Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t2sv_4.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:26 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include ts.h */ | |
29 | |
30 /* | |
31 * This function contains 24 FP additions, 16 FP multiplications, | |
32 * (or, 16 additions, 8 multiplications, 8 fused multiply/add), | |
33 * 37 stack variables, 0 constants, and 16 memory accesses | |
34 */ | |
35 #include "ts.h" | |
36 | |
37 static void t2sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 { | |
40 INT m; | |
41 for (m = mb, W = W + (mb * 4); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(8, rs)) { | |
42 V T2, T6, T3, T5, T1, Tx, T8, Tc, Tf, Ta, T4, Th, Tj, Tl; | |
43 T2 = LDW(&(W[0])); | |
44 T6 = LDW(&(W[TWVL * 3])); | |
45 T3 = LDW(&(W[TWVL * 2])); | |
46 T5 = LDW(&(W[TWVL * 1])); | |
47 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
48 Tx = LD(&(ii[0]), ms, &(ii[0])); | |
49 T8 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
50 Tc = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
51 Tf = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
52 Ta = VMUL(T2, T6); | |
53 T4 = VMUL(T2, T3); | |
54 Th = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
55 Tj = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
56 Tl = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
57 { | |
58 V Tg, Tb, T7, Tp, Tk, Tr, Ti; | |
59 Tg = VMUL(T2, Tf); | |
60 Tb = VFNMS(T5, T3, Ta); | |
61 T7 = VFMA(T5, T6, T4); | |
62 Tp = VMUL(T2, Th); | |
63 Tk = VMUL(T3, Tj); | |
64 Tr = VMUL(T3, Tl); | |
65 Ti = VFMA(T5, Th, Tg); | |
66 { | |
67 V Tv, T9, Tq, Tm, Ts, Tw, Td; | |
68 Tv = VMUL(T7, Tc); | |
69 T9 = VMUL(T7, T8); | |
70 Tq = VFNMS(T5, Tf, Tp); | |
71 Tm = VFMA(T6, Tl, Tk); | |
72 Ts = VFNMS(T6, Tj, Tr); | |
73 Tw = VFNMS(Tb, T8, Tv); | |
74 Td = VFMA(Tb, Tc, T9); | |
75 { | |
76 V Tn, TA, Tu, Tt; | |
77 Tn = VADD(Ti, Tm); | |
78 TA = VSUB(Ti, Tm); | |
79 Tu = VADD(Tq, Ts); | |
80 Tt = VSUB(Tq, Ts); | |
81 { | |
82 V Ty, Tz, Te, To; | |
83 Ty = VADD(Tw, Tx); | |
84 Tz = VSUB(Tx, Tw); | |
85 Te = VADD(T1, Td); | |
86 To = VSUB(T1, Td); | |
87 ST(&(ii[WS(rs, 3)]), VADD(TA, Tz), ms, &(ii[WS(rs, 1)])); | |
88 ST(&(ii[WS(rs, 1)]), VSUB(Tz, TA), ms, &(ii[WS(rs, 1)])); | |
89 ST(&(ii[WS(rs, 2)]), VSUB(Ty, Tu), ms, &(ii[0])); | |
90 ST(&(ii[0]), VADD(Tu, Ty), ms, &(ii[0])); | |
91 ST(&(ri[WS(rs, 1)]), VADD(To, Tt), ms, &(ri[WS(rs, 1)])); | |
92 ST(&(ri[WS(rs, 3)]), VSUB(To, Tt), ms, &(ri[WS(rs, 1)])); | |
93 ST(&(ri[0]), VADD(Te, Tn), ms, &(ri[0])); | |
94 ST(&(ri[WS(rs, 2)]), VSUB(Te, Tn), ms, &(ri[0])); | |
95 } | |
96 } | |
97 } | |
98 } | |
99 } | |
100 } | |
101 VLEAVE(); | |
102 } | |
103 | |
104 static const tw_instr twinstr[] = { | |
105 VTW(0, 1), | |
106 VTW(0, 3), | |
107 {TW_NEXT, (2 * VL), 0} | |
108 }; | |
109 | |
110 static const ct_desc desc = { 4, XSIMD_STRING("t2sv_4"), twinstr, &GENUS, {16, 8, 8, 0}, 0, 0, 0 }; | |
111 | |
112 void XSIMD(codelet_t2sv_4) (planner *p) { | |
