Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t1bv_15.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:04 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */ | |
29 | |
30 /* | |
31 * This function contains 92 FP additions, 77 FP multiplications, | |
32 * (or, 50 additions, 35 multiplications, 42 fused multiply/add), | |
33 * 81 stack variables, 8 constants, and 30 memory accesses | |
34 */ | |
35 #include "t1b.h" | |
36 | |
37 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291); | |
41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
47 { | |
48 INT m; | |
49 R *x; | |
50 x = ii; | |
51 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) { | |
52 V Tq, Ty, Th, TV, TK, Ts, T1f, T7, Tu, TA, TC, Tj, Tk, T1g, Tf; | |
53 { | |
54 V T1, T4, T2, T9, Te; | |
55 T1 = LD(&(x[0]), ms, &(x[0])); | |
56 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
57 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
58 { | |
59 V T8, Tp, Tx, Tg; | |
60 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
61 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
62 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
63 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
64 { | |
65 V Tb, Td, Tr, T6, Tt, Tz, TB, Ti; | |
66 { | |
67 V T5, T3, Ta, Tc; | |
68 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
69 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
70 T5 = BYTW(&(W[TWVL * 18]), T4); | |
71 T3 = BYTW(&(W[TWVL * 8]), T2); | |
72 T9 = BYTW(&(W[TWVL * 4]), T8); | |
73 Tq = BYTW(&(W[TWVL * 10]), Tp); | |
74 Ty = BYTW(&(W[TWVL * 16]), Tx); | |
75 Th = BYTW(&(W[TWVL * 22]), Tg); | |
76 Tb = BYTW(&(W[TWVL * 14]), Ta); | |
77 Td = BYTW(&(W[TWVL * 24]), Tc); | |
78 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
79 TV = VSUB(T3, T5); | |
80 T6 = VADD(T3, T5); | |
81 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
82 } | |
83 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
84 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
85 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
86 Te = VADD(Tb, Td); | |
87 TK = VSUB(Tb, Td); | |
88 Ts = BYTW(&(W[TWVL * 20]), Tr); | |
89 T1f = VADD(T1, T6); | |
90 T7 = VFNMS(LDK(KP500000000), T6, T1); | |
91 Tu = BYTW(&(W[0]), Tt); | |
92 TA = BYTW(&(W[TWVL * 26]), Tz); | |
93 TC = BYTW(&(W[TWVL * 6]), TB); | |
94 Tj = BYTW(&(W[TWVL * 2]), Ti); | |
95 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
96 } | |
97 } | |
98 T1g = VADD(T9, Te); | |
99 Tf = VFNMS(LDK(KP500000000), Te, T9); | |
100 } | |
101 { | |
102 V Tv, TN, TD, TO, Tl; | |
103 Tv = VADD(Ts, Tu); | |
104 TN = VSUB(Ts, Tu); | |
105 TD = VADD(TA, TC); | |
106 TO = VSUB(TA, TC); | |
107 Tl = BYTW(&(W[TWVL * 12]), Tk); | |
108 { | |
109 V Tw, T1j, TX, TP, TE, T1k, TL, Tm; | |
110 Tw = VFNMS(LDK(KP500000000), Tv, Tq); | |
