Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t2fv_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:38:35 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include t2f.h */ | |
29 | |
30 /* | |
31 * This function contains 87 FP additions, 64 FP multiplications, | |
32 * (or, 53 additions, 30 multiplications, 34 fused multiply/add), | |
33 * 61 stack variables, 3 constants, and 32 memory accesses | |
34 */ | |
35 #include "t2f.h" | |
36 | |
37 static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT m; | |
44 R *x; | |
45 x = ri; | |
46 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) { | |
47 V TO, Ta, TJ, TP, T14, Tq, T1i, T10, T1b, T1l, T13, T1c, TR, Tl, T15; | |
48 V Tv; | |
49 { | |
50 V Tc, TW, T4, T19, T9, TD, TI, Tj, TZ, T1a, Te, Th, Tn, Tr, Tu; | |
51 V Tp; | |
52 { | |
53 V T1, T2, T5, T7; | |
54 T1 = LD(&(x[0]), ms, &(x[0])); | |
55 T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
56 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
57 T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
58 { | |
59 V Tz, TG, TB, TE; | |
60 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
61 TG = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
62 TB = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
63 TE = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
64 { | |
65 V Ti, TY, TX, Td, Tg, Tm, Tt, To; | |
66 { | |
67 V T3, T6, T8, TA, TH, TC, TF, Tb; | |
68 Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
69 T3 = BYTWJ(&(W[TWVL * 14]), T2); | |
70 T6 = BYTWJ(&(W[TWVL * 6]), T5); | |
71 T8 = BYTWJ(&(W[TWVL * 22]), T7); | |
72 TA = BYTWJ(&(W[TWVL * 26]), Tz); | |
73 TH = BYTWJ(&(W[TWVL * 18]), TG); | |
74 TC = BYTWJ(&(W[TWVL * 10]), TB); | |
75 TF = BYTWJ(&(W[TWVL * 2]), TE); | |
76 Tc = BYTWJ(&(W[0]), Tb); | |
77 TW = VSUB(T1, T3); | |
78 T4 = VADD(T1, T3); | |
79 T19 = VSUB(T6, T8); | |
80 T9 = VADD(T6, T8); | |
81 Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
82 TD = VADD(TA, TC); | |
83 TY = VSUB(TA, TC); | |
84 TI = VADD(TF, TH); | |
85 TX = VSUB(TF, TH); | |
86 } | |
87 Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
88 Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
89 Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
90 Tj = BYTWJ(&(W[TWVL * 24]), Ti); | |
91 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
92 To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
93 TZ = VADD(TX, TY); | |
94 T1a = VSUB(TY, TX); | |
95 Te = BYTWJ(&(W[TWVL * 16]), Td); | |
96 Th = BYTWJ(&(W[TWVL * 8]), Tg); | |
97 Tn = BYTWJ(&(W[TWVL * 28]), Tm); | |
98 Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
99 Tu = BYTWJ(&(W[TWVL * 20]), Tt); | |
100 Tp = BYTWJ(&(W[TWVL * 12]), To); | |
101 } | |
102 } | |
103 } | |
104 { | |
105 V Tf, T11, Tk, T12, Ts; | |
106 TO = VADD(T4, T9); | |
107 Ta = VSUB(T4, T9); | |
108 TJ = VSUB(TD, TI); | |
109 TP = VADD(TI, TD); | |
110 Tf = VADD(Tc, Te); | |
111 T11 = VSUB(Tc, Te); | |
112 Tk = VADD(Th, Tj); | |
113 T12 = VSUB(Th, Tj); | |
114 Ts = BYTWJ(&(W[TWVL * 4]), Tr); | |
115 T14 = VSUB(Tn, Tp); | |
116 Tq = VADD(Tn, Tp); | |
117 T1i = VFNMS(LDK(KP707106781), TZ, TW); | |
118 T10 = VFMA(LDK(KP707106781), TZ, TW); | |
119 T1b = VFNMS(LDK(KP707106781), T1a, T19); | |
120 T1l = VFMA(LDK(KP707106781), T1a, T19); | |
121 T13 = VFNMS(LDK(KP414213562), T12, T11); | |
