Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n2sv_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:37:48 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2sv_16 -with-ostride 1 -include n2s.h -store-multiple 4 */ | |
29 | |
30 /* | |
31 * This function contains 144 FP additions, 40 FP multiplications, | |
32 * (or, 104 additions, 0 multiplications, 40 fused multiply/add), | |
33 * 110 stack variables, 3 constants, and 72 memory accesses | |
34 */ | |
35 #include "n2s.h" | |
36 | |
37 static void n2sv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
41 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
42 { | |
43 INT i; | |
44 for (i = v; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * ivs), ii = ii + ((2 * VL) * ivs), ro = ro + ((2 * VL) * ovs), io = io + ((2 * VL) * ovs), MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) { | |
45 V T2p, T2q, T2r, T2s, T2x, T2y, T2z, T2A, T1M, T1N, T1L, T1P, T2F, T2G, T2H; | |
46 V T2I, T1O, T1Q; | |
47 { | |
48 V T1l, T1H, T1R, T7, T1x, TN, TC, T25, T1E, T1b, T1Z, Tt, T2h, T22, T1D; | |
49 V T1g, T1n, TQ, T11, Ti, Te, T26, T1m, TT, T1S, TJ, TZ, T1V, TW, Tl; | |
50 V T12, T13; | |
51 { | |
52 V Tq, T1c, Tp, T20, T1a, Tr, T1d, T1e; | |
53 { | |
54 V T1, T2, Tw, Tx, T4, T5, Tz, TA; | |
55 T1 = LD(&(ri[0]), ivs, &(ri[0])); | |
56 T2 = LD(&(ri[WS(is, 8)]), ivs, &(ri[0])); | |
57 Tw = LD(&(ii[0]), ivs, &(ii[0])); | |
58 Tx = LD(&(ii[WS(is, 8)]), ivs, &(ii[0])); | |
59 T4 = LD(&(ri[WS(is, 4)]), ivs, &(ri[0])); | |
60 T5 = LD(&(ri[WS(is, 12)]), ivs, &(ri[0])); | |
61 Tz = LD(&(ii[WS(is, 4)]), ivs, &(ii[0])); | |
62 TA = LD(&(ii[WS(is, 12)]), ivs, &(ii[0])); | |
63 { | |
64 V Tn, TL, T3, T1k, Ty, T1j, T6, TM, TB, To, T18, T19; | |
65 Tn = LD(&(ri[WS(is, 15)]), ivs, &(ri[WS(is, 1)])); | |
66 TL = VSUB(T1, T2); | |
67 T3 = VADD(T1, T2); | |
68 T1k = VSUB(Tw, Tx); | |
69 Ty = VADD(Tw, Tx); | |
70 T1j = VSUB(T4, T5); | |
71 T6 = VADD(T4, T5); | |
72 TM = VSUB(Tz, TA); | |
73 TB = VADD(Tz, TA); | |
74 To = LD(&(ri[WS(is, 7)]), ivs, &(ri[WS(is, 1)])); | |
75 T18 = LD(&(ii[WS(is, 15)]), ivs, &(ii[WS(is, 1)])); | |
76 T19 = LD(&(ii[WS(is, 7)]), ivs, &(ii[WS(is, 1)])); | |
77 Tq = LD(&(ri[WS(is, 3)]), ivs, &(ri[WS(is, 1)])); | |
78 T1l = VADD(T1j, T1k); | |
79 T1H = VSUB(T1k, T1j); | |
80 T1R = VSUB(T3, T6); | |
81 T7 = VADD(T3, T6); | |
82 T1x = VADD(TL, TM); | |
83 TN = VSUB(TL, TM); | |
84 TC = VADD(Ty, TB); | |
85 T25 = VSUB(Ty, TB); | |
86 T1c = VSUB(Tn, To); | |
87 Tp = VADD(Tn, To); | |
88 T20 = VADD(T18, T19); | |
89 T1a = VSUB(T18, T19); | |
90 Tr = LD(&(ri[WS(is, 11)]), ivs, &(ri[WS(is, 1)])); | |
91 T1d = LD(&(ii[WS(is, 3)]), ivs, &(ii[WS(is, 1)])); | |
92 T1e = LD(&(ii[WS(is, 11)]), ivs, &(ii[WS(is, 1)])); | |
93 } | |
94 } | |
95 { | |
