Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t2fv_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:38:41 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t2fv_20 -include t2f.h */ | |
29 | |
30 /* | |
31 * This function contains 123 FP additions, 88 FP multiplications, | |
32 * (or, 77 additions, 42 multiplications, 46 fused multiply/add), | |
33 * 68 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "t2f.h" | |
36 | |
37 static void t2fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 R *x; | |
46 x = ri; | |
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) { | |
48 V T4, Tx, T1m, T1K, T1y, Tk, Tf, T16, T10, TT, T1O, T1w, T1L, T1p, T1M; | |
49 V T1s, TZ, TI, T1x, Tp; | |
50 { | |
51 V T1, Tv, T2, Tt; | |
52 T1 = LD(&(x[0]), ms, &(x[0])); | |
53 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
54 T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
55 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
56 { | |
57 V T9, T1n, TN, T1v, TS, Te, T1q, T1u, TE, TG, Tm, T1o, TC, Tn, T1r; | |
58 V TH, To; | |
59 { | |
60 V TP, TR, Ta, Tc; | |
61 { | |
62 V T5, T7, TJ, TL, T1k, T1l; | |
63 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
64 T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
65 TJ = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
66 TL = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
67 { | |
68 V Tw, T3, Tu, T6, T8, TK, TM, TO, TQ; | |
69 TO = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); | |
70 Tw = BYTWJ(&(W[TWVL * 28]), Tv); | |
71 T3 = BYTWJ(&(W[TWVL * 18]), T2); | |
72 Tu = BYTWJ(&(W[TWVL * 8]), Tt); | |
73 T6 = BYTWJ(&(W[TWVL * 6]), T5); | |
74 T8 = BYTWJ(&(W[TWVL * 26]), T7); | |
75 TK = BYTWJ(&(W[TWVL * 24]), TJ); | |
76 TM = BYTWJ(&(W[TWVL * 4]), TL); | |
77 TP = BYTWJ(&(W[TWVL * 32]), TO); | |
78 TQ = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
79 T4 = VSUB(T1, T3); | |
80 T1k = VADD(T1, T3); | |
81 Tx = VSUB(Tu, Tw); | |
82 T1l = VADD(Tu, Tw); | |
83 T9 = VSUB(T6, T8); | |
84 T1n = VADD(T6, T8); | |
85 TN = VSUB(TK, TM); | |
86 T1v = VADD(TK, TM); | |
87 TR = BYTWJ(&(W[TWVL * 12]), TQ); | |
88 } | |
89 Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0])); | |
90 T1m = VSUB(T1k, T1l); | |
91 T1K = VADD(T1k, T1l); | |
92 Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
93 } | |
94 { | |
95 V Tb, TA, Td, Th, Tj, Tz, Tg, Ti, Ty; | |
96 Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
97 Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0])); | |
98 Ty = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
99 TS = VSUB(TP, TR); | |
100 T1y = VADD(TP, TR); | |
101 Tb = BYTWJ(&(W[TWVL * 30]), Ta); | |
102 TA = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); | |
103 Td = BYTWJ(&(W[TWVL * 10]), Tc); | |
104 Th = BYTWJ(&(W[TWVL * 14]), Tg); | |
105 Tj = BYTWJ(&(W[TWVL * 34]), Ti); | |
106 Tz = BYTWJ(&(W[TWVL * 16]), Ty); | |
107 { | |
108 V TD, TF, TB, Tl; | |