122 T1c = VFMA(LDK(KP414213562), T11, T12); | |
123 TR = VADD(Tf, Tk); | |
124 Tl = VSUB(Tf, Tk); | |
125 T15 = VSUB(Tu, Ts); | |
126 Tv = VADD(Ts, Tu); | |
127 } | |
128 } | |
129 { | |
130 V T1d, T16, TS, Tw, TU, TQ; | |
131 T1d = VFMA(LDK(KP414213562), T14, T15); | |
132 T16 = VFNMS(LDK(KP414213562), T15, T14); | |
133 TS = VADD(Tq, Tv); | |
134 Tw = VSUB(Tq, Tv); | |
135 TU = VSUB(TO, TP); | |
136 TQ = VADD(TO, TP); | |
137 { | |
138 V T1e, T1j, T17, T1m; | |
139 T1e = VSUB(T1c, T1d); | |
140 T1j = VADD(T1c, T1d); | |
141 T17 = VADD(T13, T16); | |
142 T1m = VSUB(T16, T13); | |
143 { | |
144 V TV, TT, TK, Tx; | |
145 TV = VSUB(TS, TR); | |
146 TT = VADD(TR, TS); | |
147 TK = VSUB(Tw, Tl); | |
148 Tx = VADD(Tl, Tw); | |
149 { | |
150 V T1h, T1f, T1o, T1k; | |
151 T1h = VFMA(LDK(KP923879532), T1e, T1b); | |
152 T1f = VFNMS(LDK(KP923879532), T1e, T1b); | |
153 T1o = VFMA(LDK(KP923879532), T1j, T1i); | |
154 T1k = VFNMS(LDK(KP923879532), T1j, T1i); | |
155 { | |
156 V T1g, T18, T1p, T1n; | |
157 T1g = VFMA(LDK(KP923879532), T17, T10); | |
158 T18 = VFNMS(LDK(KP923879532), T17, T10); | |
159 T1p = VFMA(LDK(KP923879532), T1m, T1l); | |
160 T1n = VFNMS(LDK(KP923879532), T1m, T1l); | |
161 ST(&(x[WS(rs, 12)]), VFNMSI(TV, TU), ms, &(x[0])); | |
162 ST(&(x[WS(rs, 4)]), VFMAI(TV, TU), ms, &(x[0])); | |
163 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0])); | |
164 ST(&(x[WS(rs, 8)]), VSUB(TQ, TT), ms, &(x[0])); | |
165 { | |
166 V TN, TL, TM, Ty; | |
167 TN = VFMA(LDK(KP707106781), TK, TJ); | |
168 TL = VFNMS(LDK(KP707106781), TK, TJ); | |
169 TM = VFMA(LDK(KP707106781), Tx, Ta); | |
170 Ty = VFNMS(LDK(KP707106781), Tx, Ta); | |
171 ST(&(x[WS(rs, 1)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)])); | |
172 ST(&(x[WS(rs, 15)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)])); | |
173 ST(&(x[WS(rs, 7)]), VFMAI(T1f, T18), ms, &(x[WS(rs, 1)])); | |
174 ST(&(x[WS(rs, 9)]), VFNMSI(T1f, T18), ms, &(x[WS(rs, 1)])); | |
175 ST(&(x[WS(rs, 3)]), VFMAI(T1p, T1o), ms, &(x[WS(rs, 1)])); | |
176 ST(&(x[WS(rs, 13)]), VFNMSI(T1p, T1o), ms, &(x[WS(rs, 1)])); | |
177 ST(&(x[WS(rs, 11)]), VFMAI(T1n, T1k), ms, &(x[WS(rs, 1)])); | |
178 ST(&(x[WS(rs, 5)]), VFNMSI(T1n, T1k), ms, &(x[WS(rs, 1)])); | |
179 ST(&(x[WS(rs, 14)]), VFNMSI(TN, TM), ms, &(x[0])); | |
180 ST(&(x[WS(rs, 2)]), VFMAI(TN, TM), ms, &(x[0])); | |
181 ST(&(x[WS(rs, 10)]), VFMAI(TL, Ty), ms, &(x[0])); | |
182 ST(&(x[WS(rs, 6)]), VFNMSI(TL, Ty), ms, &(x[0])); | |
183 } | |
184 } | |
185 } | |
186 } | |
187 } | |
188 } | |
189 } | |
190 } | |
191 VLEAVE(); | |
192 } | |
193 | |
194 static const tw_instr twinstr[] = { | |
195 VTW(0, 1), | |
196 VTW(0, 2), | |
197 VTW(0, 3), | |
198 VTW(0, 4), | |
199 VTW(0, 5), | |
200 VTW(0, 6), | |
201 VTW(0, 7), | |
202 VTW(0, 8), | |
203 VTW(0, 9), | |
204 VTW(0, 10), | |
205 VTW(0, 11), | |
206 VTW(0, 12), | |
207 VTW(0, 13), | |
208 VTW(0, 14), | |
209 VTW(0, 15), | |
210 {TW_NEXT, VL, 0} | |
211 }; | |
212 | |
213 static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, {53, 30, 34, 0}, 0, 0, 0 }; | |
214 | |
215 void XSIMD(codelet_t2fv_16) (planner *p) { | |
216 X(kdft_dit_register) (p, t2fv_16, &desc); | |
217 } | |
218 #else /* HAVE_FMA */ | |
219 | |
220 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include t2f.h */ | |
