Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n2fv_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:37:28 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name n2fv_20 -with-ostride 2 -include n2f.h -store-multiple 2 */ | |
29 | |
30 /* | |
31 * This function contains 104 FP additions, 50 FP multiplications, | |
32 * (or, 58 additions, 4 multiplications, 46 fused multiply/add), | |
33 * 79 stack variables, 4 constants, and 50 memory accesses | |
34 */ | |
35 #include "n2f.h" | |
36 | |
37 static void n2fv_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT i; | |
45 const R *xi; | |
46 R *xo; | |
47 xi = ri; | |
48 xo = ro; | |
49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) { | |
50 V T1H, T1I, TU, TI, TP, TX, T1M, T1N, T1O, T1P, T1R, T1S, TM, TW, TT; | |
51 V TF; | |
52 { | |
53 V T3, Tm, T1r, T13, Ta, TN, TH, TA, TG, Tt, Th, TO, T1u, T1C, T1n; | |
54 V T1a, T1m, T1h, T1x, T1D, TE, Ti; | |
55 { | |
56 V T1, T2, Tk, Tl; | |
57 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
58 T2 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
59 Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
60 Tl = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); | |
61 { | |
62 V T14, T6, T1c, Tw, Tn, T1f, Tz, T17, T9, To, Tq, T1b, Td, Tr, Te; | |
63 V Tf, T15, Tp; | |
64 { | |
65 V Tx, Ty, T7, T8, Tb, Tc; | |
66 { | |
67 V T4, T5, Tu, Tv, T11, T12; | |
68 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
69 T5 = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
70 Tu = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
71 Tv = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
72 Tx = LD(&(xi[WS(is, 17)]), ivs, &(xi[WS(is, 1)])); | |
73 T3 = VSUB(T1, T2); | |
74 T11 = VADD(T1, T2); | |
75 Tm = VSUB(Tk, Tl); | |
76 T12 = VADD(Tk, Tl); | |
77 T14 = VADD(T4, T5); | |
78 T6 = VSUB(T4, T5); | |
79 T1c = VADD(Tu, Tv); | |
80 Tw = VSUB(Tu, Tv); | |
81 Ty = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
82 T7 = LD(&(xi[WS(is, 16)]), ivs, &(xi[0])); | |
83 T8 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
84 T1r = VADD(T11, T12); | |
85 T13 = VSUB(T11, T12); | |
86 } | |
87 Tb = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
88 Tc = LD(&(xi[WS(is, 18)]), ivs, &(xi[0])); | |
89 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
90 T1f = VADD(Tx, Ty); | |
91 Tz = VSUB(Tx, Ty); | |
92 T17 = VADD(T7, T8); | |
93 T9 = VSUB(T7, T8); | |
94 To = LD(&(xi[WS(is, 19)]), ivs, &(xi[WS(is, 1)])); | |
95 Tq = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
96 T1b = VADD(Tb, Tc); | |
97 Td = VSUB(Tb, Tc); | |
98 Tr = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
99 Te = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