109 TD = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
110 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
111 Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
112 TB = BYTWJ(&(W[TWVL * 36]), TA); | |
113 Te = VSUB(Tb, Td); | |
114 T1q = VADD(Tb, Td); | |
115 Tk = VSUB(Th, Tj); | |
116 T1u = VADD(Th, Tj); | |
117 TE = BYTWJ(&(W[0]), TD); | |
118 TG = BYTWJ(&(W[TWVL * 20]), TF); | |
119 Tm = BYTWJ(&(W[TWVL * 22]), Tl); | |
120 T1o = VADD(Tz, TB); | |
121 TC = VSUB(Tz, TB); | |
122 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
123 } | |
124 } | |
125 } | |
126 Tf = VADD(T9, Te); | |
127 T16 = VSUB(T9, Te); | |
128 T10 = VSUB(TS, TN); | |
129 TT = VADD(TN, TS); | |
130 T1r = VADD(TE, TG); | |
131 TH = VSUB(TE, TG); | |
132 T1O = VADD(T1u, T1v); | |
133 T1w = VSUB(T1u, T1v); | |
134 To = BYTWJ(&(W[TWVL * 2]), Tn); | |
135 T1L = VADD(T1n, T1o); | |
136 T1p = VSUB(T1n, T1o); | |
137 T1M = VADD(T1q, T1r); | |
138 T1s = VSUB(T1q, T1r); | |
139 TZ = VSUB(TH, TC); | |
140 TI = VADD(TC, TH); | |
141 T1x = VADD(Tm, To); | |
142 Tp = VSUB(Tm, To); | |
143 } | |
144 } | |
145 { | |
146 V T1V, T1N, T14, T1d, T11, T1G, T1t, T1z, T1P, Tq, T17, T13, TV, TU; | |
147 T1V = VSUB(T1L, T1M); | |
148 T1N = VADD(T1L, T1M); | |
149 T14 = VSUB(TT, TI); | |
150 TU = VADD(TI, TT); | |
151 T1d = VFNMS(LDK(KP618033988), TZ, T10); | |
152 T11 = VFMA(LDK(KP618033988), T10, TZ); | |
153 T1G = VSUB(T1p, T1s); | |
154 T1t = VADD(T1p, T1s); | |
155 T1z = VSUB(T1x, T1y); | |
156 T1P = VADD(T1x, T1y); | |
157 Tq = VADD(Tk, Tp); | |
158 T17 = VSUB(Tk, Tp); | |
159 T13 = VFNMS(LDK(KP250000000), TU, Tx); | |
160 TV = VADD(Tx, TU); | |
161 { | |
162 V T1J, T1H, T1D, T1Z, T1X, T1T, T1h, T1j, T1b, T19, T1C, T1S, T1c, TY, T1F; | |
163 V T1A; | |
164 T1F = VSUB(T1w, T1z); | |
165 T1A = VADD(T1w, T1z); | |
166 { | |
167 V T1W, T1Q, TX, Tr; | |
168 T1W = VSUB(T1O, T1P); | |
169 T1Q = VADD(T1O, T1P); | |
170 TX = VSUB(Tf, Tq); | |
171 Tr = VADD(Tf, Tq); | |
172 { | |
173 V T1g, T18, T1f, T15; | |
174 T1g = VFNMS(LDK(KP618033988), T16, T17); | |
175 T18 = VFMA(LDK(KP618033988), T17, T16); | |
176 T1f = VFMA(LDK(KP559016994), T14, T13); | |
177 T15 = VFNMS(LDK(KP559016994), T14, T13); | |
178 T1J = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1F, T1G)); | |
179 T1H = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1G, T1F)); | |
180 { | |
181 V T1B, T1R, TW, Ts; | |
182 T1B = VADD(T1t, T1A); | |
183 T1D = VSUB(T1t, T1A); | |
184 T1Z = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1V, T1W)); | |
185 T1X = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1W, T1V)); | |
186 T1R = VADD(T1N, T1Q); | |
187 T1T = VSUB(T1N, T1Q); | |
188 TW = VFNMS(LDK(KP250000000), Tr, T4); | |
189 Ts = VADD(T4, Tr); | |
190 T1h = VFNMS(LDK(KP951056516), T1g, T1f); | |
191 T1j = VFMA(LDK(KP951056516), T1g, T1f); | |
192 T1b = VFNMS(LDK(KP951056516), T18, T15); | |
193 T19 = VFMA(LDK(KP951056516), T18, T15); | |