221 | |
222 /* | |
223 * This function contains 87 FP additions, 42 FP multiplications, | |
224 * (or, 83 additions, 38 multiplications, 4 fused multiply/add), | |
225 * 36 stack variables, 3 constants, and 32 memory accesses | |
226 */ | |
227 #include "t2f.h" | |
228 | |
229 static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
230 { | |
231 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
232 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
233 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
234 { | |
235 INT m; | |
236 R *x; | |
237 x = ri; | |
238 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) { | |
239 V TJ, T10, TD, T11, T1b, T1c, Ty, TK, T16, T17, T18, Tb, TN, T13, T14; | |
240 V T15, Tm, TM, TG, TI, TH; | |
241 TG = LD(&(x[0]), ms, &(x[0])); | |
242 TH = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
243 TI = BYTWJ(&(W[TWVL * 14]), TH); | |
244 TJ = VSUB(TG, TI); | |
245 T10 = VADD(TG, TI); | |
246 { | |
247 V TA, TC, Tz, TB; | |
248 Tz = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
249 TA = BYTWJ(&(W[TWVL * 6]), Tz); | |
250 TB = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
251 TC = BYTWJ(&(W[TWVL * 22]), TB); | |
252 TD = VSUB(TA, TC); | |
253 T11 = VADD(TA, TC); | |
254 } | |
255 { | |
256 V Tp, Tw, Tr, Tu, Ts, Tx; | |
257 { | |
258 V To, Tv, Tq, Tt; | |
259 To = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
260 Tp = BYTWJ(&(W[TWVL * 26]), To); | |
261 Tv = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
262 Tw = BYTWJ(&(W[TWVL * 18]), Tv); | |
263 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
264 Tr = BYTWJ(&(W[TWVL * 10]), Tq); | |
265 Tt = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
266 Tu = BYTWJ(&(W[TWVL * 2]), Tt); | |
267 } | |
268 T1b = VADD(Tp, Tr); | |
269 T1c = VADD(Tu, Tw); | |
270 Ts = VSUB(Tp, Tr); | |
271 Tx = VSUB(Tu, Tw); | |
272 Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx)); | |
273 TK = VMUL(LDK(KP707106781), VADD(Tx, Ts)); | |
274 } | |
275 { | |
276 V T2, T9, T4, T7, T5, Ta; | |
277 { | |
278 V T1, T8, T3, T6; | |
279 T1 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
280 T2 = BYTWJ(&(W[TWVL * 28]), T1); | |
281 T8 = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
282 T9 = BYTWJ(&(W[TWVL * 20]), T8); | |
283 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
284 T4 = BYTWJ(&(W[TWVL * 12]), T3); | |
285 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
286 T7 = BYTWJ(&(W[TWVL * 4]), T6); | |
287 } | |
288 T16 = VADD(T2, T4); | |
289 T17 = VADD(T7, T9); | |
290 T18 = VSUB(T16, T17); | |
291 T5 = VSUB(T2, T4); | |
292 Ta = VSUB(T7, T9); | |
293 Tb = VFNMS(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), T5)); | |
294 TN = VFMA(LDK(KP923879532), T5, VMUL(LDK(KP382683432), Ta)); | |
295 } | |
296 { | |
297 V Td, Tk, Tf, Ti, Tg, Tl; | |
298 { | |
299 V Tc, Tj, Te, Th; | |
300 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
301 Td = BYTWJ(&(W[0]), Tc); | |
302 Tj = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
303 Tk = BYTWJ(&(W[TWVL * 24]), Tj); | |
304 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
305 Tf = BYTWJ(&(W[TWVL * 16]), Te); | |
306 Th = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
307 Ti = BYTWJ(&(W[TWVL * 8]), Th); | |
308 } | |
309 T13 = VADD(Td, Tf); | |