96 V Tb, Ta, TF, Tc, TG, TH, TP, TO; | |
97 { | |
98 V T8, T9, TD, TE; | |
99 T8 = LD(&(ri[WS(is, 2)]), ivs, &(ri[0])); | |
100 T9 = LD(&(ri[WS(is, 10)]), ivs, &(ri[0])); | |
101 TD = LD(&(ii[WS(is, 2)]), ivs, &(ii[0])); | |
102 TE = LD(&(ii[WS(is, 10)]), ivs, &(ii[0])); | |
103 Tb = LD(&(ri[WS(is, 14)]), ivs, &(ri[0])); | |
104 { | |
105 V T17, Ts, T21, T1f; | |
106 T17 = VSUB(Tq, Tr); | |
107 Ts = VADD(Tq, Tr); | |
108 T21 = VADD(T1d, T1e); | |
109 T1f = VSUB(T1d, T1e); | |
110 TP = VSUB(T8, T9); | |
111 Ta = VADD(T8, T9); | |
112 TO = VSUB(TD, TE); | |
113 TF = VADD(TD, TE); | |
114 T1E = VSUB(T1a, T17); | |
115 T1b = VADD(T17, T1a); | |
116 T1Z = VSUB(Tp, Ts); | |
117 Tt = VADD(Tp, Ts); | |
118 T2h = VADD(T20, T21); | |
119 T22 = VSUB(T20, T21); | |
120 T1D = VADD(T1c, T1f); | |
121 T1g = VSUB(T1c, T1f); | |
122 Tc = LD(&(ri[WS(is, 6)]), ivs, &(ri[0])); | |
123 } | |
124 TG = LD(&(ii[WS(is, 14)]), ivs, &(ii[0])); | |
125 TH = LD(&(ii[WS(is, 6)]), ivs, &(ii[0])); | |
126 } | |
127 T1n = VADD(TP, TO); | |
128 TQ = VSUB(TO, TP); | |
129 { | |
130 V Tg, Th, TX, TR, Td, TS, TI, TY, Tj, Tk; | |
131 Tg = LD(&(ri[WS(is, 1)]), ivs, &(ri[WS(is, 1)])); | |
132 Th = LD(&(ri[WS(is, 9)]), ivs, &(ri[WS(is, 1)])); | |
133 TX = LD(&(ii[WS(is, 1)]), ivs, &(ii[WS(is, 1)])); | |
134 TR = VSUB(Tb, Tc); | |
135 Td = VADD(Tb, Tc); | |
136 TS = VSUB(TG, TH); | |
137 TI = VADD(TG, TH); | |
138 TY = LD(&(ii[WS(is, 9)]), ivs, &(ii[WS(is, 1)])); | |
139 Tj = LD(&(ri[WS(is, 5)]), ivs, &(ri[WS(is, 1)])); | |
140 T11 = VSUB(Tg, Th); | |
141 Ti = VADD(Tg, Th); | |
142 Tk = LD(&(ri[WS(is, 13)]), ivs, &(ri[WS(is, 1)])); | |
143 Te = VADD(Ta, Td); | |
144 T26 = VSUB(Td, Ta); | |
145 T1m = VSUB(TR, TS); | |
146 TT = VADD(TR, TS); | |
147 T1S = VSUB(TF, TI); | |
148 TJ = VADD(TF, TI); | |
149 TZ = VSUB(TX, TY); | |
150 T1V = VADD(TX, TY); | |
151 TW = VSUB(Tj, Tk); | |
152 Tl = VADD(Tj, Tk); | |
153 T12 = LD(&(ii[WS(is, 5)]), ivs, &(ii[WS(is, 1)])); | |
154 T13 = LD(&(ii[WS(is, 13)]), ivs, &(ii[WS(is, 1)])); | |
155 } | |
156 } | |
157 } | |
158 { | |
159 V T2f, Tf, T2j, TK, Tm, T1U, T10, T1B, T14, T1W; | |
160 T2f = VSUB(T7, Te); | |
161 Tf = VADD(T7, Te); | |
162 T2j = VADD(TC, TJ); | |
163 TK = VSUB(TC, TJ); | |
164 Tm = VADD(Ti, Tl); | |
165 T1U = VSUB(Ti, Tl); | |
166 T10 = VADD(TW, TZ); | |
167 T1B = VSUB(TZ, TW); | |
168 T14 = VSUB(T12, T13); | |
169 T1W = VADD(T12, T13); | |
170 { | |
171 V T29, T1T, T27, T2d, T2b, T23, T15, T1A, T2l, T2m, T2n, T2o, T2i, T2k, T1Y; | |
172 V T2a; | |
173 { | |
174 V Tv, Tu, T1X, T2g; | |
175 T29 = VSUB(T1R, T1S); | |
176 T1T = VADD(T1R, T1S); | |
177 T27 = VSUB(T25, T26); | |
178 T2d = VADD(T26, T25); | |
179 T2b = VADD(T1Z, T22); | |
180 T23 = VSUB(T1Z, T22); | |
181 Tv = VSUB(Tt, Tm); | |
182 Tu = VADD(Tm, Tt); | |