111 T1j = VADD(Tq, Tv); | |
112 TX = VADD(TN, TO); | |
113 TP = VSUB(TN, TO); | |
114 TE = VFNMS(LDK(KP500000000), TD, Ty); | |
115 T1k = VADD(Ty, TD); | |
116 TL = VSUB(Tj, Tl); | |
117 Tm = VADD(Tj, Tl); | |
118 { | |
119 V TT, TF, T1q, T1l, TW, TM, T1h, Tn; | |
120 TT = VSUB(Tw, TE); | |
121 TF = VADD(Tw, TE); | |
122 T1q = VSUB(T1j, T1k); | |
123 T1l = VADD(T1j, T1k); | |
124 TW = VADD(TK, TL); | |
125 TM = VSUB(TK, TL); | |
126 T1h = VADD(Th, Tm); | |
127 Tn = VFNMS(LDK(KP500000000), Tm, Th); | |
128 { | |
129 V T10, TY, T16, TQ, T1r, T1i, TS, To, TZ, T1e; | |
130 T10 = VSUB(TW, TX); | |
131 TY = VADD(TW, TX); | |
132 T16 = VFNMS(LDK(KP618033988), TM, TP); | |
133 TQ = VFMA(LDK(KP618033988), TP, TM); | |
134 T1r = VSUB(T1g, T1h); | |
135 T1i = VADD(T1g, T1h); | |
136 TS = VSUB(Tf, Tn); | |
137 To = VADD(Tf, Tn); | |
138 TZ = VFNMS(LDK(KP250000000), TY, TV); | |
139 T1e = VMUL(LDK(KP866025403), VADD(TV, TY)); | |
140 { | |
141 V T1u, T1s, T1o, T18, TU, TG, TI, T19, T11, T1n, T1m; | |
142 T1u = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1q, T1r)); | |
143 T1s = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1r, T1q)); | |
144 T1m = VADD(T1i, T1l); | |
145 T1o = VSUB(T1i, T1l); | |
146 T18 = VFNMS(LDK(KP618033988), TS, TT); | |
147 TU = VFMA(LDK(KP618033988), TT, TS); | |
148 TG = VADD(To, TF); | |
149 TI = VSUB(To, TF); | |
150 T19 = VFNMS(LDK(KP559016994), T10, TZ); | |
151 T11 = VFMA(LDK(KP559016994), T10, TZ); | |
152 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0])); | |
153 T1n = VFNMS(LDK(KP250000000), T1m, T1f); | |
154 { | |
155 V T1a, T1c, T14, T12, T1p, T1t, T15, TJ, T1d, TH; | |
156 T1d = VADD(T7, TG); | |
157 TH = VFNMS(LDK(KP250000000), TG, T7); | |
158 T1a = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T19, T18)); | |
159 T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T19, T18)); | |
160 T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T11, TU)); | |
161 T12 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T11, TU)); | |
162 T1p = VFNMS(LDK(KP559016994), T1o, T1n); | |
163 T1t = VFMA(LDK(KP559016994), T1o, T1n); | |
164 ST(&(x[WS(rs, 10)]), VFMAI(T1e, T1d), ms, &(x[0])); | |
165 ST(&(x[WS(rs, 5)]), VFNMSI(T1e, T1d), ms, &(x[WS(rs, 1)])); | |
166 T15 = VFNMS(LDK(KP559016994), TI, TH); | |
167 TJ = VFMA(LDK(KP559016994), TI, TH); | |
168 { | |
169 V T17, T1b, T13, TR; | |
170 ST(&(x[WS(rs, 12)]), VFNMSI(T1s, T1p), ms, &(x[0])); | |
171 ST(&(x[WS(rs, 3)]), VFMAI(T1s, T1p), ms, &(x[WS(rs, 1)])); | |
172 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)])); | |
173 ST(&(x[WS(rs, 6)]), VFMAI(T1u, T1t), ms, &(x[0])); | |
174 T17 = VFNMS(LDK(KP823639103), T16, T15); | |
175 T1b = VFMA(LDK(KP823639103), T16, T15); | |
176 T13 = VFMA(LDK(KP823639103), TQ, TJ); | |
177 TR = VFNMS(LDK(KP823639103), TQ, TJ); | |
