Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t1bv_12.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:04 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include t1b.h -sign 1 */ | |
29 | |
30 /* | |
31 * This function contains 59 FP additions, 42 FP multiplications, | |
32 * (or, 41 additions, 24 multiplications, 18 fused multiply/add), | |
33 * 41 stack variables, 2 constants, and 24 memory accesses | |
34 */ | |
35 #include "t1b.h" | |
36 | |
37 static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT m; | |
43 R *x; | |
44 x = ii; | |
45 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { | |
46 V TI, Ti, TA, T7, Tm, TE, Tw, Tk, Tf, TB, TU, TM; | |
47 { | |
48 V T9, TK, Tj, TL, Te; | |
49 { | |
50 V T1, T4, T2, Tp, Tt, Tr; | |
51 T1 = LD(&(x[0]), ms, &(x[0])); | |
52 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
53 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
54 Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
55 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
56 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
57 { | |
58 V T5, T3, Tq, Tu, Ts, Td, Tb, T8, Tc, Ta; | |
59 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
60 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
61 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
62 T5 = BYTW(&(W[TWVL * 14]), T4); | |
63 T3 = BYTW(&(W[TWVL * 6]), T2); | |
64 Tq = BYTW(&(W[TWVL * 16]), Tp); | |
65 Tu = BYTW(&(W[TWVL * 8]), Tt); | |
66 Ts = BYTW(&(W[0]), Tr); | |
67 T9 = BYTW(&(W[TWVL * 10]), T8); | |
68 Td = BYTW(&(W[TWVL * 2]), Tc); | |
69 Tb = BYTW(&(W[TWVL * 18]), Ta); | |
70 { | |
71 V Th, T6, Tl, Tv; | |
72 Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
73 TK = VSUB(T3, T5); | |
74 T6 = VADD(T3, T5); | |
75 Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
76 Tv = VADD(Ts, Tu); | |
77 TI = VSUB(Tu, Ts); | |
78 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
79 TL = VSUB(Tb, Td); | |
80 Te = VADD(Tb, Td); | |
81 Ti = BYTW(&(W[TWVL * 4]), Th); | |
82 TA = VFNMS(LDK(KP500000000), T6, T1); | |
83 T7 = VADD(T1, T6); | |
84 Tm = BYTW(&(W[TWVL * 20]), Tl); | |
85 TE = VFNMS(LDK(KP500000000), Tv, Tq); | |
86 Tw = VADD(Tq, Tv); | |
87 } | |
88 } | |
89 } | |
90 Tk = BYTW(&(W[TWVL * 12]), Tj); | |
91 Tf = VADD(T9, Te); | |
92 TB = VFNMS(LDK(KP500000000), Te, T9); | |
93 TU = VSUB(TK, TL); | |
94 TM = VADD(TK, TL); | |
95 } | |
96 { | |
97 V Tn, TH, TC, TQ, Ty, Tg; | |
98 Tn = VADD(Tk, Tm); | |
99 TH = VSUB(Tk, Tm); | |
100 TC = VADD(TA, TB); | |
101 TQ = VSUB(TA, TB); | |
102 Ty = VADD(T7, Tf); | |
103 Tg = VSUB(T7, Tf); | |
104 { | |
105 V To, TD, TJ, TR; | |
106 To = VADD(Ti, Tn); | |
107 TD = VFNMS(LDK(KP500000000), Tn, Ti); | |
108 TJ = VSUB(TH, TI); | |
109 TR = VADD(TH, TI); | |
110 { | |
111 V TP, TN, TW, TS, TO, TG, TX, TV; | |
112 { | |
113 V Tz, Tx, TF, TT; | |
114 Tz = VADD(To, Tw); | |
115 Tx = VSUB(To, Tw); | |
116 TF = VADD(TD, TE); | |
117 TT = VSUB(TD, TE); | |
118 TP = VMUL(LDK(KP866025403), VADD(TM, TJ)); | |
119 TN = VMUL(LDK(KP866025403), VSUB(TJ, TM)); | |
120 TW = VFMA(LDK(KP866025403), TR, TQ); | |
121 TS = VFNMS(LDK(KP866025403), TR, TQ); | |
122 ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0])); | |