194 ST(&(x[WS(rs, 10)]), VADD(T1m, T1B), ms, &(x[0])); | |
195 T1C = VFNMS(LDK(KP250000000), T1B, T1m); | |
196 ST(&(x[0]), VADD(T1K, T1R), ms, &(x[0])); | |
197 T1S = VFNMS(LDK(KP250000000), T1R, T1K); | |
198 T1c = VFNMS(LDK(KP559016994), TX, TW); | |
199 TY = VFMA(LDK(KP559016994), TX, TW); | |
200 ST(&(x[WS(rs, 15)]), VFMAI(TV, Ts), ms, &(x[WS(rs, 1)])); | |
201 ST(&(x[WS(rs, 5)]), VFNMSI(TV, Ts), ms, &(x[WS(rs, 1)])); | |
202 } | |
203 } | |
204 } | |
205 { | |
206 V T1E, T1I, T1U, T1Y; | |
207 T1E = VFNMS(LDK(KP559016994), T1D, T1C); | |
208 T1I = VFMA(LDK(KP559016994), T1D, T1C); | |
209 T1U = VFMA(LDK(KP559016994), T1T, T1S); | |
210 T1Y = VFNMS(LDK(KP559016994), T1T, T1S); | |
211 { | |
212 V T1e, T1i, T1a, T12; | |
213 T1e = VFNMS(LDK(KP951056516), T1d, T1c); | |
214 T1i = VFMA(LDK(KP951056516), T1d, T1c); | |
215 T1a = VFNMS(LDK(KP951056516), T11, TY); | |
216 T12 = VFMA(LDK(KP951056516), T11, TY); | |
217 ST(&(x[WS(rs, 18)]), VFNMSI(T1H, T1E), ms, &(x[0])); | |
218 ST(&(x[WS(rs, 2)]), VFMAI(T1H, T1E), ms, &(x[0])); | |
219 ST(&(x[WS(rs, 14)]), VFMAI(T1J, T1I), ms, &(x[0])); | |
220 ST(&(x[WS(rs, 6)]), VFNMSI(T1J, T1I), ms, &(x[0])); | |
221 ST(&(x[WS(rs, 16)]), VFNMSI(T1X, T1U), ms, &(x[0])); | |
222 ST(&(x[WS(rs, 4)]), VFMAI(T1X, T1U), ms, &(x[0])); | |
223 ST(&(x[WS(rs, 12)]), VFMAI(T1Z, T1Y), ms, &(x[0])); | |
224 ST(&(x[WS(rs, 8)]), VFNMSI(T1Z, T1Y), ms, &(x[0])); | |
225 ST(&(x[WS(rs, 3)]), VFMAI(T1h, T1e), ms, &(x[WS(rs, 1)])); | |
226 ST(&(x[WS(rs, 17)]), VFNMSI(T1h, T1e), ms, &(x[WS(rs, 1)])); | |
227 ST(&(x[WS(rs, 7)]), VFMAI(T1j, T1i), ms, &(x[WS(rs, 1)])); | |
228 ST(&(x[WS(rs, 13)]), VFNMSI(T1j, T1i), ms, &(x[WS(rs, 1)])); | |
229 ST(&(x[WS(rs, 11)]), VFMAI(T1b, T1a), ms, &(x[WS(rs, 1)])); | |
230 ST(&(x[WS(rs, 9)]), VFNMSI(T1b, T1a), ms, &(x[WS(rs, 1)])); | |
231 ST(&(x[WS(rs, 19)]), VFMAI(T19, T12), ms, &(x[WS(rs, 1)])); | |
232 ST(&(x[WS(rs, 1)]), VFNMSI(T19, T12), ms, &(x[WS(rs, 1)])); | |
233 } | |
234 } | |
235 } | |
236 } | |
237 } | |
238 } | |
239 VLEAVE(); | |
240 } | |
241 | |
242 static const tw_instr twinstr[] = { | |
243 VTW(0, 1), | |
244 VTW(0, 2), | |
245 VTW(0, 3), | |
246 VTW(0, 4), | |
247 VTW(0, 5), | |
248 VTW(0, 6), | |
249 VTW(0, 7), | |
250 VTW(0, 8), | |
251 VTW(0, 9), | |
252 VTW(0, 10), | |
253 VTW(0, 11), | |
254 VTW(0, 12), | |
255 VTW(0, 13), | |
256 VTW(0, 14), | |
257 VTW(0, 15), | |
258 VTW(0, 16), | |
259 VTW(0, 17), | |
260 VTW(0, 18), | |
261 VTW(0, 19), | |
262 {TW_NEXT, VL, 0} | |
263 }; | |
264 | |
265 static const ct_desc desc = { 20, XSIMD_STRING("t2fv_20"), twinstr, &GENUS, {77, 42, 46, 0}, 0, 0, 0 }; | |
266 | |
267 void XSIMD(codelet_t2fv_20) (planner *p) { | |
268 X(kdft_dit_register) (p, t2fv_20, &desc); | |
269 } | |
270 #else /* HAVE_FMA */ | |
271 | |
272 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name t2fv_20 -include t2f.h */ | |
273 | |
274 /* | |
