Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/q1bv_4.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:33 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include q1b.h -sign 1 */ | |
29 | |
30 /* | |
31 * This function contains 44 FP additions, 32 FP multiplications, | |
32 * (or, 36 additions, 24 multiplications, 8 fused multiply/add), | |
33 * 38 stack variables, 0 constants, and 32 memory accesses | |
34 */ | |
35 #include "q1b.h" | |
36 | |
37 static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 { | |
40 INT m; | |
41 R *x; | |
42 x = ii; | |
43 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) { | |
44 V Tb, Tm, Tx, TI; | |
45 { | |
46 V Tc, T9, T3, TG, TA, TH, TD, Ta, T6, Td, Tn, To, Tq, Tr, Tf; | |
47 V Tg; | |
48 { | |
49 V T1, T2, Ty, Tz, TB, TC, T4, T5; | |
50 T1 = LD(&(x[0]), ms, &(x[0])); | |
51 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
52 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | |
53 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | |
54 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
55 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
56 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
57 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
58 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | |
59 T9 = VADD(T1, T2); | |
60 T3 = VSUB(T1, T2); | |
61 TG = VADD(Ty, Tz); | |
62 TA = VSUB(Ty, Tz); | |
63 TH = VADD(TB, TC); | |
64 TD = VSUB(TB, TC); | |
65 Ta = VADD(T4, T5); | |
66 T6 = VSUB(T4, T5); | |
67 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | |
68 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | |
69 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | |
70 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
71 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
72 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
73 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
74 } | |
75 { | |
76 V Tk, Te, Tv, Tp, Tw, Ts, Tl, Th, T7, TE, Tu, TF; | |
77 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0])); | |
78 Tk = VADD(Tc, Td); | |
79 Te = VSUB(Tc, Td); | |
80 Tv = VADD(Tn, To); | |
81 Tp = VSUB(Tn, To); | |
82 Tw = VADD(Tq, Tr); | |
83 Ts = VSUB(Tq, Tr); | |
84 Tl = VADD(Tf, Tg); | |
85 Th = VSUB(Tf, Tg); | |
86 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); | |
87 T7 = BYTW(&(W[TWVL * 4]), VFNMSI(T6, T3)); | |
88 TE = BYTW(&(W[TWVL * 4]), VFNMSI(TD, TA)); | |
89 { | |
90 V Tt, Ti, Tj, T8; | |
91 T8 = BYTW(&(W[0]), VFMAI(T6, T3)); | |
92 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0])); | |
93 Tt = BYTW(&(W[TWVL * 4]), VFNMSI(Ts, Tp)); | |
94 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)])); | |
95 Ti = BYTW(&(W[TWVL * 4]), VFNMSI(Th, Te)); | |
96 Tj = BYTW(&(W[0]), VFMAI(Th, Te)); | |
97 ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)])); | |
98 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
99 ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)])); | |
100 Tu = BYTW(&(W[0]), VFMAI(Ts, Tp)); | |
101 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)])); | |
102 TF = BYTW(&(W[0]), VFMAI(TD, TA)); | |
103 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
104 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
105 } | |
106 Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta)); | |
107 Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl)); | |
108 Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw)); | |
109 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)])); | |
110 TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH)); | |
111 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
112 } | |
113 } | |
114 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)])); | |
115 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
116 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)])); | |
117 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
118 } | |
119 } | |
120 VLEAVE(); | |
121 } | |
122 | |
123 static const tw_instr twinstr[] = { | |
124 VTW(0, 1), | |
125 VTW(0, 2), | |
126 VTW(0, 3), | |
127 {TW_NEXT, VL, 0} | |
128 }; | |
129 | |
130 static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, {36, 24, 8, 0}, 0, 0, 0 }; | |
131 | |
132 void XSIMD(codelet_q1bv_4) (planner *p) { | |
133 X(kdft_difsq_register) (p, q1bv_4, &desc); | |
134 } | |
135 #else /* HAVE_FMA */ | |
136 | |
137 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include q1b.h -sign 1 */ | |
