Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t2fv_10.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:38:41 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t2fv_10 -include t2f.h */ | |
29 | |
30 /* | |
31 * This function contains 51 FP additions, 40 FP multiplications, | |
32 * (or, 33 additions, 22 multiplications, 18 fused multiply/add), | |
33 * 43 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "t2f.h" | |
36 | |
37 static void t2fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 { | |
44 INT m; | |
45 R *x; | |
46 x = ri; | |
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) { | |
48 V Td, TA, T4, Ta, Tk, TE, Tp, TF, TB, T9, T1, T2, Tb; | |
49 T1 = LD(&(x[0]), ms, &(x[0])); | |
50 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
51 { | |
52 V Tg, Tn, Ti, Tl; | |
53 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
54 Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
55 Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
56 Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
57 { | |
58 V T6, T8, T5, Tc; | |
59 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
60 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
61 { | |
62 V T3, Th, To, Tj, Tm, T7; | |
63 T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
64 T3 = BYTWJ(&(W[TWVL * 8]), T2); | |
65 Th = BYTWJ(&(W[TWVL * 6]), Tg); | |
66 To = BYTWJ(&(W[0]), Tn); | |
67 Tj = BYTWJ(&(W[TWVL * 16]), Ti); | |
68 Tm = BYTWJ(&(W[TWVL * 10]), Tl); | |
69 T6 = BYTWJ(&(W[TWVL * 2]), T5); | |
70 Td = BYTWJ(&(W[TWVL * 4]), Tc); | |
71 T8 = BYTWJ(&(W[TWVL * 12]), T7); | |
72 TA = VADD(T1, T3); | |
73 T4 = VSUB(T1, T3); | |
74 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
75 Tk = VSUB(Th, Tj); | |
76 TE = VADD(Th, Tj); | |
77 Tp = VSUB(Tm, To); | |
78 TF = VADD(Tm, To); | |
79 } | |
80 TB = VADD(T6, T8); | |
81 T9 = VSUB(T6, T8); | |
82 } | |
83 } | |
84 Tb = BYTWJ(&(W[TWVL * 14]), Ta); | |
85 { | |
86 V TL, TG, Tw, Tq, TC, Te; | |
87 TL = VSUB(TE, TF); | |
88 TG = VADD(TE, TF); | |
89 Tw = VSUB(Tk, Tp); | |
90 Tq = VADD(Tk, Tp); | |
91 TC = VADD(Tb, Td); | |
92 Te = VSUB(Tb, Td); | |
93 { | |
94 V TM, TD, Tv, Tf; | |
95 TM = VSUB(TB, TC); | |
96 TD = VADD(TB, TC); | |
97 Tv = VSUB(T9, Te); | |
98 Tf = VADD(T9, Te); | |
99 { | |
100 V TP, TN, TH, TJ, Tz, Tx, Tr, Tt, TI, Ts; | |
101 TP = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TL, TM)); | |
102 TN = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TM, TL)); | |
103 TH = VADD(TD, TG); | |
104 TJ = VSUB(TD, TG); | |
105 Tz = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw)); | |
106 Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv)); | |
107 Tr = VADD(Tf, Tq); | |
108 Tt = VSUB(Tf, Tq); | |
109 ST(&(x[0]), VADD(TA, TH), ms, &(x[0])); | |
110 TI = VFNMS(LDK(KP250000000), TH, TA); | |
111 ST(&(x[WS(rs, 5)]), VADD(T4, Tr), ms, &(x[WS(rs, 1)])); | |
112 Ts = VFNMS(LDK(KP250000000), Tr, T4); | |