123 ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0])); | |
124 ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tg), ms, &(x[WS(rs, 1)])); | |
125 ST(&(x[WS(rs, 3)]), VFNMSI(Tx, Tg), ms, &(x[WS(rs, 1)])); | |
126 TO = VADD(TC, TF); | |
127 TG = VSUB(TC, TF); | |
128 TX = VFNMS(LDK(KP866025403), TU, TT); | |
129 TV = VFMA(LDK(KP866025403), TU, TT); | |
130 } | |
131 ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0])); | |
132 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0])); | |
133 ST(&(x[WS(rs, 2)]), VFMAI(TN, TG), ms, &(x[0])); | |
134 ST(&(x[WS(rs, 10)]), VFNMSI(TN, TG), ms, &(x[0])); | |
135 ST(&(x[WS(rs, 5)]), VFMAI(TX, TW), ms, &(x[WS(rs, 1)])); | |
136 ST(&(x[WS(rs, 7)]), VFNMSI(TX, TW), ms, &(x[WS(rs, 1)])); | |
137 ST(&(x[WS(rs, 11)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)])); | |
138 ST(&(x[WS(rs, 1)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)])); | |
139 } | |
140 } | |
141 } | |
142 } | |
143 } | |
144 VLEAVE(); | |
145 } | |
146 | |
147 static const tw_instr twinstr[] = { | |
148 VTW(0, 1), | |
149 VTW(0, 2), | |
150 VTW(0, 3), | |
151 VTW(0, 4), | |
152 VTW(0, 5), | |
153 VTW(0, 6), | |
154 VTW(0, 7), | |
155 VTW(0, 8), | |
156 VTW(0, 9), | |
157 VTW(0, 10), | |
158 VTW(0, 11), | |
159 {TW_NEXT, VL, 0} | |
160 }; | |
161 | |
162 static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 }; | |
163 | |
164 void XSIMD(codelet_t1bv_12) (planner *p) { | |
165 X(kdft_dit_register) (p, t1bv_12, &desc); | |
166 } | |
167 #else /* HAVE_FMA */ | |
168 | |
169 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1bv_12 -include t1b.h -sign 1 */ | |
170 | |
171 /* | |
172 * This function contains 59 FP additions, 30 FP multiplications, | |
173 * (or, 55 additions, 26 multiplications, 4 fused multiply/add), | |
174 * 28 stack variables, 2 constants, and 24 memory accesses | |
175 */ | |
176 #include "t1b.h" | |
177 | |
178 static void t1bv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
179 { | |
180 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
181 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
182 { | |
183 INT m; | |
184 R *x; | |
185 x = ii; | |
186 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) { | |
187 V T1, Tt, T6, T7, TB, Tq, TC, TD, T9, Tu, Te, Tf, Tx, Tl, Ty; | |
188 V Tz; | |
189 { | |
190 V T5, T3, T4, T2; | |
191 T1 = LD(&(x[0]), ms, &(x[0])); | |
192 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
193 T5 = BYTW(&(W[TWVL * 14]), T4); | |
194 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
195 T3 = BYTW(&(W[TWVL * 6]), T2); | |
196 Tt = VSUB(T3, T5); | |
197 T6 = VADD(T3, T5); | |
198 T7 = VFNMS(LDK(KP500000000), T6, T1); | |
199 } | |
200 { | |
201 V Tn, Tp, Tm, TA, To; | |
202 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
203 Tn = BYTW(&(W[0]), Tm); | |
204 TA = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
205 TB = BYTW(&(W[TWVL * 16]), TA); | |
206 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
207 Tp = BYTW(&(W[TWVL * 8]), To); | |
208 Tq = VSUB(Tn, Tp); | |
209 TC = VADD(Tn, Tp); | |
210 TD = VFNMS(LDK(KP500000000), TC, TB); | |
211 } | |
212 { | |
213 V Td, Tb, T8, Tc, Ta; | |
214 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