113 X(kdft_dit_register) (p, t2sv_4, &desc); | |
114 } | |
115 #else /* HAVE_FMA */ | |
116 | |
117 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 4 -name t2sv_4 -include ts.h */ | |
118 | |
119 /* | |
120 * This function contains 24 FP additions, 16 FP multiplications, | |
121 * (or, 16 additions, 8 multiplications, 8 fused multiply/add), | |
122 * 21 stack variables, 0 constants, and 16 memory accesses | |
123 */ | |
124 #include "ts.h" | |
125 | |
126 static void t2sv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
127 { | |
128 { | |
129 INT m; | |
130 for (m = mb, W = W + (mb * 4); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 4), MAKE_VOLATILE_STRIDE(8, rs)) { | |
131 V T2, T4, T3, T5, T6, T8; | |
132 T2 = LDW(&(W[0])); | |
133 T4 = LDW(&(W[TWVL * 1])); | |
134 T3 = LDW(&(W[TWVL * 2])); | |
135 T5 = LDW(&(W[TWVL * 3])); | |
136 T6 = VFMA(T2, T3, VMUL(T4, T5)); | |
137 T8 = VFNMS(T4, T3, VMUL(T2, T5)); | |
138 { | |
139 V T1, Tp, Ta, To, Te, Tk, Th, Tl, T7, T9; | |
140 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
141 Tp = LD(&(ii[0]), ms, &(ii[0])); | |
142 T7 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
143 T9 = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
144 Ta = VFMA(T6, T7, VMUL(T8, T9)); | |
145 To = VFNMS(T8, T7, VMUL(T6, T9)); | |
146 { | |
147 V Tc, Td, Tf, Tg; | |
148 Tc = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
149 Td = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
150 Te = VFMA(T2, Tc, VMUL(T4, Td)); | |
151 Tk = VFNMS(T4, Tc, VMUL(T2, Td)); | |
152 Tf = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
153 Tg = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
154 Th = VFMA(T3, Tf, VMUL(T5, Tg)); | |
155 Tl = VFNMS(T5, Tf, VMUL(T3, Tg)); | |
156 } | |
157 { | |
158 V Tb, Ti, Tn, Tq; | |
159 Tb = VADD(T1, Ta); | |
160 Ti = VADD(Te, Th); | |
161 ST(&(ri[WS(rs, 2)]), VSUB(Tb, Ti), ms, &(ri[0])); | |
162 ST(&(ri[0]), VADD(Tb, Ti), ms, &(ri[0])); | |
163 Tn = VADD(Tk, Tl); | |
164 Tq = VADD(To, Tp); | |
165 ST(&(ii[0]), VADD(Tn, Tq), ms, &(ii[0])); | |
166 ST(&(ii[WS(rs, 2)]), VSUB(Tq, Tn), ms, &(ii[0])); | |
167 } | |
168 { | |
169 V Tj, Tm, Tr, Ts; | |
170 Tj = VSUB(T1, Ta); | |
171 Tm = VSUB(Tk, Tl); | |
172 ST(&(ri[WS(rs, 3)]), VSUB(Tj, Tm), ms, &(ri[WS(rs, 1)])); | |
173 ST(&(ri[WS(rs, 1)]), VADD(Tj, Tm), ms, &(ri[WS(rs, 1)])); | |
174 Tr = VSUB(Tp, To); | |
175 Ts = VSUB(Te, Th); | |
176 ST(&(ii[WS(rs, 1)]), VSUB(Tr, Ts), ms, &(ii[WS(rs, 1)])); | |
177 ST(&(ii[WS(rs, 3)]), VADD(Ts, Tr), ms, &(ii[WS(rs, 1)])); | |
178 } | |
179 } | |
180 } | |
181 } | |
182 VLEAVE(); | |
183 } | |
184 | |
185 static const tw_instr twinstr[] = { | |
186 VTW(0, 1), | |
187 VTW(0, 3), | |
188 {TW_NEXT, (2 * VL), 0} | |
189 }; | |
190 | |
191 static const ct_desc desc = { 4, XSIMD_STRING("t2sv_4"), twinstr, &GENUS, {16, 8, 8, 0}, 0, 0, 0 }; | |
192 | |
193 void XSIMD(codelet_t2sv_4) (planner *p) { | |
194 X(kdft_dit_register) (p, t2sv_4, &desc); | |
195 } | |
196 #endif /* HAVE_FMA */ |