275 * This function contains 123 FP additions, 62 FP multiplications, | |
276 * (or, 111 additions, 50 multiplications, 12 fused multiply/add), | |
277 * 54 stack variables, 4 constants, and 40 memory accesses | |
278 */ | |
279 #include "t2f.h" | |
280 | |
281 static void t2fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
282 { | |
283 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
284 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
285 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
286 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
287 { | |
288 INT m; | |
289 R *x; | |
290 x = ri; | |
291 for (m = mb, W = W + (mb * ((TWVL / VL) * 38)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 38), MAKE_VOLATILE_STRIDE(20, rs)) { | |
292 V T4, Tx, T1B, T1U, TZ, T16, T17, T10, Tf, Tq, Tr, T1N, T1O, T1S, T1t; | |
293 V T1w, T1C, TI, TT, TU, T1K, T1L, T1R, T1m, T1p, T1D, Ts, TV; | |
294 { | |
295 V T1, Tw, T3, Tu, Tv, T2, Tt, T1z, T1A; | |
296 T1 = LD(&(x[0]), ms, &(x[0])); | |
297 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
298 Tw = BYTWJ(&(W[TWVL * 28]), Tv); | |
299 T2 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
300 T3 = BYTWJ(&(W[TWVL * 18]), T2); | |
301 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
302 Tu = BYTWJ(&(W[TWVL * 8]), Tt); | |
303 T4 = VSUB(T1, T3); | |
304 Tx = VSUB(Tu, Tw); | |
305 T1z = VADD(T1, T3); | |
306 T1A = VADD(Tu, Tw); | |
307 T1B = VSUB(T1z, T1A); | |
308 T1U = VADD(T1z, T1A); | |
309 } | |
310 { | |
311 V T9, T1r, TN, T1l, TS, T1o, Te, T1u, Tk, T1k, TC, T1s, TH, T1v, Tp; | |
312 V T1n; | |
313 { | |
314 V T6, T8, T5, T7; | |
315 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
316 T6 = BYTWJ(&(W[TWVL * 6]), T5); | |
317 T7 = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
318 T8 = BYTWJ(&(W[TWVL * 26]), T7); | |
319 T9 = VSUB(T6, T8); | |
320 T1r = VADD(T6, T8); | |
321 } | |
322 { | |
323 V TK, TM, TJ, TL; | |
324 TJ = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
325 TK = BYTWJ(&(W[TWVL * 24]), TJ); | |
326 TL = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
327 TM = BYTWJ(&(W[TWVL * 4]), TL); | |
328 TN = VSUB(TK, TM); | |
329 T1l = VADD(TK, TM); | |
330 } | |
331 { | |
332 V TP, TR, TO, TQ; | |
333 TO = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); | |
334 TP = BYTWJ(&(W[TWVL * 32]), TO); | |
335 TQ = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
336 TR = BYTWJ(&(W[TWVL * 12]), TQ); | |
337 TS = VSUB(TP, TR); | |
338 T1o = VADD(TP, TR); | |
339 } | |
340 { | |
341 V Tb, Td, Ta, Tc; | |
342 Ta = LD(&(x[WS(rs, 16)]), ms, &(x[0])); | |
343 Tb = BYTWJ(&(W[TWVL * 30]), Ta); | |
344 Tc = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
345 Td = BYTWJ(&(W[TWVL * 10]), Tc); | |
346 Te = VSUB(Tb, Td); | |
347 T1u = VADD(Tb, Td); | |
348 } | |
349 { | |
350 V Th, Tj, Tg, Ti; | |
351 Tg = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
352 Th = BYTWJ(&(W[TWVL * 14]), Tg); | |