100 Tf = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
101 } | |
102 Ta = VADD(T6, T9); | |
103 TN = VSUB(T6, T9); | |
104 T15 = VADD(Tn, To); | |
105 Tp = VSUB(Tn, To); | |
106 TH = VSUB(Tz, Tw); | |
107 TA = VADD(Tw, Tz); | |
108 { | |
109 V T1d, T1v, T18, Ts, T1e, Tg, T16, T1s; | |
110 T1d = VSUB(T1b, T1c); | |
111 T1v = VADD(T1b, T1c); | |
112 T18 = VADD(Tq, Tr); | |
113 Ts = VSUB(Tq, Tr); | |
114 T1e = VADD(Te, Tf); | |
115 Tg = VSUB(Te, Tf); | |
116 T16 = VSUB(T14, T15); | |
117 T1s = VADD(T14, T15); | |
118 { | |
119 V T1t, T19, T1w, T1g; | |
120 T1t = VADD(T17, T18); | |
121 T19 = VSUB(T17, T18); | |
122 TG = VSUB(Ts, Tp); | |
123 Tt = VADD(Tp, Ts); | |
124 T1w = VADD(T1e, T1f); | |
125 T1g = VSUB(T1e, T1f); | |
126 Th = VADD(Td, Tg); | |
127 TO = VSUB(Td, Tg); | |
128 T1u = VADD(T1s, T1t); | |
129 T1C = VSUB(T1s, T1t); | |
130 T1n = VSUB(T16, T19); | |
131 T1a = VADD(T16, T19); | |
132 T1m = VSUB(T1d, T1g); | |
133 T1h = VADD(T1d, T1g); | |
134 T1x = VADD(T1v, T1w); | |
135 T1D = VSUB(T1v, T1w); | |
136 } | |
137 } | |
138 } | |
139 } | |
140 TE = VSUB(Ta, Th); | |
141 Ti = VADD(Ta, Th); | |
142 { | |
143 V TL, T1k, T1A, Tj, TD, T1E, T1G, TK, TC, T1j, T1z, T1i, T1y, TB; | |
144 TL = VSUB(TA, Tt); | |
145 TB = VADD(Tt, TA); | |
146 T1i = VADD(T1a, T1h); | |
147 T1k = VSUB(T1a, T1h); | |
148 T1y = VADD(T1u, T1x); | |
149 T1A = VSUB(T1u, T1x); | |
150 Tj = VADD(T3, Ti); | |
151 TD = VFNMS(LDK(KP250000000), Ti, T3); | |
152 T1E = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1D, T1C)); | |
153 T1G = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1C, T1D)); | |
154 TK = VFNMS(LDK(KP250000000), TB, Tm); | |
155 TC = VADD(Tm, TB); | |
156 T1j = VFNMS(LDK(KP250000000), T1i, T13); | |
157 T1H = VADD(T1r, T1y); | |
158 STM2(&(xo[0]), T1H, ovs, &(xo[0])); | |
159 T1z = VFNMS(LDK(KP250000000), T1y, T1r); | |
160 T1I = VADD(T13, T1i); | |
161 STM2(&(xo[20]), T1I, ovs, &(xo[0])); | |
162 { | |
163 V T1J, T1K, T1p, T1l, T1o, T1q, T1F, T1B, T1L, T1Q; | |
164 TU = VFNMS(LDK(KP618033988), TG, TH); | |
165 TI = VFMA(LDK(KP618033988), TH, TG); | |
166 TP = VFMA(LDK(KP618033988), TO, TN); | |
167 TX = VFNMS(LDK(KP618033988), TN, TO); | |
168 T1J = VFMAI(TC, Tj); | |
169 STM2(&(xo[30]), T1J, ovs, &(xo[2])); | |
170 T1K = VFNMSI(TC, Tj); | |
171 STM2(&(xo[10]), T1K, ovs, &(xo[2])); | |
172 T1p = VFMA(LDK(KP559016994), T1k, T1j); | |
173 T1l = VFNMS(LDK(KP559016994), T1k, T1j); | |
174 T1o = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1n, T1m)); | |
175 T1q = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1m, T1n)); | |
176 T1F = VFNMS(LDK(KP559016994), T1A, T1z); | |
177 T1B = VFMA(LDK(KP559016994), T1A, T1z); | |
178 T1L = VFMAI(T1q, T1p); | |
