comparison src/fftw-3.3.3/dft/simd/common/n1fv_16.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:36:53 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n1fv_16 -include n1f.h */
29
30 /*
31 * This function contains 72 FP additions, 34 FP multiplications,
32 * (or, 38 additions, 0 multiplications, 34 fused multiply/add),
33 * 54 stack variables, 3 constants, and 32 memory accesses
34 */
35 #include "n1f.h"
36
37 static void n1fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
42 {
43 INT i;
44 const R *xi;
45 R *xo;
46 xi = ri;
47 xo = ro;
48 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
49 V T7, Tu, TF, TB, T13, TL, TO, TX, TC, Te, TP, Th, TQ, Tk, TW;
50 V T16;
51 {
52 V TH, TU, Tz, Tf, TK, TV, TA, TM, Ta, TN, Td, Tg, Ti, Tj;
53 {
54 V T1, T2, T4, T5, To, Tp, Tr, Ts;
55 T1 = LD(&(xi[0]), ivs, &(xi[0]));
56 T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
57 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
58 T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
59 To = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
60 Tp = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
61 Tr = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
62 Ts = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
63 {
64 V T8, TJ, Tq, TI, Tt, T9, Tb, Tc, T3, T6;
65 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
66 TH = VSUB(T1, T2);
67 T3 = VADD(T1, T2);
68 TU = VSUB(T4, T5);
69 T6 = VADD(T4, T5);
70 TJ = VSUB(To, Tp);
71 Tq = VADD(To, Tp);
72 TI = VSUB(Tr, Ts);
73 Tt = VADD(Tr, Ts);
74 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
75 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
76 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
77 T7 = VSUB(T3, T6);
78 Tz = VADD(T3, T6);
79 Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
80 TK = VADD(TI, TJ);
81 TV = VSUB(TJ, TI);
82 TA = VADD(Tt, Tq);
83 Tu = VSUB(Tq, Tt);
84 TM = VSUB(T8, T9);
85 Ta = VADD(T8, T9);
86 TN = VSUB(Tb, Tc);
87 Td = VADD(Tb, Tc);
88 Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
89 Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
90 Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
91 }
92 }
93 TF = VSUB(Tz, TA);
94 TB = VADD(Tz, TA);
95 T13 = VFNMS(LDK(KP707106781), TK, TH);
96 TL = VFMA(LDK(KP707106781), TK, TH);
97 TO = VFNMS(LDK(KP414213562), TN, TM);
98 TX = VFMA(LDK(KP414213562), TM, TN);
99 TC = VADD(Ta, Td);
100 Te = VSUB(Ta, Td);
101 TP = VSUB(Tf, Tg);
102 Th = VADD(Tf, Tg);
103 TQ = VSUB(Tj, Ti);
104 Tk = VADD(Ti, Tj);
105 TW = VFNMS(LDK(KP707106781), TV, TU);
106 T16 = VFMA(LDK(KP707106781), TV, TU);
107 }
108 {
109 V TY, TR, Tl, TD;
110 TY = VFMA(LDK(KP414213562), TP, TQ);
111 TR = VFNMS(LDK(KP414213562), TQ, TP);
112 Tl = VSUB(Th, Tk);
113 TD = VADD(Th, Tk);
114 {
115 V TS, T17, TZ, T14;
116 TS = VADD(TO, TR);
117 T17 = VSUB(TR, TO);
118 TZ = VSUB(TX, TY);
119 T14 = VADD(TX, TY);
120 {
121 V TE, TG, Tm, Tv;
122 TE = VADD(TC, TD);
123 TG = VSUB(TD, TC);
124 Tm = VADD(Te, Tl);
125 Tv = VSUB(Tl, Te);
126 {
127 V T18, T1a, TT, T11;
128 T18 = VFNMS(LDK(KP923879532), T17, T16);
129 T1a = VFMA(LDK(KP923879532), T17, T16);
130 TT = VFNMS(LDK(KP923879532), TS, TL);
131 T11 = VFMA(LDK(KP923879532), TS, TL);
132 {
133 V T15, T19, T10, T12;
134 T15 = VFNMS(LDK(KP923879532), T14, T13);
135 T19 = VFMA(LDK(KP923879532), T14, T13);