353 Ti = LD(&(x[WS(rs, 18)]), ms, &(x[0])); | |
354 Tj = BYTWJ(&(W[TWVL * 34]), Ti); | |
355 Tk = VSUB(Th, Tj); | |
356 T1k = VADD(Th, Tj); | |
357 } | |
358 { | |
359 V Tz, TB, Ty, TA; | |
360 Ty = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
361 Tz = BYTWJ(&(W[TWVL * 16]), Ty); | |
362 TA = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); | |
363 TB = BYTWJ(&(W[TWVL * 36]), TA); | |
364 TC = VSUB(Tz, TB); | |
365 T1s = VADD(Tz, TB); | |
366 } | |
367 { | |
368 V TE, TG, TD, TF; | |
369 TD = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
370 TE = BYTWJ(&(W[0]), TD); | |
371 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
372 TG = BYTWJ(&(W[TWVL * 20]), TF); | |
373 TH = VSUB(TE, TG); | |
374 T1v = VADD(TE, TG); | |
375 } | |
376 { | |
377 V Tm, To, Tl, Tn; | |
378 Tl = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
379 Tm = BYTWJ(&(W[TWVL * 22]), Tl); | |
380 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
381 To = BYTWJ(&(W[TWVL * 2]), Tn); | |
382 Tp = VSUB(Tm, To); | |
383 T1n = VADD(Tm, To); | |
384 } | |
385 TZ = VSUB(TH, TC); | |
386 T16 = VSUB(T9, Te); | |
387 T17 = VSUB(Tk, Tp); | |
388 T10 = VSUB(TS, TN); | |
389 Tf = VADD(T9, Te); | |
390 Tq = VADD(Tk, Tp); | |
391 Tr = VADD(Tf, Tq); | |
392 T1N = VADD(T1k, T1l); | |
393 T1O = VADD(T1n, T1o); | |
394 T1S = VADD(T1N, T1O); | |
395 T1t = VSUB(T1r, T1s); | |
396 T1w = VSUB(T1u, T1v); | |
397 T1C = VADD(T1t, T1w); | |
398 TI = VADD(TC, TH); | |
399 TT = VADD(TN, TS); | |
400 TU = VADD(TI, TT); | |
401 T1K = VADD(T1r, T1s); | |
402 T1L = VADD(T1u, T1v); | |
403 T1R = VADD(T1K, T1L); | |
404 T1m = VSUB(T1k, T1l); | |
405 T1p = VSUB(T1n, T1o); | |
406 T1D = VADD(T1m, T1p); | |
407 } | |
408 Ts = VADD(T4, Tr); | |
409 TV = VBYI(VADD(Tx, TU)); | |
410 ST(&(x[WS(rs, 5)]), VSUB(Ts, TV), ms, &(x[WS(rs, 1)])); | |
411 ST(&(x[WS(rs, 15)]), VADD(Ts, TV), ms, &(x[WS(rs, 1)])); | |
412 { | |
413 V T1T, T1V, T1W, T1Q, T1Z, T1M, T1P, T1Y, T1X; | |
414 T1T = VMUL(LDK(KP559016994), VSUB(T1R, T1S)); | |
415 T1V = VADD(T1R, T1S); | |
416 T1W = VFNMS(LDK(KP250000000), T1V, T1U); | |
417 T1M = VSUB(T1K, T1L); | |
418 T1P = VSUB(T1N, T1O); | |
419 T1Q = VBYI(VFMA(LDK(KP951056516), T1M, VMUL(LDK(KP587785252), T1P))); | |
420 T1Z = VBYI(VFNMS(LDK(KP587785252), T1M, VMUL(LDK(KP951056516), T1P))); | |
421 ST(&(x[0]), VADD(T1U, T1V), ms, &(x[0])); | |
422 T1Y = VSUB(T1W, T1T); | |
423 ST(&(x[WS(rs, 8)]), VSUB(T1Y, T1Z), ms, &(x[0])); | |
424 ST(&(x[WS(rs, 12)]), VADD(T1Z, T1Y), ms, &(x[0])); | |
425 T1X = VADD(T1T, T1W); | |
426 ST(&(x[WS(rs, 4)]), VADD(T1Q, T1X), ms, &(x[0])); | |
427 ST(&(x[WS(rs, 16)]), VSUB(T1X, T1Q), ms, &(x[0])); | |
428 } | |
429 { | |
430 V T1G, T1E, T1F, T1y, T1J, T1q, T1x, T1I, T1H; | |
431 T1G = VMUL(LDK(KP559016994), VSUB(T1C, T1D)); | |
432 T1E = VADD(T1C, T1D); | |
433 T1F = VFNMS(LDK(KP250000000), T1E, T1B); | |
434 T1q = VSUB(T1m, T1p); | |