179 STM2(&(xo[28]), T1L, ovs, &(xo[0])); | |
180 STN2(&(xo[28]), T1L, T1J, ovs); | |
181 T1M = VFNMSI(T1q, T1p); | |
182 STM2(&(xo[12]), T1M, ovs, &(xo[0])); | |
183 T1N = VFNMSI(T1o, T1l); | |
184 STM2(&(xo[36]), T1N, ovs, &(xo[0])); | |
185 T1O = VFMAI(T1o, T1l); | |
186 STM2(&(xo[4]), T1O, ovs, &(xo[0])); | |
187 T1P = VFNMSI(T1E, T1B); | |
188 STM2(&(xo[32]), T1P, ovs, &(xo[0])); | |
189 T1Q = VFMAI(T1E, T1B); | |
190 STM2(&(xo[8]), T1Q, ovs, &(xo[0])); | |
191 STN2(&(xo[8]), T1Q, T1K, ovs); | |
192 T1R = VFMAI(T1G, T1F); | |
193 STM2(&(xo[24]), T1R, ovs, &(xo[0])); | |
194 T1S = VFNMSI(T1G, T1F); | |
195 STM2(&(xo[16]), T1S, ovs, &(xo[0])); | |
196 TM = VFNMS(LDK(KP559016994), TL, TK); | |
197 TW = VFMA(LDK(KP559016994), TL, TK); | |
198 TT = VFNMS(LDK(KP559016994), TE, TD); | |
199 TF = VFMA(LDK(KP559016994), TE, TD); | |
200 } | |
201 } | |
202 } | |
203 { | |
204 V T10, TY, TQ, TS, TJ, TR, TZ, TV; | |
205 T10 = VFMA(LDK(KP951056516), TX, TW); | |
206 TY = VFNMS(LDK(KP951056516), TX, TW); | |
207 TQ = VFMA(LDK(KP951056516), TP, TM); | |
208 TS = VFNMS(LDK(KP951056516), TP, TM); | |
209 TJ = VFMA(LDK(KP951056516), TI, TF); | |
210 TR = VFNMS(LDK(KP951056516), TI, TF); | |
211 TZ = VFMA(LDK(KP951056516), TU, TT); | |
212 TV = VFNMS(LDK(KP951056516), TU, TT); | |
213 { | |
214 V T1T, T1U, T1V, T1W; | |
215 T1T = VFMAI(TS, TR); | |
216 STM2(&(xo[22]), T1T, ovs, &(xo[2])); | |
217 STN2(&(xo[20]), T1I, T1T, ovs); | |
218 T1U = VFNMSI(TS, TR); | |
219 STM2(&(xo[18]), T1U, ovs, &(xo[2])); | |
220 STN2(&(xo[16]), T1S, T1U, ovs); | |
221 T1V = VFMAI(TQ, TJ); | |
222 STM2(&(xo[38]), T1V, ovs, &(xo[2])); | |
223 STN2(&(xo[36]), T1N, T1V, ovs); | |
224 T1W = VFNMSI(TQ, TJ); | |
225 STM2(&(xo[2]), T1W, ovs, &(xo[2])); | |
226 STN2(&(xo[0]), T1H, T1W, ovs); | |
227 { | |
228 V T1X, T1Y, T1Z, T20; | |
229 T1X = VFMAI(TY, TV); | |
230 STM2(&(xo[6]), T1X, ovs, &(xo[2])); | |
231 STN2(&(xo[4]), T1O, T1X, ovs); | |
232 T1Y = VFNMSI(TY, TV); | |
233 STM2(&(xo[34]), T1Y, ovs, &(xo[2])); | |
234 STN2(&(xo[32]), T1P, T1Y, ovs); | |
235 T1Z = VFMAI(T10, TZ); | |
236 STM2(&(xo[14]), T1Z, ovs, &(xo[2])); | |
237 STN2(&(xo[12]), T1M, T1Z, ovs); | |
238 T20 = VFNMSI(T10, TZ); | |
239 STM2(&(xo[26]), T20, ovs, &(xo[2])); | |
240 STN2(&(xo[24]), T1R, T20, ovs); | |
241 } | |
242 } | |
243 } | |
244 } | |
245 } | |
246 VLEAVE(); | |
247 } | |
248 | |
249 static const kdft_desc desc = { 20, XSIMD_STRING("n2fv_20"), {58, 4, 46, 0}, &GENUS, 0, 2, 0, 0 }; | |
250 | |
251 void XSIMD(codelet_n2fv_20) (planner *p) { | |
252 X(kdft_register) (p, n2fv_20, &desc); | |
253 } | |
254 | |
255 #else /* HAVE_FMA */ | |
256 | |
257 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name n2fv_20 -with-ostride 2 -include n2f.h -store-multiple 2 */ | |
