comparison src/fftw-3.3.3/dft/simd/common/t1bv_7.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:39:03 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1bv_7 -include t1b.h -sign 1 */
29
30 /*
31 * This function contains 36 FP additions, 36 FP multiplications,
32 * (or, 15 additions, 15 multiplications, 21 fused multiply/add),
33 * 42 stack variables, 6 constants, and 14 memory accesses
34 */
35 #include "t1b.h"
36
37 static void t1bv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
40 DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
41 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
42 DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
43 DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
44 DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
45 {
46 INT m;
47 R *x;
48 x = ii;
49 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
50 V T1, T2, T4, Te, Tc, T9, T7;
51 T1 = LD(&(x[0]), ms, &(x[0]));
52 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
53 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
54 Te = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
55 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
56 T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
57 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
58 {
59 V T3, T5, Tf, Td, Ta, T8;
60 T3 = BYTW(&(W[0]), T2);
61 T5 = BYTW(&(W[TWVL * 10]), T4);
62 Tf = BYTW(&(W[TWVL * 6]), Te);
63 Td = BYTW(&(W[TWVL * 4]), Tc);
64 Ta = BYTW(&(W[TWVL * 8]), T9);
65 T8 = BYTW(&(W[TWVL * 2]), T7);
66 {
67 V T6, Tm, Tg, Tk, Tb, Tl;
68 T6 = VADD(T3, T5);
69 Tm = VSUB(T3, T5);
70 Tg = VADD(Td, Tf);
71 Tk = VSUB(Td, Tf);
72 Tb = VADD(T8, Ta);
73 Tl = VSUB(T8, Ta);
74 {
75 V Tp, Tx, Tu, Th, Ts, Tn, Tq, Ty;
76 Tp = VFNMS(LDK(KP356895867), T6, Tg);
77 Tx = VFMA(LDK(KP554958132), Tk, Tm);
78 ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0]));
79 Tu = VFNMS(LDK(KP356895867), Tb, T6);
80 Th = VFNMS(LDK(KP356895867), Tg, Tb);
81 Ts = VFMA(LDK(KP554958132), Tl, Tk);
82 Tn = VFNMS(LDK(KP554958132), Tm, Tl);
83 Tq = VFNMS(LDK(KP692021471), Tp, Tb);
84 Ty = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Tx, Tl));
85 {
86 V Tv, Ti, Tt, To, Tr, Tw, Tj;
87 Tv = VFNMS(LDK(KP692021471), Tu, Tg);
88 Ti = VFNMS(LDK(KP692021471), Th, T6);
89 Tt = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Ts, Tm));
90 To = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tn, Tk));
91 Tr = VFNMS(LDK(KP900968867), Tq, T1);
92 Tw = VFNMS(LDK(KP900968867), Tv, T1);
93 Tj = VFNMS(LDK(KP900968867), Ti, T1);
94 ST(&(x[WS(rs, 5)]), VFNMSI(Tt, Tr), ms, &(x[WS(rs, 1)]));
95 ST(&(x[WS(rs, 2)]), VFMAI(Tt, Tr), ms, &(x[0]));
96 ST(&(x[WS(rs, 6)]), VFNMSI(Ty, Tw), ms, &(x[0]));
97 ST(&(x[WS(rs, 1)]), VFMAI(Ty, Tw), ms, &(x[WS(rs, 1)]));
98 ST(&(x[WS(rs, 4)]), VFNMSI(To, Tj), ms, &(x[0]));
99 ST(&(x[WS(rs, 3)]), VFMAI(To, Tj), ms, &(x[WS(rs, 1)]));
100 }
101 }
102 }
103 }
104 }
105 }
106 VLEAVE();
107 }
108
109 static const tw_instr twinstr[] = {
110 VTW(0, 1),
111 VTW(0, 2),
112 VTW(0, 3),
113 VTW(0, 4),
114 VTW(0, 5),
115 VTW(0, 6),
116 {TW_NEXT, VL, 0}
117 };
118
119 static const ct_desc desc = { 7, XSIMD_STRING("t1bv_7"), twinstr, &GENUS, {15, 15, 21, 0}, 0, 0, 0 };
120
121 void XSIMD(codelet_t1bv_7) (planner *p) {
