl, T4); | |
262 TA = VZMUL(T1, T4); | |
263 TH = VZMULJ(T8, T4); | |
264 Ts = VZMUL(Tl, T4); | |
265 { | |
266 V TY, T1q, TR, T1r, T1m, T1n, TL, TZ, T1f, T1g, T1h, Th, T11, T1i, T1j; | |
267 V T1k, Tw, T12, TU, TX, TW; | |
268 TU = LD(&(x[0]), ms, &(x[0])); | |
269 TW = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
270 TX = VZMUL(TV, TW); | |
271 TY = VSUB(TU, TX); | |
272 T1q = VADD(TU, TX); | |
273 { | |
274 V TN, TQ, TM, TP; | |
275 TM = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
276 TN = VZMUL(T9, TM); | |
277 TP = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
278 TQ = VZMUL(TO, TP); | |
279 TR = VSUB(TN, TQ); | |
280 T1r = VADD(TN, TQ); | |
281 } | |
282 { | |
283 V Tz, TJ, TC, TG, TD, TK; | |
284 { | |
285 V Ty, TI, TB, TF; | |
286 Ty = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
287 Tz = VZMUL(Tl, Ty); | |
288 TI = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
289 TJ = VZMUL(TH, TI); | |
290 TB = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
291 TC = VZMUL(TA, TB); | |
292 TF = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
293 TG = VZMUL(TE, TF); | |
294 } | |
295 T1m = VADD(Tz, TC); | |
296 T1n = VADD(TG, TJ); | |
297 TD = VSUB(Tz, TC); | |
298 TK = VSUB(TG, TJ); | |
299 TL = VMUL(LDK(KP707106781), VSUB(TD, TK)); | |
300 TZ = VMUL(LDK(KP707106781), VADD(TD, TK)); | |
301 } | |
302 { | |
303 V T3, Tf, T6, Tc, T7, Tg; | |
304 { | |
305 V T2, Te, T5, Tb; | |
306 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
307 T3 = VZMUL(T1, T2); | |
308 Te = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
309 Tf = VZMUL(Td, Te); | |
310 T5 = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
311 T6 = VZMUL(T4, T5); | |
312 Tb = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
313 Tc = VZMUL(Ta, Tb); | |
314 } | |
315 T1f = VADD(T3, T6); | |
316 T1g = VADD(Tc, Tf); | |
317 T1h = VSUB(T1f, T1g); | |
318 T7 = VSUB(T3, T6); | |
319 Tg = VSUB(Tc, Tf); | |
320 Th = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), T7)); | |
321 T11 = VFMA(LDK(KP382683432), T7, VMUL(LDK(KP923879532), Tg)); | |
322 } | |
323 { | |
324 V Tk, Tu, To, Tr, Tp, Tv; | |
325 { | |
326 V Tj, Tt, Tn, Tq; | |
327 Tj = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
328 Tk = VZMUL(Ti, Tj); | |
329 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
330 Tu = VZMUL(Ts, Tt); | |
331 Tn = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
332 To = VZMUL(Tm, Tn); | |
333 Tq = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
334 Tr = VZMUL(T8, Tq); | |
335 } | |
336 T1i = VADD(Tk, To); | |
337 T1j = VADD(Tr, Tu); | |
338 T1k = VSUB(T1i, T1j); | |
339 Tp = VSUB(Tk, To); | |
340 Tv = VSUB(Tr, Tu); | |
341 Tw = VFMA(LDK(KP923879532), Tp, VMUL(LDK(KP382683432), Tv)); | |
342 T12 = VFNMS(LDK(KP382683432), Tp, VMUL(LDK(KP923879532), Tv)); | |
343 } | |
344 { | |
345 V T1p, T1v, T1u, T1w; | |
346 { | |