258 | |
259 /* | |
260 * This function contains 104 FP additions, 24 FP multiplications, | |
261 * (or, 92 additions, 12 multiplications, 12 fused multiply/add), | |
262 * 57 stack variables, 4 constants, and 50 memory accesses | |
263 */ | |
264 #include "n2f.h" | |
265 | |
266 static void n2fv_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
267 { | |
268 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
269 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
270 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
271 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
272 { | |
273 INT i; | |
274 const R *xi; | |
275 R *xo; | |
276 xi = ri; | |
277 xo = ro; | |
278 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) { | |
279 V T3, T1B, Tm, T1i, TG, TN, TO, TH, T13, T16, T1k, T1u, T1v, T1z, T1r; | |
280 V T1s, T1y, T1a, T1d, T1j, Ti, TD, TB, TL; | |
281 { | |
282 V T1, T2, T1g, Tk, Tl, T1h; | |
283 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
284 T2 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
285 T1g = VADD(T1, T2); | |
286 Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
287 Tl = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); | |
288 T1h = VADD(Tk, Tl); | |
289 T3 = VSUB(T1, T2); | |
290 T1B = VADD(T1g, T1h); | |
291 Tm = VSUB(Tk, Tl); | |
292 T1i = VSUB(T1g, T1h); | |
293 } | |
294 { | |
295 V T6, T18, Tw, T12, Tz, T15, T9, T1b, Td, T11, Tp, T19, Ts, T1c, Tg; | |
296 V T14; | |
297 { | |
298 V T4, T5, Tu, Tv; | |
299 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
300 T5 = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
301 T6 = VSUB(T4, T5); | |
302 T18 = VADD(T4, T5); | |
303 Tu = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
304 Tv = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
305 Tw = VSUB(Tu, Tv); | |
306 T12 = VADD(Tu, Tv); | |
307 } | |
308 { | |
309 V Tx, Ty, T7, T8; | |
310 Tx = LD(&(xi[WS(is, 17)]), ivs, &(xi[WS(is, 1)])); | |
311 Ty = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
312 Tz = VSUB(Tx, Ty); | |
313 T15 = VADD(Tx, Ty); | |
314 T7 = LD(&(xi[WS(is, 16)]), ivs, &(xi[0])); | |
315 T8 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
316 T9 = VSUB(T7, T8); | |
317 T1b = VADD(T7, T8); | |
318 } | |
319 { | |
320 V Tb, Tc, Tn, To; | |
321 Tb = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
322 Tc = LD(&(xi[WS(is, 18)]), ivs, &(xi[0])); | |
323 Td = VSUB(Tb, Tc); | |
324 T11 = VADD(Tb, Tc); | |
325 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
326 To = LD(&(xi[WS(is, 19)]), ivs, &(xi[WS(is, 1)])); | |
327 Tp = VSUB(Tn, To); | |
328 T19 = VADD(Tn, To); | |
329 } | |
330 { | |
331 V Tq, Tr, Te, Tf; | |
332 Tq = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