122 X(kdft_dit_register) (p, t1bv_7, &desc);
123 }
124 #else /* HAVE_FMA */
125
126 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1bv_7 -include t1b.h -sign 1 */
127
128 /*
129 * This function contains 36 FP additions, 30 FP multiplications,
130 * (or, 24 additions, 18 multiplications, 12 fused multiply/add),
131 * 21 stack variables, 6 constants, and 14 memory accesses
132 */
133 #include "t1b.h"
134
135 static void t1bv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
136 {
137 DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
138 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
139 DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
140 DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
141 DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
142 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
143 {
144 INT m;
145 R *x;
146 x = ii;
147 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
148 V Th, Tf, Ti, T5, Tk, Ta, Tj, To, Tp;
149 Th = LD(&(x[0]), ms, &(x[0]));
150 {
151 V Tc, Te, Tb, Td;
152 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
153 Tc = BYTW(&(W[TWVL * 2]), Tb);
154 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
155 Te = BYTW(&(W[TWVL * 8]), Td);
156 Tf = VSUB(Tc, Te);
157 Ti = VADD(Tc, Te);
158 }
159 {
160 V T2, T4, T1, T3;
161 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
162 T2 = BYTW(&(W[0]), T1);
163 T3 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
164 T4 = BYTW(&(W[TWVL * 10]), T3);
165 T5 = VSUB(T2, T4);
166 Tk = VADD(T2, T4);
167 }
168 {
169 V T7, T9, T6, T8;
170 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
171 T7 = BYTW(&(W[TWVL * 4]), T6);
172 T8 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
173 T9 = BYTW(&(W[TWVL * 6]), T8);
174 Ta = VSUB(T7, T9);
175 Tj = VADD(T7, T9);
176 }
177 ST(&(x[0]), VADD(Th, VADD(Tk, VADD(Ti, Tj))), ms, &(x[0]));
178 To = VBYI(VFNMS(LDK(KP781831482), Ta, VFNMS(LDK(KP433883739), Tf, VMUL(LDK(KP974927912), T5))));
179 Tp = VFMA(LDK(KP623489801), Tj, VFNMS(LDK(KP900968867), Ti, VFNMS(LDK(KP222520933), Tk, Th)));
180 ST(&(x[WS(rs, 2)]), VADD(To, Tp), ms, &(x[0]));
181 ST(&(x[WS(rs, 5)]), VSUB(Tp, To), ms, &(x[WS(rs, 1)]));
182 {
183 V Tg, Tl, Tm, Tn;
184 Tg = VBYI(VFMA(LDK(KP433883739), T5, VFNMS(LDK(KP781831482), Tf, VMUL(LDK(KP974927912), Ta))));
185 Tl = VFMA(LDK(KP623489801), Ti, VFNMS(LDK(KP222520933), Tj, VFNMS(LDK(KP900968867), Tk, Th)));
186 ST(&(x[WS(rs, 3)]), VADD(Tg, Tl), ms, &(x[WS(rs, 1)]));
187 ST(&(x[WS(rs, 4)]), VSUB(Tl, Tg), ms, &(x[0]));
188 Tm = VBYI(VFMA(LDK(KP781831482), T5, VFMA(LDK(KP974927912), Tf, VMUL(LDK(KP433883739), Ta))));
189 Tn = VFMA(LDK(KP623489801), Tk, VFNMS(LDK(KP900968867), Tj, VFNMS(LDK(KP222520933), Ti, Th)));
190 ST(&(x[WS(rs, 1)]), VADD(Tm, Tn), ms, &(x[WS(rs, 1)]));
191 ST(&(x[WS(rs, 6)]), VSUB(Tn, Tm), ms, &(x[0]));
192 }
193 }
194 }
195 VLEAVE();
196 }
197
198 static const tw_instr twinstr[] = {
199 VTW(0, 1),
200 VTW(0, 2),
201 VTW(0, 3),
202 VTW(0, 4),
203 VTW(0, 5),
204 VTW(0, 6),
205 {TW_NEXT, VL, 0}
206 };
207
208 static const ct_desc desc = { 7, XSIMD_STRING("t1bv_7"), twinstr, &GENUS, {24, 18, 12, 0}, 0, 0, 0 };
209
210 void XSIMD(codelet_t1bv_7) (planner *p) {
211 X(kdft_dit_register) (p, t1bv_7, &desc);
212 }
213 #endif /* HAVE_FMA */