347 V T1l, T1o, T1s, T1t; | |
348 T1l = VMUL(LDK(KP707106781), VSUB(T1h, T1k)); | |
349 T1o = VSUB(T1m, T1n); | |
350 T1p = VBYI(VSUB(T1l, T1o)); | |
351 T1v = VBYI(VADD(T1o, T1l)); | |
352 T1s = VSUB(T1q, T1r); | |
353 T1t = VMUL(LDK(KP707106781), VADD(T1h, T1k)); | |
354 T1u = VSUB(T1s, T1t); | |
355 T1w = VADD(T1s, T1t); | |
356 } | |
357 ST(&(x[WS(rs, 6)]), VADD(T1p, T1u), ms, &(x[0])); | |
358 ST(&(x[WS(rs, 14)]), VSUB(T1w, T1v), ms, &(x[0])); | |
359 ST(&(x[WS(rs, 10)]), VSUB(T1u, T1p), ms, &(x[0])); | |
360 ST(&(x[WS(rs, 2)]), VADD(T1v, T1w), ms, &(x[0])); | |
361 } | |
362 { | |
363 V T1z, T1D, T1C, T1E; | |
364 { | |
365 V T1x, T1y, T1A, T1B; | |
366 T1x = VADD(T1q, T1r); | |
367 T1y = VADD(T1m, T1n); | |
368 T1z = VSUB(T1x, T1y); | |
369 T1D = VADD(T1x, T1y); | |
370 T1A = VADD(T1f, T1g); | |
371 T1B = VADD(T1i, T1j); | |
372 T1C = VBYI(VSUB(T1A, T1B)); | |
373 T1E = VADD(T1A, T1B); | |
374 } | |
375 ST(&(x[WS(rs, 12)]), VSUB(T1z, T1C), ms, &(x[0])); | |
376 ST(&(x[0]), VADD(T1D, T1E), ms, &(x[0])); | |
377 ST(&(x[WS(rs, 4)]), VADD(T1z, T1C), ms, &(x[0])); | |
378 ST(&(x[WS(rs, 8)]), VSUB(T1D, T1E), ms, &(x[0])); | |
379 } | |
380 { | |
381 V TT, T15, T14, T16; | |
382 { | |
383 V Tx, TS, T10, T13; | |
384 Tx = VSUB(Th, Tw); | |
385 TS = VSUB(TL, TR); | |
386 TT = VBYI(VSUB(Tx, TS)); | |
387 T15 = VBYI(VADD(TS, Tx)); | |
388 T10 = VSUB(TY, TZ); | |
389 T13 = VSUB(T11, T12); | |
390 T14 = VSUB(T10, T13); | |
391 T16 = VADD(T10, T13); | |
392 } | |
393 ST(&(x[WS(rs, 5)]), VADD(TT, T14), ms, &(x[WS(rs, 1)])); | |
394 ST(&(x[WS(rs, 13)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)])); | |
395 ST(&(x[WS(rs, 11)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)])); | |
396 ST(&(x[WS(rs, 3)]), VADD(T15, T16), ms, &(x[WS(rs, 1)])); | |
397 } | |
398 { | |
399 V T19, T1d, T1c, T1e; | |
400 { | |
401 V T17, T18, T1a, T1b; | |
402 T17 = VADD(TY, TZ); | |
403 T18 = VADD(Th, Tw); | |
404 T19 = VADD(T17, T18); | |
405 T1d = VSUB(T17, T18); | |
406 T1a = VADD(TR, TL); | |
407 T1b = VADD(T11, T12); | |
408 T1c = VBYI(VADD(T1a, T1b)); | |
409 T1e = VBYI(VSUB(T1b, T1a)); | |
410 } | |
411 ST(&(x[WS(rs, 15)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)])); | |
412 ST(&(x[WS(rs, 7)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)])); | |
413 ST(&(x[WS(rs, 1)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)])); | |
414 ST(&(x[WS(rs, 9)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)])); | |
415 } | |
416 } | |
417 } | |
418 } | |
419 VLEAVE(); | |
420 } | |
421 | |
422 static const tw_instr twinstr[] = { | |
423 VTW(0, 1), | |
424 VTW(0, 3), | |
425 VTW(0, 9), | |
426 VTW(0, 15), | |
427 {TW_NEXT, VL, 0} | |
428 }; | |
429 | |
430 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 }; | |
431 | |
432 void XSIMD(codelet_t3bv_16) (planner *p) { | |
433 X(kdft_dit_register) (p, t3bv_16, &desc); | |
434 } | |
435 #endif /* HAVE_FMA */ |