138 | |
139 /* | |
140 * This function contains 44 FP additions, 24 FP multiplications, | |
141 * (or, 44 additions, 24 multiplications, 0 fused multiply/add), | |
142 * 22 stack variables, 0 constants, and 32 memory accesses | |
143 */ | |
144 #include "q1b.h" | |
145 | |
146 static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
147 { | |
148 { | |
149 INT m; | |
150 R *x; | |
151 x = ii; | |
152 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) { | |
153 V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th; | |
154 V Tl; | |
155 { | |
156 V T1, T2, Ty, Tz; | |
157 T1 = LD(&(x[0]), ms, &(x[0])); | |
158 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
159 T3 = VSUB(T1, T2); | |
160 T9 = VADD(T1, T2); | |
161 Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); | |
162 Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); | |
163 TA = VSUB(Ty, Tz); | |
164 TG = VADD(Ty, Tz); | |
165 } | |
166 { | |
167 V TB, TC, T4, T5; | |
168 TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
169 TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
170 TD = VBYI(VSUB(TB, TC)); | |
171 TH = VADD(TB, TC); | |
172 T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
173 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
174 T6 = VBYI(VSUB(T4, T5)); | |
175 Ta = VADD(T4, T5); | |
176 } | |
177 { | |
178 V Tc, Td, Tn, To; | |
179 Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); | |
180 Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); | |
181 Te = VSUB(Tc, Td); | |
182 Tk = VADD(Tc, Td); | |
183 Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); | |
184 To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); | |
185 Tp = VSUB(Tn, To); | |
186 Tv = VADD(Tn, To); | |
187 } | |
188 { | |
189 V Tq, Tr, Tf, Tg; | |
190 Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
191 Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
192 Ts = VBYI(VSUB(Tq, Tr)); | |
193 Tw = VADD(Tq, Tr); | |
194 Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
195 Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
196 Th = VBYI(VSUB(Tf, Tg)); | |
197 Tl = VADD(Tf, Tg); | |
198 } | |
199 ST(&(x[0]), VADD(T9, Ta), ms, &(x[0])); | |
200 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)])); | |
201 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0])); | |
202 ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)])); | |
203 { | |
204 V T7, Ti, Tt, TE; | |
205 T7 = BYTW(&(W[TWVL * 4]), VSUB(T3, T6)); | |
206 ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)])); | |
207 Ti = BYTW(&(W[TWVL * 4]), VSUB(Te, Th)); | |
208 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
209 Tt = BYTW(&(W[TWVL * 4]), VSUB(Tp, Ts)); | |
210 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)])); | |
211 TE = BYTW(&(W[TWVL * 4]), VSUB(TA, TD)); | |
212 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); | |
213 } | |
214 { | |
215 V T8, Tj, Tu, TF; | |
216 T8 = BYTW(&(W[0]), VADD(T3, T6)); | |
217 ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)])); | |
218 Tj = BYTW(&(W[0]), VADD(Te, Th)); | |
219 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
220 Tu = BYTW(&(W[0]), VADD(Tp, Ts)); | |
221 ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)])); | |
222 TF = BYTW(&(W[0]), VADD(TA, TD)); | |
223 ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)])); | |
224 } | |
225 { | |
226 V Tb, Tm, Tx, TI; | |
227 Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta)); | |
228 ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)])); | |
229 Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl)); | |
230 ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
231 Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw)); | |
232 ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)])); | |
233 TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH)); | |
234 ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)])); | |
235 } | |
236 } | |
237 } | |
238 VLEAVE(); | |
239 } | |
240 | |
241 static const tw_instr twinstr[] = { | |
242 VTW(0, 1), | |
243 VTW(0, 2), | |
244 VTW(0, 3), | |
245 {TW_NEXT, VL, 0} | |
246 }; | |
247 | |
248 static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, {44, 24, 0, 0}, 0, 0, 0 }; | |
249 | |
250 void XSIMD(codelet_q1bv_4) (planner *p) { | |
251 X(kdft_difsq_register) (p, q1bv_4, &desc); | |
252 } | |
253 #endif /* HAVE_FMA */ |