113 { | |
114 V TK, TO, Tu, Ty; | |
115 TK = VFNMS(LDK(KP559016994), TJ, TI); | |
116 TO = VFMA(LDK(KP559016994), TJ, TI); | |
117 Tu = VFMA(LDK(KP559016994), Tt, Ts); | |
118 Ty = VFNMS(LDK(KP559016994), Tt, Ts); | |
119 ST(&(x[WS(rs, 8)]), VFNMSI(TN, TK), ms, &(x[0])); | |
120 ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0])); | |
121 ST(&(x[WS(rs, 6)]), VFNMSI(TP, TO), ms, &(x[0])); | |
122 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0])); | |
123 ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tu), ms, &(x[WS(rs, 1)])); | |
124 ST(&(x[WS(rs, 1)]), VFNMSI(Tx, Tu), ms, &(x[WS(rs, 1)])); | |
125 ST(&(x[WS(rs, 7)]), VFMAI(Tz, Ty), ms, &(x[WS(rs, 1)])); | |
126 ST(&(x[WS(rs, 3)]), VFNMSI(Tz, Ty), ms, &(x[WS(rs, 1)])); | |
127 } | |
128 } | |
129 } | |
130 } | |
131 } | |
132 } | |
133 VLEAVE(); | |
134 } | |
135 | |
136 static const tw_instr twinstr[] = { | |
137 VTW(0, 1), | |
138 VTW(0, 2), | |
139 VTW(0, 3), | |
140 VTW(0, 4), | |
141 VTW(0, 5), | |
142 VTW(0, 6), | |
143 VTW(0, 7), | |
144 VTW(0, 8), | |
145 VTW(0, 9), | |
146 {TW_NEXT, VL, 0} | |
147 }; | |
148 | |
149 static const ct_desc desc = { 10, XSIMD_STRING("t2fv_10"), twinstr, &GENUS, {33, 22, 18, 0}, 0, 0, 0 }; | |
150 | |
151 void XSIMD(codelet_t2fv_10) (planner *p) { | |
152 X(kdft_dit_register) (p, t2fv_10, &desc); | |
153 } | |
154 #else /* HAVE_FMA */ | |
155 | |
156 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t2fv_10 -include t2f.h */ | |
157 | |
158 /* | |
159 * This function contains 51 FP additions, 30 FP multiplications, | |
160 * (or, 45 additions, 24 multiplications, 6 fused multiply/add), | |
161 * 32 stack variables, 4 constants, and 20 memory accesses | |
162 */ | |
163 #include "t2f.h" | |
164 | |
165 static void t2fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
166 { | |
167 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
168 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
169 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
170 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
171 { | |
172 INT m; | |
173 R *x; | |
174 x = ri; | |
175 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) { | |
176 V Tr, TH, Tg, Tl, Tm, TA, TB, TJ, T5, Ta, Tb, TD, TE, TI, To; | |
177 V Tq, Tp; | |
178 To = LD(&(x[0]), ms, &(x[0])); | |
179 Tp = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
180 Tq = BYTWJ(&(W[TWVL * 8]), Tp); | |
181 Tr = VSUB(To, Tq); | |
182 TH = VADD(To, Tq); | |
183 { | |
184 V Td, Tk, Tf, Ti; | |
185 { | |
186 V Tc, Tj, Te, Th; | |
187 Tc = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
188 Td = BYTWJ(&(W[TWVL * 6]), Tc); | |
189 Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
190 Tk = BYTWJ(&(W[0]), Tj); | |
191 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
192 Tf = BYTWJ(&(W[TWVL * 16]), Te); | |
193 Th = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
194 Ti = BYTWJ(&(W[TWVL * 10]), Th); | |