178 ST(&(x[WS(rs, 13)]), VFMAI(T1a, T17), ms, &(x[WS(rs, 1)])); | |
179 ST(&(x[WS(rs, 2)]), VFNMSI(T1a, T17), ms, &(x[0])); | |
180 ST(&(x[WS(rs, 8)]), VFMAI(T1c, T1b), ms, &(x[0])); | |
181 ST(&(x[WS(rs, 7)]), VFNMSI(T1c, T1b), ms, &(x[WS(rs, 1)])); | |
182 ST(&(x[WS(rs, 11)]), VFMAI(T14, T13), ms, &(x[WS(rs, 1)])); | |
183 ST(&(x[WS(rs, 4)]), VFNMSI(T14, T13), ms, &(x[0])); | |
184 ST(&(x[WS(rs, 14)]), VFNMSI(T12, TR), ms, &(x[0])); | |
185 ST(&(x[WS(rs, 1)]), VFMAI(T12, TR), ms, &(x[WS(rs, 1)])); | |
186 } | |
187 } | |
188 } | |
189 } | |
190 } | |
191 } | |
192 } | |
193 } | |
194 } | |
195 VLEAVE(); | |
196 } | |
197 | |
198 static const tw_instr twinstr[] = { | |
199 VTW(0, 1), | |
200 VTW(0, 2), | |
201 VTW(0, 3), | |
202 VTW(0, 4), | |
203 VTW(0, 5), | |
204 VTW(0, 6), | |
205 VTW(0, 7), | |
206 VTW(0, 8), | |
207 VTW(0, 9), | |
208 VTW(0, 10), | |
209 VTW(0, 11), | |
210 VTW(0, 12), | |
211 VTW(0, 13), | |
212 VTW(0, 14), | |
213 {TW_NEXT, VL, 0} | |
214 }; | |
215 | |
216 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 }; | |
217 | |
218 void XSIMD(codelet_t1bv_15) (planner *p) { | |
219 X(kdft_dit_register) (p, t1bv_15, &desc); | |
220 } | |
221 #else /* HAVE_FMA */ | |
222 | |
223 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */ | |
224 | |
225 /* | |
226 * This function contains 92 FP additions, 53 FP multiplications, | |
227 * (or, 78 additions, 39 multiplications, 14 fused multiply/add), | |
228 * 52 stack variables, 10 constants, and 30 memory accesses | |
229 */ | |
230 #include "t1b.h" | |
231 | |
232 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
233 { | |
234 DVK(KP216506350, +0.216506350946109661690930792688234045867850657); | |
235 DVK(KP484122918, +0.484122918275927110647408174972799951354115213); | |
236 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
237 DVK(KP509036960, +0.509036960455127183450980863393907648510733164); | |
238 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
239 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
240 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
241 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
242 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
243 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
244 { | |
245 INT m; | |
246 R *x; | |
247 x = ii; | |
248 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) { | |
249 V Ts, TV, T1f, TZ, T10, Tb, Tm, Tt, T1j, T1k, T1l, TI, TM, TR, Tz; | |
250 V TD, TQ, T1g, T1h, T1i; | |
251 { | |
252 V TT, Tr, Tp, Tq, To, TU; | |
253 TT = LD(&(x[0]), ms, &(x[0])); | |
254 Tq = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
255 Tr = BYTW(&(W[TWVL * 18]), Tq); | |
256 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
257 Tp = BYTW(&(W[TWVL * 8]), To); | |
258 Ts = VSUB(Tp, Tr); | |
259 TU = VADD(Tp, Tr); | |
260 TV = VFNMS(LDK(KP500000000), TU, TT); | |