183 T1X = VSUB(T1V, T1W); | |
184 T2g = VADD(T1V, T1W); | |
185 T15 = VSUB(T11, T14); | |
186 T1A = VADD(T11, T14); | |
187 T2l = VSUB(TK, Tv); | |
188 STM4(&(io[12]), T2l, ovs, &(io[0])); | |
189 T2m = VADD(Tv, TK); | |
190 STM4(&(io[4]), T2m, ovs, &(io[0])); | |
191 T2n = VADD(Tf, Tu); | |
192 STM4(&(ro[0]), T2n, ovs, &(ro[0])); | |
193 T2o = VSUB(Tf, Tu); | |
194 STM4(&(ro[8]), T2o, ovs, &(ro[0])); | |
195 T2i = VSUB(T2g, T2h); | |
196 T2k = VADD(T2g, T2h); | |
197 T1Y = VADD(T1U, T1X); | |
198 T2a = VSUB(T1X, T1U); | |
199 } | |
200 { | |
201 V T1I, T1y, T1t, T16, T1v, TV, T1r, T1p, T2t, T2u, T2v, T2w, T1h, T1s, TU; | |
202 V T1o; | |
203 T1I = VADD(TQ, TT); | |
204 TU = VSUB(TQ, TT); | |
205 T1o = VSUB(T1m, T1n); | |
206 T1y = VADD(T1n, T1m); | |
207 T1t = VFNMS(LDK(KP414213562), T10, T15); | |
208 T16 = VFMA(LDK(KP414213562), T15, T10); | |
209 T2p = VADD(T2f, T2i); | |
210 STM4(&(ro[4]), T2p, ovs, &(ro[0])); | |
211 T2q = VSUB(T2f, T2i); | |
212 STM4(&(ro[12]), T2q, ovs, &(ro[0])); | |
213 T2r = VADD(T2j, T2k); | |
214 STM4(&(io[0]), T2r, ovs, &(io[0])); | |
215 T2s = VSUB(T2j, T2k); | |
216 STM4(&(io[8]), T2s, ovs, &(io[0])); | |
217 { | |
218 V T28, T24, T2e, T2c; | |
219 T28 = VSUB(T23, T1Y); | |
220 T24 = VADD(T1Y, T23); | |
221 T2e = VADD(T2a, T2b); | |
222 T2c = VSUB(T2a, T2b); | |
223 T1v = VFNMS(LDK(KP707106781), TU, TN); | |
224 TV = VFMA(LDK(KP707106781), TU, TN); | |
225 T1r = VFMA(LDK(KP707106781), T1o, T1l); | |
226 T1p = VFNMS(LDK(KP707106781), T1o, T1l); | |
227 T2t = VFNMS(LDK(KP707106781), T28, T27); | |
228 STM4(&(io[14]), T2t, ovs, &(io[0])); | |
229 T2u = VFMA(LDK(KP707106781), T28, T27); | |
230 STM4(&(io[6]), T2u, ovs, &(io[0])); | |
231 T2v = VFMA(LDK(KP707106781), T24, T1T); | |
232 STM4(&(ro[2]), T2v, ovs, &(ro[0])); | |
233 T2w = VFNMS(LDK(KP707106781), T24, T1T); | |
234 STM4(&(ro[10]), T2w, ovs, &(ro[0])); | |
235 T2x = VFNMS(LDK(KP707106781), T2e, T2d); | |
236 STM4(&(io[10]), T2x, ovs, &(io[0])); | |
237 T2y = VFMA(LDK(KP707106781), T2e, T2d); | |
238 STM4(&(io[2]), T2y, ovs, &(io[0])); | |
239 T2z = VFMA(LDK(KP707106781), T2c, T29); | |
240 STM4(&(ro[6]), T2z, ovs, &(ro[0])); | |
241 T2A = VFNMS(LDK(KP707106781), T2c, T29); | |
242 STM4(&(ro[14]), T2A, ovs, &(ro[0])); | |
243 T1h = VFNMS(LDK(KP414213562), T1g, T1b); | |
244 T1s = VFMA(LDK(KP414213562), T1b, T1g); | |
245 } | |
246 { | |
247 V T1z, T1J, T1K, T1G, T2B, T2C, T2D, T2E, T1C, T1F; | |
248 T1M = VFNMS(LDK(KP414213562), T1A, T1B); | |
249 T1C = VFMA(LDK(KP414213562), T1B, T1A); | |
250 T1F = VFNMS(LDK(KP414213562), T1E, T1D); | |
251 T1N = VFMA(LDK(KP414213562), T1D, T1E); | |
252 { | |
253 V T1q, T1i, T1w, T1u; | |
254 T1q = VADD(T16, T1h); | |
255 T1i = VSUB(T16, T1h); | |
256 T1w = VADD(T1t, T1s); | |