195 } | |
196 Tg = VSUB(Td, Tf); | |
197 Tl = VSUB(Ti, Tk); | |
198 Tm = VADD(Tg, Tl); | |
199 TA = VADD(Td, Tf); | |
200 TB = VADD(Ti, Tk); | |
201 TJ = VADD(TA, TB); | |
202 } | |
203 { | |
204 V T2, T9, T4, T7; | |
205 { | |
206 V T1, T8, T3, T6; | |
207 T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
208 T2 = BYTWJ(&(W[TWVL * 2]), T1); | |
209 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
210 T9 = BYTWJ(&(W[TWVL * 4]), T8); | |
211 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
212 T4 = BYTWJ(&(W[TWVL * 12]), T3); | |
213 T6 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
214 T7 = BYTWJ(&(W[TWVL * 14]), T6); | |
215 } | |
216 T5 = VSUB(T2, T4); | |
217 Ta = VSUB(T7, T9); | |
218 Tb = VADD(T5, Ta); | |
219 TD = VADD(T2, T4); | |
220 TE = VADD(T7, T9); | |
221 TI = VADD(TD, TE); | |
222 } | |
223 { | |
224 V Tn, Ts, Tt, Tx, Tz, Tv, Tw, Ty, Tu; | |
225 Tn = VMUL(LDK(KP559016994), VSUB(Tb, Tm)); | |
226 Ts = VADD(Tb, Tm); | |
227 Tt = VFNMS(LDK(KP250000000), Ts, Tr); | |
228 Tv = VSUB(T5, Ta); | |
229 Tw = VSUB(Tg, Tl); | |
230 Tx = VBYI(VFMA(LDK(KP951056516), Tv, VMUL(LDK(KP587785252), Tw))); | |
231 Tz = VBYI(VFNMS(LDK(KP587785252), Tv, VMUL(LDK(KP951056516), Tw))); | |
232 ST(&(x[WS(rs, 5)]), VADD(Tr, Ts), ms, &(x[WS(rs, 1)])); | |
233 Ty = VSUB(Tt, Tn); | |
234 ST(&(x[WS(rs, 3)]), VSUB(Ty, Tz), ms, &(x[WS(rs, 1)])); | |
235 ST(&(x[WS(rs, 7)]), VADD(Tz, Ty), ms, &(x[WS(rs, 1)])); | |
236 Tu = VADD(Tn, Tt); | |
237 ST(&(x[WS(rs, 1)]), VSUB(Tu, Tx), ms, &(x[WS(rs, 1)])); | |
238 ST(&(x[WS(rs, 9)]), VADD(Tx, Tu), ms, &(x[WS(rs, 1)])); | |
239 } | |
240 { | |
241 V TM, TK, TL, TG, TO, TC, TF, TP, TN; | |
242 TM = VMUL(LDK(KP559016994), VSUB(TI, TJ)); | |
243 TK = VADD(TI, TJ); | |
244 TL = VFNMS(LDK(KP250000000), TK, TH); | |
245 TC = VSUB(TA, TB); | |
246 TF = VSUB(TD, TE); | |
247 TG = VBYI(VFNMS(LDK(KP587785252), TF, VMUL(LDK(KP951056516), TC))); | |
248 TO = VBYI(VFMA(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TC))); | |
249 ST(&(x[0]), VADD(TH, TK), ms, &(x[0])); | |
250 TP = VADD(TM, TL); | |
251 ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0])); | |
252 ST(&(x[WS(rs, 6)]), VSUB(TP, TO), ms, &(x[0])); | |
253 TN = VSUB(TL, TM); | |
254 ST(&(x[WS(rs, 2)]), VADD(TG, TN), ms, &(x[0])); | |
255 ST(&(x[WS(rs, 8)]), VSUB(TN, TG), ms, &(x[0])); | |
256 } | |
257 } | |
258 } | |
259 VLEAVE(); | |
260 } | |
261 | |
262 static const tw_instr twinstr[] = { | |
263 VTW(0, 1), | |
264 VTW(0, 2), | |
265 VTW(0, 3), | |
266 VTW(0, 4), | |
267 VTW(0, 5), | |
268 VTW(0, 6), | |
269 VTW(0, 7), | |
270 VTW(0, 8), | |
271 VTW(0, 9), | |
272 {TW_NEXT, VL, 0} | |
273 }; | |
274 | |
275 static const ct_desc desc = { 10, XSIMD_STRING("t2fv_10"), twinstr, &GENUS, {45, 24, 6, 0}, 0, 0, 0 }; | |
276 | |
277 void XSIMD(codelet_t2fv_10) (planner *p) { | |
278 X(kdft_dit_register) (p, t2fv_10, &desc); | |
279 } | |
280 #endif /* HAVE_FMA */ |