310 T14 = VADD(Ti, Tk); | |
311 T15 = VSUB(T13, T14); | |
312 Tg = VSUB(Td, Tf); | |
313 Tl = VSUB(Ti, Tk); | |
314 Tm = VFMA(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl)); | |
315 TM = VFNMS(LDK(KP382683432), Tl, VMUL(LDK(KP923879532), Tg)); | |
316 } | |
317 { | |
318 V T1a, T1g, T1f, T1h; | |
319 { | |
320 V T12, T19, T1d, T1e; | |
321 T12 = VSUB(T10, T11); | |
322 T19 = VMUL(LDK(KP707106781), VADD(T15, T18)); | |
323 T1a = VADD(T12, T19); | |
324 T1g = VSUB(T12, T19); | |
325 T1d = VSUB(T1b, T1c); | |
326 T1e = VMUL(LDK(KP707106781), VSUB(T18, T15)); | |
327 T1f = VBYI(VADD(T1d, T1e)); | |
328 T1h = VBYI(VSUB(T1e, T1d)); | |
329 } | |
330 ST(&(x[WS(rs, 14)]), VSUB(T1a, T1f), ms, &(x[0])); | |
331 ST(&(x[WS(rs, 6)]), VADD(T1g, T1h), ms, &(x[0])); | |
332 ST(&(x[WS(rs, 2)]), VADD(T1a, T1f), ms, &(x[0])); | |
333 ST(&(x[WS(rs, 10)]), VSUB(T1g, T1h), ms, &(x[0])); | |
334 } | |
335 { | |
336 V T1k, T1o, T1n, T1p; | |
337 { | |
338 V T1i, T1j, T1l, T1m; | |
339 T1i = VADD(T10, T11); | |
340 T1j = VADD(T1c, T1b); | |
341 T1k = VADD(T1i, T1j); | |
342 T1o = VSUB(T1i, T1j); | |
343 T1l = VADD(T13, T14); | |
344 T1m = VADD(T16, T17); | |
345 T1n = VADD(T1l, T1m); | |
346 T1p = VBYI(VSUB(T1m, T1l)); | |
347 } | |
348 ST(&(x[WS(rs, 8)]), VSUB(T1k, T1n), ms, &(x[0])); | |
349 ST(&(x[WS(rs, 4)]), VADD(T1o, T1p), ms, &(x[0])); | |
350 ST(&(x[0]), VADD(T1k, T1n), ms, &(x[0])); | |
351 ST(&(x[WS(rs, 12)]), VSUB(T1o, T1p), ms, &(x[0])); | |
352 } | |
353 { | |
354 V TF, TQ, TP, TR; | |
355 { | |
356 V Tn, TE, TL, TO; | |
357 Tn = VSUB(Tb, Tm); | |
358 TE = VSUB(Ty, TD); | |
359 TF = VBYI(VSUB(Tn, TE)); | |
360 TQ = VBYI(VADD(TE, Tn)); | |
361 TL = VADD(TJ, TK); | |
362 TO = VADD(TM, TN); | |
363 TP = VSUB(TL, TO); | |
364 TR = VADD(TL, TO); | |
365 } | |
366 ST(&(x[WS(rs, 7)]), VADD(TF, TP), ms, &(x[WS(rs, 1)])); | |
367 ST(&(x[WS(rs, 15)]), VSUB(TR, TQ), ms, &(x[WS(rs, 1)])); | |
368 ST(&(x[WS(rs, 9)]), VSUB(TP, TF), ms, &(x[WS(rs, 1)])); | |
369 ST(&(x[WS(rs, 1)]), VADD(TQ, TR), ms, &(x[WS(rs, 1)])); | |
370 } | |
371 { | |
372 V TU, TY, TX, TZ; | |
373 { | |
374 V TS, TT, TV, TW; | |
375 TS = VSUB(TJ, TK); | |
376 TT = VADD(Tm, Tb); | |
377 TU = VADD(TS, TT); | |
378 TY = VSUB(TS, TT); | |
379 TV = VADD(TD, Ty); | |
380 TW = VSUB(TN, TM); | |
381 TX = VBYI(VADD(TV, TW)); | |
382 TZ = VBYI(VSUB(TW, TV)); | |
383 } | |
384 ST(&(x[WS(rs, 13)]), VSUB(TU, TX), ms, &(x[WS(rs, 1)])); | |
385 ST(&(x[WS(rs, 5)]), VADD(TY, TZ), ms, &(x[WS(rs, 1)])); | |
386 ST(&(x[WS(rs, 3)]), VADD(TU, TX), ms, &(x[WS(rs, 1)])); | |
387 ST(&(x[WS(rs, 11)]), VSUB(TY, TZ), ms, &(x[WS(rs, 1)])); | |
388 } | |
389 } | |
390 } | |
391 VLEAVE(); | |
392 } | |
393 | |
394 static const tw_instr twinstr[] = { | |
395 VTW(0, 1), | |
396 VTW(0, 2), | |
397 VTW(0, 3), | |
398 VTW(0, 4), | |
399 VTW(0, 5), | |
400 VTW(0, 6), | |
401 VTW(0, 7), | |
402 VTW(0, 8), | |
403 VTW(0, 9), | |
404 VTW(0, 10), | |
405 VTW(0, 11), | |
406 VTW(0, 12), | |
407 VTW(0, 13), | |
408 VTW(0, 14), | |
409 VTW(0, 15), | |
410 {TW_NEXT, VL, 0} | |
411 }; | |
412 | |
413 static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, {83, 38, 4, 0}, 0, 0, 0 }; | |
414 | |
415 void XSIMD(codelet_t2fv_16) (planner *p) { | |
416 X(kdft_dit_register) (p, t2fv_16, &desc); | |
417 } | |
418 #endif /* HAVE_FMA */ |