257 T1u = VSUB(T1s, T1t); | |
258 T1L = VFNMS(LDK(KP707106781), T1y, T1x); | |
259 T1z = VFMA(LDK(KP707106781), T1y, T1x); | |
260 T1P = VFMA(LDK(KP707106781), T1I, T1H); | |
261 T1J = VFNMS(LDK(KP707106781), T1I, T1H); | |
262 T1K = VSUB(T1F, T1C); | |
263 T1G = VADD(T1C, T1F); | |
264 T2B = VFMA(LDK(KP923879532), T1q, T1p); | |
265 STM4(&(io[15]), T2B, ovs, &(io[1])); | |
266 T2C = VFNMS(LDK(KP923879532), T1q, T1p); | |
267 STM4(&(io[7]), T2C, ovs, &(io[1])); | |
268 T2D = VFMA(LDK(KP923879532), T1i, TV); | |
269 STM4(&(ro[3]), T2D, ovs, &(ro[1])); | |
270 T2E = VFNMS(LDK(KP923879532), T1i, TV); | |
271 STM4(&(ro[11]), T2E, ovs, &(ro[1])); | |
272 T2F = VFMA(LDK(KP923879532), T1w, T1v); | |
273 STM4(&(ro[15]), T2F, ovs, &(ro[1])); | |
274 T2G = VFNMS(LDK(KP923879532), T1w, T1v); | |
275 STM4(&(ro[7]), T2G, ovs, &(ro[1])); | |
276 T2H = VFMA(LDK(KP923879532), T1u, T1r); | |
277 STM4(&(io[3]), T2H, ovs, &(io[1])); | |
278 T2I = VFNMS(LDK(KP923879532), T1u, T1r); | |
279 STM4(&(io[11]), T2I, ovs, &(io[1])); | |
280 } | |
281 { | |
282 V T2J, T2K, T2L, T2M; | |
283 T2J = VFNMS(LDK(KP923879532), T1G, T1z); | |
284 STM4(&(ro[9]), T2J, ovs, &(ro[1])); | |
285 STN4(&(ro[8]), T2o, T2J, T2w, T2E, ovs); | |
286 T2K = VFMA(LDK(KP923879532), T1G, T1z); | |
287 STM4(&(ro[1]), T2K, ovs, &(ro[1])); | |
288 STN4(&(ro[0]), T2n, T2K, T2v, T2D, ovs); | |
289 T2L = VFNMS(LDK(KP923879532), T1K, T1J); | |
290 STM4(&(io[13]), T2L, ovs, &(io[1])); | |
291 STN4(&(io[12]), T2l, T2L, T2t, T2B, ovs); | |
292 T2M = VFMA(LDK(KP923879532), T1K, T1J); | |
293 STM4(&(io[5]), T2M, ovs, &(io[1])); | |
294 STN4(&(io[4]), T2m, T2M, T2u, T2C, ovs); | |
295 } | |
296 } | |
297 } | |
298 } | |
299 } | |
300 } | |
301 T1O = VSUB(T1M, T1N); | |
302 T1Q = VADD(T1M, T1N); | |
303 { | |
304 V T2N, T2O, T2P, T2Q; | |
305 T2N = VFMA(LDK(KP923879532), T1Q, T1P); | |
306 STM4(&(io[1]), T2N, ovs, &(io[1])); | |
307 STN4(&(io[0]), T2r, T2N, T2y, T2H, ovs); | |
308 T2O = VFNMS(LDK(KP923879532), T1Q, T1P); | |
309 STM4(&(io[9]), T2O, ovs, &(io[1])); | |
310 STN4(&(io[8]), T2s, T2O, T2x, T2I, ovs); | |
311 T2P = VFMA(LDK(KP923879532), T1O, T1L); | |
312 STM4(&(ro[5]), T2P, ovs, &(ro[1])); | |
313 STN4(&(ro[4]), T2p, T2P, T2z, T2G, ovs); | |
314 T2Q = VFNMS(LDK(KP923879532), T1O, T1L); | |
315 STM4(&(ro[13]), T2Q, ovs, &(ro[1])); | |
316 STN4(&(ro[12]), T2q, T2Q, T2A, T2F, ovs); | |
317 } | |
318 } | |
319 } | |
320 VLEAVE(); | |
321 } | |
322 | |
323 static const kdft_desc desc = { 16, XSIMD_STRING("n2sv_16"), {104, 0, 40, 0}, &GENUS, 0, 1, 0, 0 }; | |
324 | |
325 void XSIMD(codelet_n2sv_16) (planner *p) { | |
326 X(kdft_register) (p, n2sv_16, &desc); | |
327 } | |
328 | |
329 #else /* HAVE_FMA */ | |
330 | |