136 T10 = VFNMS(LDK(KP923879532), TZ, TW);
137 T12 = VFMA(LDK(KP923879532), TZ, TW);
138 ST(&(xo[WS(os, 4)]), VFMAI(TG, TF), ovs, &(xo[0]));
139 ST(&(xo[WS(os, 12)]), VFNMSI(TG, TF), ovs, &(xo[0]));
140 ST(&(xo[0]), VADD(TB, TE), ovs, &(xo[0]));
141 ST(&(xo[WS(os, 8)]), VSUB(TB, TE), ovs, &(xo[0]));
142 {
143 V Tw, Ty, Tn, Tx;
144 Tw = VFNMS(LDK(KP707106781), Tv, Tu);
145 Ty = VFMA(LDK(KP707106781), Tv, Tu);
146 Tn = VFNMS(LDK(KP707106781), Tm, T7);
147 Tx = VFMA(LDK(KP707106781), Tm, T7);
148 ST(&(xo[WS(os, 3)]), VFMAI(T1a, T19), ovs, &(xo[WS(os, 1)]));
149 ST(&(xo[WS(os, 13)]), VFNMSI(T1a, T19), ovs, &(xo[WS(os, 1)]));
150 ST(&(xo[WS(os, 11)]), VFMAI(T18, T15), ovs, &(xo[WS(os, 1)]));
151 ST(&(xo[WS(os, 5)]), VFNMSI(T18, T15), ovs, &(xo[WS(os, 1)]));
152 ST(&(xo[WS(os, 1)]), VFNMSI(T12, T11), ovs, &(xo[WS(os, 1)]));
153 ST(&(xo[WS(os, 15)]), VFMAI(T12, T11), ovs, &(xo[WS(os, 1)]));
154 ST(&(xo[WS(os, 7)]), VFMAI(T10, TT), ovs, &(xo[WS(os, 1)]));
155 ST(&(xo[WS(os, 9)]), VFNMSI(T10, TT), ovs, &(xo[WS(os, 1)]));
156 ST(&(xo[WS(os, 14)]), VFNMSI(Ty, Tx), ovs, &(xo[0]));
157 ST(&(xo[WS(os, 2)]), VFMAI(Ty, Tx), ovs, &(xo[0]));
158 ST(&(xo[WS(os, 10)]), VFMAI(Tw, Tn), ovs, &(xo[0]));
159 ST(&(xo[WS(os, 6)]), VFNMSI(Tw, Tn), ovs, &(xo[0]));
160 }
161 }
162 }
163 }
164 }
165 }
166 }
167 }
168 VLEAVE();
169 }
170
171 static const kdft_desc desc = { 16, XSIMD_STRING("n1fv_16"), {38, 0, 34, 0}, &GENUS, 0, 0, 0, 0 };
172
173 void XSIMD(codelet_n1fv_16) (planner *p) {
174 X(kdft_register) (p, n1fv_16, &desc);
175 }
176
177 #else /* HAVE_FMA */
178
179 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n1fv_16 -include n1f.h */
180
181 /*
182 * This function contains 72 FP additions, 12 FP multiplications,
183 * (or, 68 additions, 8 multiplications, 4 fused multiply/add),
184 * 30 stack variables, 3 constants, and 32 memory accesses
185 */
186 #include "n1f.h"
187
188 static void n1fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
189 {
190 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
191 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
192 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
193 {
194 INT i;
195 const R *xi;
196 R *xo;
197 xi = ri;
198 xo = ro;
199 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
200 V Tp, T13, Tu, TN, Tm, T14, Tv, TY, T7, T17, Ty, TT, Te, T16, Tx;
201 V TQ;
202 {
203 V Tn, To, TM, Ts, Tt, TL;
204 Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
205 To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
206 TM = VADD(Tn, To);
207 Ts = LD(&(xi[0]), ivs, &(xi[0]));
208 Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
209 TL = VADD(Ts, Tt);
210 Tp = VSUB(Tn, To);
211 T13 = VADD(TL, TM);
212 Tu = VSUB(Ts, Tt);
213 TN = VSUB(TL, TM);
214 }
215 {
216 V Ti, TW, Tl, TX;
217 {
218 V Tg, Th, Tj, Tk;
219 Tg = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
220 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
221 Ti = VSUB(Tg, Th);
222 TW = VADD(Tg, Th);
223 Tj = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
224 Tk = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
225 Tl = VSUB(Tj, Tk);
226 TX = VADD(Tj, Tk);
227 }
228 Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl));
229 T14 = VADD(TX, TW);
230 Tv = VMUL(LDK(KP707106781), VADD(Tl, Ti));
231 TY = VSUB(TW, TX);