215 T9 = BYTW(&(W[TWVL * 10]), T8); | |
216 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
217 Td = BYTW(&(W[TWVL * 2]), Tc); | |
218 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
219 Tb = BYTW(&(W[TWVL * 18]), Ta); | |
220 Tu = VSUB(Tb, Td); | |
221 Te = VADD(Tb, Td); | |
222 Tf = VFNMS(LDK(KP500000000), Te, T9); | |
223 } | |
224 { | |
225 V Ti, Tk, Th, Tw, Tj; | |
226 Th = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
227 Ti = BYTW(&(W[TWVL * 12]), Th); | |
228 Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
229 Tx = BYTW(&(W[TWVL * 4]), Tw); | |
230 Tj = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
231 Tk = BYTW(&(W[TWVL * 20]), Tj); | |
232 Tl = VSUB(Ti, Tk); | |
233 Ty = VADD(Ti, Tk); | |
234 Tz = VFNMS(LDK(KP500000000), Ty, Tx); | |
235 } | |
236 { | |
237 V Ts, TG, TF, TH; | |
238 { | |
239 V Tg, Tr, Tv, TE; | |
240 Tg = VSUB(T7, Tf); | |
241 Tr = VMUL(LDK(KP866025403), VSUB(Tl, Tq)); | |
242 Ts = VSUB(Tg, Tr); | |
243 TG = VADD(Tg, Tr); | |
244 Tv = VMUL(LDK(KP866025403), VSUB(Tt, Tu)); | |
245 TE = VSUB(Tz, TD); | |
246 TF = VBYI(VADD(Tv, TE)); | |
247 TH = VBYI(VSUB(TE, Tv)); | |
248 } | |
249 ST(&(x[WS(rs, 11)]), VSUB(Ts, TF), ms, &(x[WS(rs, 1)])); | |
250 ST(&(x[WS(rs, 5)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); | |
251 ST(&(x[WS(rs, 1)]), VADD(Ts, TF), ms, &(x[WS(rs, 1)])); | |
252 ST(&(x[WS(rs, 7)]), VSUB(TG, TH), ms, &(x[WS(rs, 1)])); | |
253 } | |
254 { | |
255 V TS, TW, TV, TX; | |
256 { | |
257 V TQ, TR, TT, TU; | |
258 TQ = VADD(T1, T6); | |
259 TR = VADD(T9, Te); | |
260 TS = VSUB(TQ, TR); | |
261 TW = VADD(TQ, TR); | |
262 TT = VADD(Tx, Ty); | |
263 TU = VADD(TB, TC); | |
264 TV = VBYI(VSUB(TT, TU)); | |
265 TX = VADD(TT, TU); | |
266 } | |
267 ST(&(x[WS(rs, 3)]), VSUB(TS, TV), ms, &(x[WS(rs, 1)])); | |
268 ST(&(x[0]), VADD(TW, TX), ms, &(x[0])); | |
269 ST(&(x[WS(rs, 9)]), VADD(TS, TV), ms, &(x[WS(rs, 1)])); | |
270 ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0])); | |
271 } | |
272 { | |
273 V TK, TO, TN, TP; | |
274 { | |
275 V TI, TJ, TL, TM; | |
276 TI = VADD(Tl, Tq); | |
277 TJ = VADD(Tt, Tu); | |
278 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ))); | |
279 TO = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI))); | |
280 TL = VADD(T7, Tf); | |
281 TM = VADD(Tz, TD); | |
282 TN = VSUB(TL, TM); | |
283 TP = VADD(TL, TM); | |
284 } | |
285 ST(&(x[WS(rs, 2)]), VADD(TK, TN), ms, &(x[0])); | |
286 ST(&(x[WS(rs, 8)]), VSUB(TP, TO), ms, &(x[0])); | |
287 ST(&(x[WS(rs, 10)]), VSUB(TN, TK), ms, &(x[0])); | |
288 ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0])); | |
289 } | |
290 } | |
291 } | |
292 VLEAVE(); | |
293 } | |
294 | |
295 static const tw_instr twinstr[] = { | |
296 VTW(0, 1), | |
297 VTW(0, 2), | |
298 VTW(0, 3), | |
299 VTW(0, 4), | |
300 VTW(0, 5), | |
301 VTW(0, 6), | |
302 VTW(0, 7), | |
303 VTW(0, 8), | |
304 VTW(0, 9), | |
305 VTW(0, 10), | |
306 VTW(0, 11), | |
307 {TW_NEXT, VL, 0} | |
308 }; | |
309 | |
310 static const ct_desc desc = { 12, XSIMD_STRING("t1bv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 }; | |
311 | |
312 void XSIMD(codelet_t1bv_12) (planner *p) { | |
313 X(kdft_dit_register) (p, t1bv_12, &desc); | |
314 } | |
315 #endif /* HAVE_FMA */ |