331 /* Generated by: ../../../genfft/gen_notw.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n2sv_16 -with-ostride 1 -include n2s.h -store-multiple 4 */ | |
332 | |
333 /* | |
334 * This function contains 144 FP additions, 24 FP multiplications, | |
335 * (or, 136 additions, 16 multiplications, 8 fused multiply/add), | |
336 * 74 stack variables, 3 constants, and 72 memory accesses | |
337 */ | |
338 #include "n2s.h" | |
339 | |
340 static void n2sv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
341 { | |
342 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
343 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
344 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
345 { | |
346 INT i; | |
347 for (i = v; i > 0; i = i - (2 * VL), ri = ri + ((2 * VL) * ivs), ii = ii + ((2 * VL) * ivs), ro = ro + ((2 * VL) * ovs), io = io + ((2 * VL) * ovs), MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) { | |
348 V T7, T1R, T25, TC, TN, T1x, T1H, T1l, Tt, T22, T2h, T1b, T1g, T1E, T1Z; | |
349 V T1D, Te, T1S, T26, TJ, TQ, T1m, T1n, TT, Tm, T1X, T2g, T10, T15, T1B; | |
350 V T1U, T1A; | |
351 { | |
352 V T3, TL, Ty, T1k, T6, T1j, TB, TM; | |
353 { | |
354 V T1, T2, Tw, Tx; | |
355 T1 = LD(&(ri[0]), ivs, &(ri[0])); | |
356 T2 = LD(&(ri[WS(is, 8)]), ivs, &(ri[0])); | |
357 T3 = VADD(T1, T2); | |
358 TL = VSUB(T1, T2); | |
359 Tw = LD(&(ii[0]), ivs, &(ii[0])); | |
360 Tx = LD(&(ii[WS(is, 8)]), ivs, &(ii[0])); | |
361 Ty = VADD(Tw, Tx); | |
362 T1k = VSUB(Tw, Tx); | |
363 } | |
364 { | |
365 V T4, T5, Tz, TA; | |
366 T4 = LD(&(ri[WS(is, 4)]), ivs, &(ri[0])); | |
367 T5 = LD(&(ri[WS(is, 12)]), ivs, &(ri[0])); | |
368 T6 = VADD(T4, T5); | |
369 T1j = VSUB(T4, T5); | |
370 Tz = LD(&(ii[WS(is, 4)]), ivs, &(ii[0])); | |
371 TA = LD(&(ii[WS(is, 12)]), ivs, &(ii[0])); | |
372 TB = VADD(Tz, TA); | |
373 TM = VSUB(Tz, TA); | |
374 } | |
375 T7 = VADD(T3, T6); | |
376 T1R = VSUB(T3, T6); | |
377 T25 = VSUB(Ty, TB); | |
378 TC = VADD(Ty, TB); | |
379 TN = VSUB(TL, TM); | |
380 T1x = VADD(TL, TM); | |
381 T1H = VSUB(T1k, T1j); | |
382 T1l = VADD(T1j, T1k); | |
383 } | |
384 { | |
385 V Tp, T17, T1f, T20, Ts, T1c, T1a, T21; | |
386 { | |
387 V Tn, To, T1d, T1e; | |
388 Tn = LD(&(ri[WS(is, 15)]), ivs, &(ri[WS(is, 1)])); | |
389 To = LD(&(ri[WS(is, 7)]), ivs, &(ri[WS(is, 1)])); | |
390 Tp = VADD(Tn, To); | |
391 T17 = VSUB(Tn, To); | |
392 T1d = LD(&(ii[WS(is, 15)]), ivs, &(ii[WS(is, 1)])); | |
393 T1e = LD(&(ii[WS(is, 7)]), ivs, &(ii[WS(is, 1)])); | |
394 T1f = VSUB(T1d, T1e); | |
395 T20 = VADD(T1d, T1e); | |
396 } | |
397 { | |
398 V Tq, Tr, T18, T19; | |
399 Tq = LD(&(ri[WS(is, 3)]), ivs, &(ri[WS(is, 1)])); | |
400 Tr = LD(&(ri[WS(is, 11)]), ivs, &(ri[WS(is, 1)])); | |
401 Ts = VADD(Tq, Tr); | |
402 T1c = VSUB(Tq, Tr); | |
403 T18 = LD(&(ii[WS(is, 3)]), ivs, &(ii[WS(is, 1)])); | |