232 }
233 {
234 V T3, TR, T6, TS;
235 {
236 V T1, T2, T4, T5;
237 T1 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
238 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
239 T3 = VSUB(T1, T2);
240 TR = VADD(T1, T2);
241 T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
242 T5 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
243 T6 = VSUB(T4, T5);
244 TS = VADD(T4, T5);
245 }
246 T7 = VFNMS(LDK(KP923879532), T6, VMUL(LDK(KP382683432), T3));
247 T17 = VADD(TR, TS);
248 Ty = VFMA(LDK(KP923879532), T3, VMUL(LDK(KP382683432), T6));
249 TT = VSUB(TR, TS);
250 }
251 {
252 V Ta, TO, Td, TP;
253 {
254 V T8, T9, Tb, Tc;
255 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
256 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
257 Ta = VSUB(T8, T9);
258 TO = VADD(T8, T9);
259 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
260 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
261 Td = VSUB(Tb, Tc);
262 TP = VADD(Tb, Tc);
263 }
264 Te = VFMA(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td));
265 T16 = VADD(TO, TP);
266 Tx = VFNMS(LDK(KP382683432), Td, VMUL(LDK(KP923879532), Ta));
267 TQ = VSUB(TO, TP);
268 }
269 {
270 V T15, T18, T19, T1a;
271 T15 = VADD(T13, T14);
272 T18 = VADD(T16, T17);
273 ST(&(xo[WS(os, 8)]), VSUB(T15, T18), ovs, &(xo[0]));
274 ST(&(xo[0]), VADD(T15, T18), ovs, &(xo[0]));
275 T19 = VSUB(T13, T14);
276 T1a = VBYI(VSUB(T17, T16));
277 ST(&(xo[WS(os, 12)]), VSUB(T19, T1a), ovs, &(xo[0]));
278 ST(&(xo[WS(os, 4)]), VADD(T19, T1a), ovs, &(xo[0]));
279 }
280 {
281 V TV, T11, T10, T12, TU, TZ;
282 TU = VMUL(LDK(KP707106781), VADD(TQ, TT));
283 TV = VADD(TN, TU);
284 T11 = VSUB(TN, TU);
285 TZ = VMUL(LDK(KP707106781), VSUB(TT, TQ));
286 T10 = VBYI(VADD(TY, TZ));
287 T12 = VBYI(VSUB(TZ, TY));
288 ST(&(xo[WS(os, 14)]), VSUB(TV, T10), ovs, &(xo[0]));
289 ST(&(xo[WS(os, 6)]), VADD(T11, T12), ovs, &(xo[0]));
290 ST(&(xo[WS(os, 2)]), VADD(TV, T10), ovs, &(xo[0]));
291 ST(&(xo[WS(os, 10)]), VSUB(T11, T12), ovs, &(xo[0]));
292 }
293 {
294 V Tr, TB, TA, TC;
295 {
296 V Tf, Tq, Tw, Tz;
297 Tf = VSUB(T7, Te);
298 Tq = VSUB(Tm, Tp);
299 Tr = VBYI(VSUB(Tf, Tq));
300 TB = VBYI(VADD(Tq, Tf));
301 Tw = VADD(Tu, Tv);
302 Tz = VADD(Tx, Ty);
303 TA = VSUB(Tw, Tz);
304 TC = VADD(Tw, Tz);
305 }
306 ST(&(xo[WS(os, 7)]), VADD(Tr, TA), ovs, &(xo[WS(os, 1)]));
307 ST(&(xo[WS(os, 15)]), VSUB(TC, TB), ovs, &(xo[WS(os, 1)]));
308 ST(&(xo[WS(os, 9)]), VSUB(TA, Tr), ovs, &(xo[WS(os, 1)]));
309 ST(&(xo[WS(os, 1)]), VADD(TB, TC), ovs, &(xo[WS(os, 1)]));
310 }
311 {
312 V TF, TJ, TI, TK;
313 {
314 V TD, TE, TG, TH;
315 TD = VSUB(Tu, Tv);
316 TE = VADD(Te, T7);
317 TF = VADD(TD, TE);
318 TJ = VSUB(TD, TE);
319 TG = VADD(Tp, Tm);
320 TH = VSUB(Ty, Tx);
321 TI = VBYI(VADD(TG, TH));
322 TK = VBYI(VSUB(TH, TG));
323 }
324 ST(&(xo[WS(os, 13)]), VSUB(TF, TI), ovs, &(xo[WS(os, 1)]));
325 ST(&(xo[WS(os, 5)]), VADD(TJ, TK), ovs, &(xo[WS(os, 1)]));
326 ST(&(xo[WS(os, 3)]), VADD(TF, TI), ovs, &(xo[WS(os, 1)]));
327 ST(&(xo[WS(os, 11)]), VSUB(TJ, TK), ovs, &(xo[WS(os, 1)]));
328 }
329 }
330 }
331 VLEAVE();
332 }
333
334 static const kdft_desc desc = { 16, XSIMD_STRING("n1fv_16"), {68, 8, 4, 0}, &GENUS, 0, 0, 0, 0 };
335
336 void XSIMD(codelet_n1fv_16) (planner *p) {
337 X(kdft_register) (p, n1fv_16, &desc);
338 }
339
340 #endif /* HAVE_FMA */