333 Tr = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
334 Ts = VSUB(Tq, Tr); | |
335 T1c = VADD(Tq, Tr); | |
336 Te = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
337 Tf = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
338 Tg = VSUB(Te, Tf); | |
339 T14 = VADD(Te, Tf); | |
340 } | |
341 TG = VSUB(Ts, Tp); | |
342 TN = VSUB(T6, T9); | |
343 TO = VSUB(Td, Tg); | |
344 TH = VSUB(Tz, Tw); | |
345 T13 = VSUB(T11, T12); | |
346 T16 = VSUB(T14, T15); | |
347 T1k = VADD(T13, T16); | |
348 T1u = VADD(T11, T12); | |
349 T1v = VADD(T14, T15); | |
350 T1z = VADD(T1u, T1v); | |
351 T1r = VADD(T18, T19); | |
352 T1s = VADD(T1b, T1c); | |
353 T1y = VADD(T1r, T1s); | |
354 T1a = VSUB(T18, T19); | |
355 T1d = VSUB(T1b, T1c); | |
356 T1j = VADD(T1a, T1d); | |
357 { | |
358 V Ta, Th, Tt, TA; | |
359 Ta = VADD(T6, T9); | |
360 Th = VADD(Td, Tg); | |
361 Ti = VADD(Ta, Th); | |
362 TD = VMUL(LDK(KP559016994), VSUB(Ta, Th)); | |
363 Tt = VADD(Tp, Ts); | |
364 TA = VADD(Tw, Tz); | |
365 TB = VADD(Tt, TA); | |
366 TL = VMUL(LDK(KP559016994), VSUB(TA, Tt)); | |
367 } | |
368 } | |
369 { | |
370 V T1I, T1J, T1K, T1L, T1N, T1H, Tj, TC; | |
371 Tj = VADD(T3, Ti); | |
372 TC = VBYI(VADD(Tm, TB)); | |
373 T1H = VSUB(Tj, TC); | |
374 STM2(&(xo[10]), T1H, ovs, &(xo[2])); | |
375 T1I = VADD(Tj, TC); | |
376 STM2(&(xo[30]), T1I, ovs, &(xo[2])); | |
377 { | |
378 V T1A, T1C, T1D, T1x, T1G, T1t, T1w, T1F, T1E, T1M; | |
379 T1A = VMUL(LDK(KP559016994), VSUB(T1y, T1z)); | |
380 T1C = VADD(T1y, T1z); | |
381 T1D = VFNMS(LDK(KP250000000), T1C, T1B); | |
382 T1t = VSUB(T1r, T1s); | |
383 T1w = VSUB(T1u, T1v); | |
384 T1x = VBYI(VFMA(LDK(KP951056516), T1t, VMUL(LDK(KP587785252), T1w))); | |
385 T1G = VBYI(VFNMS(LDK(KP587785252), T1t, VMUL(LDK(KP951056516), T1w))); | |
386 T1J = VADD(T1B, T1C); | |
387 STM2(&(xo[0]), T1J, ovs, &(xo[0])); | |
388 T1F = VSUB(T1D, T1A); | |
389 T1K = VSUB(T1F, T1G); | |
390 STM2(&(xo[16]), T1K, ovs, &(xo[0])); | |
391 T1L = VADD(T1G, T1F); | |
392 STM2(&(xo[24]), T1L, ovs, &(xo[0])); | |
393 T1E = VADD(T1A, T1D); | |
394 T1M = VADD(T1x, T1E); | |
395 STM2(&(xo[8]), T1M, ovs, &(xo[0])); | |
396 STN2(&(xo[8]), T1M, T1H, ovs); | |
397 T1N = VSUB(T1E, T1x); | |
398 STM2(&(xo[32]), T1N, ovs, &(xo[0])); | |
399 } | |
400 { | |
401 V T1O, T1P, T1R, T1S; | |
402 { | |
403 V T1n, T1l, T1m, T1f, T1q, T17, T1e, T1p, T1Q, T1o; | |
404 T1n = VMUL(LDK(KP559016994), VSUB(T1j, T1k)); | |
405 T1l = VADD(T1j, T1k); | |
406 T1m = VFNMS(LDK(KP250000000), T1l, T1i); | |
407 T17 = VSUB(T13, T16); | |
408 T1e = VSUB(T1a, T1d); | |
409 T1f = VBYI(VFNMS(LDK(KP587785252), T1e, VMUL(LDK(KP951056516), T17))); | |
410 T1q = VBYI(VFMA(LDK(KP951056516), T1e, VMUL(LDK(KP587785252), T17))); | |