404 T19 = LD(&(ii[WS(is, 11)]), ivs, &(ii[WS(is, 1)])); | |
405 T1a = VSUB(T18, T19); | |
406 T21 = VADD(T18, T19); | |
407 } | |
408 Tt = VADD(Tp, Ts); | |
409 T22 = VSUB(T20, T21); | |
410 T2h = VADD(T20, T21); | |
411 T1b = VSUB(T17, T1a); | |
412 T1g = VADD(T1c, T1f); | |
413 T1E = VSUB(T1f, T1c); | |
414 T1Z = VSUB(Tp, Ts); | |
415 T1D = VADD(T17, T1a); | |
416 } | |
417 { | |
418 V Ta, TP, TF, TO, Td, TR, TI, TS; | |
419 { | |
420 V T8, T9, TD, TE; | |
421 T8 = LD(&(ri[WS(is, 2)]), ivs, &(ri[0])); | |
422 T9 = LD(&(ri[WS(is, 10)]), ivs, &(ri[0])); | |
423 Ta = VADD(T8, T9); | |
424 TP = VSUB(T8, T9); | |
425 TD = LD(&(ii[WS(is, 2)]), ivs, &(ii[0])); | |
426 TE = LD(&(ii[WS(is, 10)]), ivs, &(ii[0])); | |
427 TF = VADD(TD, TE); | |
428 TO = VSUB(TD, TE); | |
429 } | |
430 { | |
431 V Tb, Tc, TG, TH; | |
432 Tb = LD(&(ri[WS(is, 14)]), ivs, &(ri[0])); | |
433 Tc = LD(&(ri[WS(is, 6)]), ivs, &(ri[0])); | |
434 Td = VADD(Tb, Tc); | |
435 TR = VSUB(Tb, Tc); | |
436 TG = LD(&(ii[WS(is, 14)]), ivs, &(ii[0])); | |
437 TH = LD(&(ii[WS(is, 6)]), ivs, &(ii[0])); | |
438 TI = VADD(TG, TH); | |
439 TS = VSUB(TG, TH); | |
440 } | |
441 Te = VADD(Ta, Td); | |
442 T1S = VSUB(TF, TI); | |
443 T26 = VSUB(Td, Ta); | |
444 TJ = VADD(TF, TI); | |
445 TQ = VSUB(TO, TP); | |
446 T1m = VSUB(TR, TS); | |
447 T1n = VADD(TP, TO); | |
448 TT = VADD(TR, TS); | |
449 } | |
450 { | |
451 V Ti, T11, TZ, T1V, Tl, TW, T14, T1W; | |
452 { | |
453 V Tg, Th, TX, TY; | |
454 Tg = LD(&(ri[WS(is, 1)]), ivs, &(ri[WS(is, 1)])); | |
455 Th = LD(&(ri[WS(is, 9)]), ivs, &(ri[WS(is, 1)])); | |
456 Ti = VADD(Tg, Th); | |
457 T11 = VSUB(Tg, Th); | |
458 TX = LD(&(ii[WS(is, 1)]), ivs, &(ii[WS(is, 1)])); | |
459 TY = LD(&(ii[WS(is, 9)]), ivs, &(ii[WS(is, 1)])); | |
460 TZ = VSUB(TX, TY); | |
461 T1V = VADD(TX, TY); | |
462 } | |
463 { | |
464 V Tj, Tk, T12, T13; | |
465 Tj = LD(&(ri[WS(is, 5)]), ivs, &(ri[WS(is, 1)])); | |
466 Tk = LD(&(ri[WS(is, 13)]), ivs, &(ri[WS(is, 1)])); | |
467 Tl = VADD(Tj, Tk); | |
468 TW = VSUB(Tj, Tk); | |
469 T12 = LD(&(ii[WS(is, 5)]), ivs, &(ii[WS(is, 1)])); | |
470 T13 = LD(&(ii[WS(is, 13)]), ivs, &(ii[WS(is, 1)])); | |
471 T14 = VSUB(T12, T13); | |
472 T1W = VADD(T12, T13); | |
473 } | |
474 Tm = VADD(Ti, Tl); | |
475 T1X = VSUB(T1V, T1W); | |
476 T2g = VADD(T1V, T1W); | |
477 T10 = VADD(TW, TZ); | |
478 T15 = VSUB(T11, T14); | |
479 T1B = VADD(T11, T14); | |
480 T1U = VSUB(Ti, Tl); | |
481 T1A = VSUB(TZ, TW); | |
482 } | |
483 { | |
484 V T2l, T2m, T2n, T2o, T2p, T2q, T2r, T2s; | |
485 { | |
486 V Tf, Tu, T2j, T2k; | |
487 Tf = VADD(T7, Te); | |
488 Tu = VADD(Tm, Tt); | |
489 T2l = VSUB(Tf, Tu); | |
490 STM4(&(ro[8]), T2l, ovs, &(ro[0])); | |
491 T2m = VADD(Tf, Tu); | |
492 STM4(&(ro[0]), T2m, ovs, &(ro[0])); | |