435 T1x = VSUB(T1t, T1w); | |
436 T1y = VBYI(VFNMS(LDK(KP587785252), T1x, VMUL(LDK(KP951056516), T1q))); | |
437 T1J = VBYI(VFMA(LDK(KP951056516), T1x, VMUL(LDK(KP587785252), T1q))); | |
438 ST(&(x[WS(rs, 10)]), VADD(T1B, T1E), ms, &(x[0])); | |
439 T1I = VADD(T1G, T1F); | |
440 ST(&(x[WS(rs, 6)]), VSUB(T1I, T1J), ms, &(x[0])); | |
441 ST(&(x[WS(rs, 14)]), VADD(T1J, T1I), ms, &(x[0])); | |
442 T1H = VSUB(T1F, T1G); | |
443 ST(&(x[WS(rs, 2)]), VADD(T1y, T1H), ms, &(x[0])); | |
444 ST(&(x[WS(rs, 18)]), VSUB(T1H, T1y), ms, &(x[0])); | |
445 } | |
446 { | |
447 V T11, T18, T1g, T1d, T15, T1f, TY, T1c; | |
448 T11 = VFMA(LDK(KP951056516), TZ, VMUL(LDK(KP587785252), T10)); | |
449 T18 = VFMA(LDK(KP951056516), T16, VMUL(LDK(KP587785252), T17)); | |
450 T1g = VFNMS(LDK(KP587785252), T16, VMUL(LDK(KP951056516), T17)); | |
451 T1d = VFNMS(LDK(KP587785252), TZ, VMUL(LDK(KP951056516), T10)); | |
452 { | |
453 V T13, T14, TW, TX; | |
454 T13 = VFMS(LDK(KP250000000), TU, Tx); | |
455 T14 = VMUL(LDK(KP559016994), VSUB(TT, TI)); | |
456 T15 = VADD(T13, T14); | |
457 T1f = VSUB(T14, T13); | |
458 TW = VMUL(LDK(KP559016994), VSUB(Tf, Tq)); | |
459 TX = VFNMS(LDK(KP250000000), Tr, T4); | |
460 TY = VADD(TW, TX); | |
461 T1c = VSUB(TX, TW); | |
462 } | |
463 { | |
464 V T12, T19, T1i, T1j; | |
465 T12 = VADD(TY, T11); | |
466 T19 = VBYI(VSUB(T15, T18)); | |
467 ST(&(x[WS(rs, 19)]), VSUB(T12, T19), ms, &(x[WS(rs, 1)])); | |
468 ST(&(x[WS(rs, 1)]), VADD(T12, T19), ms, &(x[WS(rs, 1)])); | |
469 T1i = VADD(T1c, T1d); | |
470 T1j = VBYI(VADD(T1g, T1f)); | |
471 ST(&(x[WS(rs, 13)]), VSUB(T1i, T1j), ms, &(x[WS(rs, 1)])); | |
472 ST(&(x[WS(rs, 7)]), VADD(T1i, T1j), ms, &(x[WS(rs, 1)])); | |
473 } | |
474 { | |
475 V T1a, T1b, T1e, T1h; | |
476 T1a = VSUB(TY, T11); | |
477 T1b = VBYI(VADD(T18, T15)); | |
478 ST(&(x[WS(rs, 11)]), VSUB(T1a, T1b), ms, &(x[WS(rs, 1)])); | |
479 ST(&(x[WS(rs, 9)]), VADD(T1a, T1b), ms, &(x[WS(rs, 1)])); | |
480 T1e = VSUB(T1c, T1d); | |
481 T1h = VBYI(VSUB(T1f, T1g)); | |
482 ST(&(x[WS(rs, 17)]), VSUB(T1e, T1h), ms, &(x[WS(rs, 1)])); | |
483 ST(&(x[WS(rs, 3)]), VADD(T1e, T1h), ms, &(x[WS(rs, 1)])); | |
484 } | |
485 } | |
486 } | |
487 } | |
488 VLEAVE(); | |
489 } | |
490 | |
491 static const tw_instr twinstr[] = { | |
492 VTW(0, 1), | |
493 VTW(0, 2), | |
494 VTW(0, 3), | |
495 VTW(0, 4), | |
496 VTW(0, 5), | |
497 VTW(0, 6), | |
498 VTW(0, 7), | |
499 VTW(0, 8), | |
500 VTW(0, 9), | |
501 VTW(0, 10), | |
502 VTW(0, 11), | |
503 VTW(0, 12), | |
504 VTW(0, 13), | |
505 VTW(0, 14), | |
506 VTW(0, 15), | |
507 VTW(0, 16), | |
508 VTW(0, 17), | |
509 VTW(0, 18), | |
510 VTW(0, 19), | |
511 {TW_NEXT, VL, 0} | |
512 }; | |
513 | |
514 static const ct_desc desc = { 20, XSIMD_STRING("t2fv_20"), twinstr, &GENUS, {111, 50, 12, 0}, 0, 0, 0 }; | |
515 | |
516 void XSIMD(codelet_t2fv_20) (planner *p) { | |
517 X(kdft_dit_register) (p, t2fv_20, &desc); | |
518 } | |
519 #endif /* HAVE_FMA */ |