261 T1f = VADD(TT, TU); | |
262 } | |
263 { | |
264 V Tx, TG, TK, TB, T5, Ty, Tg, TH, Tl, TL, Ta, TC; | |
265 { | |
266 V Tw, TF, TJ, TA; | |
267 Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
268 Tx = BYTW(&(W[TWVL * 4]), Tw); | |
269 TF = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
270 TG = BYTW(&(W[TWVL * 10]), TF); | |
271 TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
272 TK = BYTW(&(W[TWVL * 16]), TJ); | |
273 TA = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
274 TB = BYTW(&(W[TWVL * 22]), TA); | |
275 } | |
276 { | |
277 V T2, T4, T1, T3; | |
278 T1 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
279 T2 = BYTW(&(W[TWVL * 14]), T1); | |
280 T3 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
281 T4 = BYTW(&(W[TWVL * 24]), T3); | |
282 T5 = VSUB(T2, T4); | |
283 Ty = VADD(T2, T4); | |
284 } | |
285 { | |
286 V Td, Tf, Tc, Te; | |
287 Tc = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
288 Td = BYTW(&(W[TWVL * 20]), Tc); | |
289 Te = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
290 Tf = BYTW(&(W[0]), Te); | |
291 Tg = VSUB(Td, Tf); | |
292 TH = VADD(Td, Tf); | |
293 } | |
294 { | |
295 V Ti, Tk, Th, Tj; | |
296 Th = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
297 Ti = BYTW(&(W[TWVL * 26]), Th); | |
298 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
299 Tk = BYTW(&(W[TWVL * 6]), Tj); | |
300 Tl = VSUB(Ti, Tk); | |
301 TL = VADD(Ti, Tk); | |
302 } | |
303 { | |
304 V T7, T9, T6, T8; | |
305 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
306 T7 = BYTW(&(W[TWVL * 2]), T6); | |
307 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
308 T9 = BYTW(&(W[TWVL * 12]), T8); | |
309 Ta = VSUB(T7, T9); | |
310 TC = VADD(T7, T9); | |
311 } | |
312 TZ = VSUB(T5, Ta); | |
313 T10 = VSUB(Tg, Tl); | |
314 Tb = VADD(T5, Ta); | |
315 Tm = VADD(Tg, Tl); | |
316 Tt = VADD(Tb, Tm); | |
317 T1j = VADD(TG, TH); | |
318 T1k = VADD(TK, TL); | |
319 T1l = VADD(T1j, T1k); | |
320 TI = VFNMS(LDK(KP500000000), TH, TG); | |
321 TM = VFNMS(LDK(KP500000000), TL, TK); | |
322 TR = VADD(TI, TM); | |
323 Tz = VFNMS(LDK(KP500000000), Ty, Tx); | |
324 TD = VFNMS(LDK(KP500000000), TC, TB); | |
325 TQ = VADD(Tz, TD); | |
326 T1g = VADD(Tx, Ty); | |
327 T1h = VADD(TB, TC); | |
328 T1i = VADD(T1g, T1h); | |
329 } | |
330 { | |
331 V T1o, T1m, T1n, T1s, T1t, T1q, T1r, T1u, T1p; | |
332 T1o = VMUL(LDK(KP559016994), VSUB(T1i, T1l)); | |
333 T1m = VADD(T1i, T1l); | |
334 T1n = VFNMS(LDK(KP250000000), T1m, T1f); | |
335 T1q = VSUB(T1g, T1h); | |
336 T1r = VSUB(T1j, T1k); | |
337 T1s = VBYI(VFNMS(LDK(KP951056516), T1r, VMUL(LDK(KP587785252), T1q))); | |
338 T1t = VBYI(VFMA(LDK(KP951056516), T1q, VMUL(LDK(KP587785252), T1r))); | |
339 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0])); | |
340 T1u = VADD(T1o, T1n); | |