493 T2j = VADD(TC, TJ); | |
494 T2k = VADD(T2g, T2h); | |
495 T2n = VSUB(T2j, T2k); | |
496 STM4(&(io[8]), T2n, ovs, &(io[0])); | |
497 T2o = VADD(T2j, T2k); | |
498 STM4(&(io[0]), T2o, ovs, &(io[0])); | |
499 } | |
500 { | |
501 V Tv, TK, T2f, T2i; | |
502 Tv = VSUB(Tt, Tm); | |
503 TK = VSUB(TC, TJ); | |
504 T2p = VADD(Tv, TK); | |
505 STM4(&(io[4]), T2p, ovs, &(io[0])); | |
506 T2q = VSUB(TK, Tv); | |
507 STM4(&(io[12]), T2q, ovs, &(io[0])); | |
508 T2f = VSUB(T7, Te); | |
509 T2i = VSUB(T2g, T2h); | |
510 T2r = VSUB(T2f, T2i); | |
511 STM4(&(ro[12]), T2r, ovs, &(ro[0])); | |
512 T2s = VADD(T2f, T2i); | |
513 STM4(&(ro[4]), T2s, ovs, &(ro[0])); | |
514 } | |
515 { | |
516 V T2t, T2u, T2v, T2w, T2x, T2y, T2z, T2A; | |
517 { | |
518 V T1T, T27, T24, T28, T1Y, T23; | |
519 T1T = VADD(T1R, T1S); | |
520 T27 = VSUB(T25, T26); | |
521 T1Y = VADD(T1U, T1X); | |
522 T23 = VSUB(T1Z, T22); | |
523 T24 = VMUL(LDK(KP707106781), VADD(T1Y, T23)); | |
524 T28 = VMUL(LDK(KP707106781), VSUB(T23, T1Y)); | |
525 T2t = VSUB(T1T, T24); | |
526 STM4(&(ro[10]), T2t, ovs, &(ro[0])); | |
527 T2u = VADD(T27, T28); | |
528 STM4(&(io[6]), T2u, ovs, &(io[0])); | |
529 T2v = VADD(T1T, T24); | |
530 STM4(&(ro[2]), T2v, ovs, &(ro[0])); | |
531 T2w = VSUB(T27, T28); | |
532 STM4(&(io[14]), T2w, ovs, &(io[0])); | |
533 } | |
534 { | |
535 V T29, T2d, T2c, T2e, T2a, T2b; | |
536 T29 = VSUB(T1R, T1S); | |
537 T2d = VADD(T26, T25); | |
538 T2a = VSUB(T1X, T1U); | |
539 T2b = VADD(T1Z, T22); | |
540 T2c = VMUL(LDK(KP707106781), VSUB(T2a, T2b)); | |
541 T2e = VMUL(LDK(KP707106781), VADD(T2a, T2b)); | |
542 T2x = VSUB(T29, T2c); | |
543 STM4(&(ro[14]), T2x, ovs, &(ro[0])); | |
544 T2y = VADD(T2d, T2e); | |
545 STM4(&(io[2]), T2y, ovs, &(io[0])); | |
546 T2z = VADD(T29, T2c); | |
547 STM4(&(ro[6]), T2z, ovs, &(ro[0])); | |
548 T2A = VSUB(T2d, T2e); | |
549 STM4(&(io[10]), T2A, ovs, &(io[0])); | |
550 } | |
551 { | |
552 V T2B, T2C, T2D, T2E, T2F, T2G, T2H, T2I; | |
553 { | |
554 V TV, T1r, T1p, T1v, T1i, T1q, T1u, T1w, TU, T1o; | |
555 TU = VMUL(LDK(KP707106781), VSUB(TQ, TT)); | |
556 TV = VADD(TN, TU); | |
557 T1r = VSUB(TN, TU); | |
558 T1o = VMUL(LDK(KP707106781), VSUB(T1m, T1n)); | |
559 T1p = VSUB(T1l, T1o); | |
560 T1v = VADD(T1l, T1o); | |
561 { | |
562 V T16, T1h, T1s, T1t; | |
563 T16 = VFMA(LDK(KP923879532), T10, VMUL(LDK(KP382683432), T15)); | |
564 T1h = VFNMS(LDK(KP923879532), T1g, VMUL(LDK(KP382683432), T1b)); | |
565 T1i = VADD(T16, T1h); | |
566 T1q = VSUB(T1h, T16); | |
567 T1s = VFNMS(LDK(KP923879532), T15, VMUL(LDK(KP382683432), T10)); | |
568 T1t = VFMA(LDK(KP382683432), T1g, VMUL(LDK(KP923879532), T1b)); | |
569 T1u = VSUB(T1s, T1t); | |
570 T1w = VADD(T1s, T1t); | |
571 } | |
572 T2B = VSUB(TV, T1i); | |