411 T1O = VADD(T1i, T1l); | |
412 STM2(&(xo[20]), T1O, ovs, &(xo[0])); | |
413 T1p = VADD(T1n, T1m); | |
414 T1P = VSUB(T1p, T1q); | |
415 STM2(&(xo[12]), T1P, ovs, &(xo[0])); | |
416 T1Q = VADD(T1q, T1p); | |
417 STM2(&(xo[28]), T1Q, ovs, &(xo[0])); | |
418 STN2(&(xo[28]), T1Q, T1I, ovs); | |
419 T1o = VSUB(T1m, T1n); | |
420 T1R = VADD(T1f, T1o); | |
421 STM2(&(xo[4]), T1R, ovs, &(xo[0])); | |
422 T1S = VSUB(T1o, T1f); | |
423 STM2(&(xo[36]), T1S, ovs, &(xo[0])); | |
424 } | |
425 { | |
426 V TI, TP, TX, TU, TM, TW, TF, TT, TK, TE; | |
427 TI = VFMA(LDK(KP951056516), TG, VMUL(LDK(KP587785252), TH)); | |
428 TP = VFMA(LDK(KP951056516), TN, VMUL(LDK(KP587785252), TO)); | |
429 TX = VFNMS(LDK(KP587785252), TN, VMUL(LDK(KP951056516), TO)); | |
430 TU = VFNMS(LDK(KP587785252), TG, VMUL(LDK(KP951056516), TH)); | |
431 TK = VFMS(LDK(KP250000000), TB, Tm); | |
432 TM = VADD(TK, TL); | |
433 TW = VSUB(TL, TK); | |
434 TE = VFNMS(LDK(KP250000000), Ti, T3); | |
435 TF = VADD(TD, TE); | |
436 TT = VSUB(TE, TD); | |
437 { | |
438 V TJ, TQ, T1T, T1U; | |
439 TJ = VADD(TF, TI); | |
440 TQ = VBYI(VSUB(TM, TP)); | |
441 T1T = VSUB(TJ, TQ); | |
442 STM2(&(xo[38]), T1T, ovs, &(xo[2])); | |
443 STN2(&(xo[36]), T1S, T1T, ovs); | |
444 T1U = VADD(TJ, TQ); | |
445 STM2(&(xo[2]), T1U, ovs, &(xo[2])); | |
446 STN2(&(xo[0]), T1J, T1U, ovs); | |
447 } | |
448 { | |
449 V TZ, T10, T1V, T1W; | |
450 TZ = VADD(TT, TU); | |
451 T10 = VBYI(VADD(TX, TW)); | |
452 T1V = VSUB(TZ, T10); | |
453 STM2(&(xo[26]), T1V, ovs, &(xo[2])); | |
454 STN2(&(xo[24]), T1L, T1V, ovs); | |
455 T1W = VADD(TZ, T10); | |
456 STM2(&(xo[14]), T1W, ovs, &(xo[2])); | |
457 STN2(&(xo[12]), T1P, T1W, ovs); | |
458 } | |
459 { | |
460 V TR, TS, T1X, T1Y; | |
461 TR = VSUB(TF, TI); | |
462 TS = VBYI(VADD(TP, TM)); | |
463 T1X = VSUB(TR, TS); | |
464 STM2(&(xo[22]), T1X, ovs, &(xo[2])); | |
465 STN2(&(xo[20]), T1O, T1X, ovs); | |
466 T1Y = VADD(TR, TS); | |
467 STM2(&(xo[18]), T1Y, ovs, &(xo[2])); | |
468 STN2(&(xo[16]), T1K, T1Y, ovs); | |
469 } | |
470 { | |
471 V TV, TY, T1Z, T20; | |
472 TV = VSUB(TT, TU); | |
473 TY = VBYI(VSUB(TW, TX)); | |
474 T1Z = VSUB(TV, TY); | |
475 STM2(&(xo[34]), T1Z, ovs, &(xo[2])); | |
476 STN2(&(xo[32]), T1N, T1Z, ovs); | |
477 T20 = VADD(TV, TY); | |
478 STM2(&(xo[6]), T20, ovs, &(xo[2])); | |
479 STN2(&(xo[4]), T1R, T20, ovs); | |
480 } | |
481 } | |
482 } | |
483 } | |
484 } | |
485 } | |
486 VLEAVE(); | |
487 } | |
488 | |
489 static const kdft_desc desc = { 20, XSIMD_STRING("n2fv_20"), {92, 12, 12, 0}, &GENUS, 0, 2, 0, 0 }; | |
490 | |
491 void XSIMD(codelet_n2fv_20) (planner *p) { | |
492 X(kdft_register) (p, n2fv_20, &desc); | |
493 } | |
494 | |
495 #endif /* HAVE_FMA */ |