341 ST(&(x[WS(rs, 6)]), VADD(T1t, T1u), ms, &(x[0])); | |
342 ST(&(x[WS(rs, 9)]), VSUB(T1u, T1t), ms, &(x[WS(rs, 1)])); | |
343 T1p = VSUB(T1n, T1o); | |
344 ST(&(x[WS(rs, 3)]), VSUB(T1p, T1s), ms, &(x[WS(rs, 1)])); | |
345 ST(&(x[WS(rs, 12)]), VADD(T1s, T1p), ms, &(x[0])); | |
346 } | |
347 { | |
348 V T11, T18, T1e, TO, T16, Tv, T15, TY, T1d, T19, TE, TN; | |
349 T11 = VFMA(LDK(KP823639103), TZ, VMUL(LDK(KP509036960), T10)); | |
350 T18 = VFNMS(LDK(KP823639103), T10, VMUL(LDK(KP509036960), TZ)); | |
351 T1e = VBYI(VMUL(LDK(KP866025403), VADD(Ts, Tt))); | |
352 TE = VSUB(Tz, TD); | |
353 TN = VSUB(TI, TM); | |
354 TO = VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TN)); | |
355 T16 = VFNMS(LDK(KP951056516), TN, VMUL(LDK(KP587785252), TE)); | |
356 { | |
357 V Tn, Tu, TS, TW, TX; | |
358 Tn = VMUL(LDK(KP484122918), VSUB(Tb, Tm)); | |
359 Tu = VFNMS(LDK(KP216506350), Tt, VMUL(LDK(KP866025403), Ts)); | |
360 Tv = VADD(Tn, Tu); | |
361 T15 = VSUB(Tn, Tu); | |
362 TS = VMUL(LDK(KP559016994), VSUB(TQ, TR)); | |
363 TW = VADD(TQ, TR); | |
364 TX = VFNMS(LDK(KP250000000), TW, TV); | |
365 TY = VADD(TS, TX); | |
366 T1d = VADD(TV, TW); | |
367 T19 = VSUB(TX, TS); | |
368 } | |
369 { | |
370 V TP, T12, T1b, T1c; | |
371 ST(&(x[WS(rs, 5)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)])); | |
372 ST(&(x[WS(rs, 10)]), VADD(T1e, T1d), ms, &(x[0])); | |
373 TP = VBYI(VADD(Tv, TO)); | |
374 T12 = VSUB(TY, T11); | |
375 ST(&(x[WS(rs, 1)]), VADD(TP, T12), ms, &(x[WS(rs, 1)])); | |
376 ST(&(x[WS(rs, 14)]), VSUB(T12, TP), ms, &(x[0])); | |
377 T1b = VBYI(VSUB(T16, T15)); | |
378 T1c = VSUB(T19, T18); | |
379 ST(&(x[WS(rs, 7)]), VADD(T1b, T1c), ms, &(x[WS(rs, 1)])); | |
380 ST(&(x[WS(rs, 8)]), VSUB(T1c, T1b), ms, &(x[0])); | |
381 { | |
382 V T17, T1a, T13, T14; | |
383 T17 = VBYI(VADD(T15, T16)); | |
384 T1a = VADD(T18, T19); | |
385 ST(&(x[WS(rs, 2)]), VADD(T17, T1a), ms, &(x[0])); | |
386 ST(&(x[WS(rs, 13)]), VSUB(T1a, T17), ms, &(x[WS(rs, 1)])); | |
387 T13 = VBYI(VSUB(Tv, TO)); | |
388 T14 = VADD(T11, TY); | |
389 ST(&(x[WS(rs, 4)]), VADD(T13, T14), ms, &(x[0])); | |
390 ST(&(x[WS(rs, 11)]), VSUB(T14, T13), ms, &(x[WS(rs, 1)])); | |
391 } | |
392 } | |
393 } | |
394 } | |
395 } | |
396 VLEAVE(); | |
397 } | |
398 | |
399 static const tw_instr twinstr[] = { | |
400 VTW(0, 1), | |
401 VTW(0, 2), | |
402 VTW(0, 3), | |
403 VTW(0, 4), | |
404 VTW(0, 5), | |
405 VTW(0, 6), | |
406 VTW(0, 7), | |
407 VTW(0, 8), | |
408 VTW(0, 9), | |
409 VTW(0, 10), | |
410 VTW(0, 11), | |
411 VTW(0, 12), | |
412 VTW(0, 13), | |
413 VTW(0, 14), | |
414 {TW_NEXT, VL, 0} | |
415 }; | |
416 | |
417 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 }; | |
418 | |
419 void XSIMD(codelet_t1bv_15) (planner *p) { | |
420 X(kdft_dit_register) (p, t1bv_15, &desc); | |
421 } | |
422 #endif /* HAVE_FMA */ |