573 STM4(&(ro[11]), T2B, ovs, &(ro[1])); | |
574 T2C = VSUB(T1v, T1w); | |
575 STM4(&(io[11]), T2C, ovs, &(io[1])); | |
576 T2D = VADD(TV, T1i); | |
577 STM4(&(ro[3]), T2D, ovs, &(ro[1])); | |
578 T2E = VADD(T1v, T1w); | |
579 STM4(&(io[3]), T2E, ovs, &(io[1])); | |
580 T2F = VSUB(T1p, T1q); | |
581 STM4(&(io[15]), T2F, ovs, &(io[1])); | |
582 T2G = VSUB(T1r, T1u); | |
583 STM4(&(ro[15]), T2G, ovs, &(ro[1])); | |
584 T2H = VADD(T1p, T1q); | |
585 STM4(&(io[7]), T2H, ovs, &(io[1])); | |
586 T2I = VADD(T1r, T1u); | |
587 STM4(&(ro[7]), T2I, ovs, &(ro[1])); | |
588 } | |
589 { | |
590 V T1z, T1L, T1J, T1P, T1G, T1K, T1O, T1Q, T1y, T1I; | |
591 T1y = VMUL(LDK(KP707106781), VADD(T1n, T1m)); | |
592 T1z = VADD(T1x, T1y); | |
593 T1L = VSUB(T1x, T1y); | |
594 T1I = VMUL(LDK(KP707106781), VADD(TQ, TT)); | |
595 T1J = VSUB(T1H, T1I); | |
596 T1P = VADD(T1H, T1I); | |
597 { | |
598 V T1C, T1F, T1M, T1N; | |
599 T1C = VFMA(LDK(KP382683432), T1A, VMUL(LDK(KP923879532), T1B)); | |
600 T1F = VFNMS(LDK(KP382683432), T1E, VMUL(LDK(KP923879532), T1D)); | |
601 T1G = VADD(T1C, T1F); | |
602 T1K = VSUB(T1F, T1C); | |
603 T1M = VFNMS(LDK(KP382683432), T1B, VMUL(LDK(KP923879532), T1A)); | |
604 T1N = VFMA(LDK(KP923879532), T1E, VMUL(LDK(KP382683432), T1D)); | |
605 T1O = VSUB(T1M, T1N); | |
606 T1Q = VADD(T1M, T1N); | |
607 } | |
608 { | |
609 V T2J, T2K, T2L, T2M; | |
610 T2J = VSUB(T1z, T1G); | |
611 STM4(&(ro[9]), T2J, ovs, &(ro[1])); | |
612 STN4(&(ro[8]), T2l, T2J, T2t, T2B, ovs); | |
613 T2K = VSUB(T1P, T1Q); | |
614 STM4(&(io[9]), T2K, ovs, &(io[1])); | |
615 STN4(&(io[8]), T2n, T2K, T2A, T2C, ovs); | |
616 T2L = VADD(T1z, T1G); | |
617 STM4(&(ro[1]), T2L, ovs, &(ro[1])); | |
618 STN4(&(ro[0]), T2m, T2L, T2v, T2D, ovs); | |
619 T2M = VADD(T1P, T1Q); | |
620 STM4(&(io[1]), T2M, ovs, &(io[1])); | |
621 STN4(&(io[0]), T2o, T2M, T2y, T2E, ovs); | |
622 } | |
623 { | |
624 V T2N, T2O, T2P, T2Q; | |
625 T2N = VSUB(T1J, T1K); | |
626 STM4(&(io[13]), T2N, ovs, &(io[1])); | |
627 STN4(&(io[12]), T2q, T2N, T2w, T2F, ovs); | |
628 T2O = VSUB(T1L, T1O); | |
629 STM4(&(ro[13]), T2O, ovs, &(ro[1])); | |
630 STN4(&(ro[12]), T2r, T2O, T2x, T2G, ovs); | |
631 T2P = VADD(T1J, T1K); | |
632 STM4(&(io[5]), T2P, ovs, &(io[1])); | |
633 STN4(&(io[4]), T2p, T2P, T2u, T2H, ovs); | |
634 T2Q = VADD(T1L, T1O); | |
635 STM4(&(ro[5]), T2Q, ovs, &(ro[1])); | |
636 STN4(&(ro[4]), T2s, T2Q, T2z, T2I, ovs); | |
637 } | |
638 } | |
639 } | |
640 } | |
641 } | |
642 } | |
643 } | |
644 VLEAVE(); | |
645 } | |
646 | |
647 static const kdft_desc desc = { 16, XSIMD_STRING("n2sv_16"), {136, 16, 8, 0}, &GENUS, 0, 1, 0, 0 }; | |
648 | |
649 void XSIMD(codelet_n2sv_16) (planner *p) { | |
650 X(kdft_register) (p, n2sv_16, &desc); | |
651 } | |
652 | |
653 #endif /* HAVE_FMA */ |