Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n1fv_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:53 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n1fv_16 -include n1f.h */ | |
29 | |
30 /* | |
31 * This function contains 72 FP additions, 34 FP multiplications, | |
32 * (or, 38 additions, 0 multiplications, 34 fused multiply/add), | |
33 * 54 stack variables, 3 constants, and 32 memory accesses | |
34 */ | |
35 #include "n1f.h" | |
36 | |
37 static void n1fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
42 { | |
43 INT i; | |
44 const R *xi; | |
45 R *xo; | |
46 xi = ri; | |
47 xo = ro; | |
48 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { | |
49 V T7, Tu, TF, TB, T13, TL, TO, TX, TC, Te, TP, Th, TQ, Tk, TW; | |
50 V T16; | |
51 { | |
52 V TH, TU, Tz, Tf, TK, TV, TA, TM, Ta, TN, Td, Tg, Ti, Tj; | |
53 { | |
54 V T1, T2, T4, T5, To, Tp, Tr, Ts; | |
55 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
56 T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
57 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
58 T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
59 To = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
60 Tp = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
61 Tr = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
62 Ts = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
63 { | |
64 V T8, TJ, Tq, TI, Tt, T9, Tb, Tc, T3, T6; | |
65 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
66 TH = VSUB(T1, T2); | |
67 T3 = VADD(T1, T2); | |
68 TU = VSUB(T4, T5); | |
69 T6 = VADD(T4, T5); | |
70 TJ = VSUB(To, Tp); | |
71 Tq = VADD(To, Tp); | |
72 TI = VSUB(Tr, Ts); | |
73 Tt = VADD(Tr, Ts); | |
74 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
75 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
76 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
77 T7 = VSUB(T3, T6); | |
78 Tz = VADD(T3, T6); | |
79 Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); | |
80 TK = VADD(TI, TJ); | |
81 TV = VSUB(TJ, TI); | |
82 TA = VADD(Tt, Tq); | |
83 Tu = VSUB(Tq, Tt); | |
84 TM = VSUB(T8, T9); | |
85 Ta = VADD(T8, T9); | |
86 TN = VSUB(Tb, Tc); | |
87 Td = VADD(Tb, Tc); | |
88 Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
89 Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
90 Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
91 } | |
92 } | |
93 TF = VSUB(Tz, TA); | |
94 TB = VADD(Tz, TA); | |
95 T13 = VFNMS(LDK(KP707106781), TK, TH); | |
96 TL = VFMA(LDK(KP707106781), TK, TH); | |
97 TO = VFNMS(LDK(KP414213562), TN, TM); | |
98 TX = VFMA(LDK(KP414213562), TM, TN); | |
99 TC = VADD(Ta, Td); | |
100 Te = VSUB(Ta, Td); | |
101 TP = VSUB(Tf, Tg); | |
102 Th = VADD(Tf, Tg); | |
103 TQ = VSUB(Tj, Ti); | |
104 Tk = VADD(Ti, Tj); | |
105 TW = VFNMS(LDK(KP707106781), TV, TU); | |
106 T16 = VFMA(LDK(KP707106781), TV, TU); | |
107 } | |
108 { | |
109 V TY, TR, Tl, TD; | |
110 TY = VFMA(LDK(KP414213562), TP, TQ); | |
111 TR = VFNMS(LDK(KP414213562), TQ, TP); | |
112 Tl = VSUB(Th, Tk); | |
113 TD = VADD(Th, Tk); | |
114 { | |
115 V TS, T17, TZ, T14; | |
116 TS = VADD(TO, TR); | |
117 T17 = VSUB(TR, TO); | |
118 TZ = VSUB(TX, TY); | |
119 T14 = VADD(TX, TY); | |
120 { | |
121 V TE, TG, Tm, Tv; | |
122 TE = VADD(TC, TD); | |
123 TG = VSUB(TD, TC); | |
124 Tm = VADD(Te, Tl); | |
125 Tv = VSUB(Tl, Te); | |
126 { | |
127 V T18, T1a, TT, T11; | |
128 T18 = VFNMS(LDK(KP923879532), T17, T16); | |
129 T1a = VFMA(LDK(KP923879532), T17, T16); | |
130 TT = VFNMS(LDK(KP923879532), TS, TL); | |
131 T11 = VFMA(LDK(KP923879532), TS, TL); | |
132 { | |
133 V T15, T19, T10, T12; | |
134 T15 = VFNMS(LDK(KP923879532), T14, T13); | |
135 T19 = VFMA(LDK(KP923879532), T14, T13); | |
136 T10 = VFNMS(LDK(KP923879532), TZ, TW); | |
137 T12 = VFMA(LDK(KP923879532), TZ, TW); | |
138 ST(&(xo[WS(os, 4)]), VFMAI(TG, TF), ovs, &(xo[0])); | |
139 ST(&(xo[WS(os, 12)]), VFNMSI(TG, TF), ovs, &(xo[0])); | |
140 ST(&(xo[0]), VADD(TB, TE), ovs, &(xo[0])); | |
141 ST(&(xo[WS(os, 8)]), VSUB(TB, TE), ovs, &(xo[0])); | |
142 { | |
143 V Tw, Ty, Tn, Tx; | |
144 Tw = VFNMS(LDK(KP707106781), Tv, Tu); | |
145 Ty = VFMA(LDK(KP707106781), Tv, Tu); | |
146 Tn = VFNMS(LDK(KP707106781), Tm, T7); | |
147 Tx = VFMA(LDK(KP707106781), Tm, T7); | |
148 ST(&(xo[WS(os, 3)]), VFMAI(T1a, T19), ovs, &(xo[WS(os, 1)])); | |
149 ST(&(xo[WS(os, 13)]), VFNMSI(T1a, T19), ovs, &(xo[WS(os, 1)])); | |
150 ST(&(xo[WS(os, 11)]), VFMAI(T18, T15), ovs, &(xo[WS(os, 1)])); | |
151 ST(&(xo[WS(os, 5)]), VFNMSI(T18, T15), ovs, &(xo[WS(os, 1)])); | |
152 ST(&(xo[WS(os, 1)]), VFNMSI(T12, T11), ovs, &(xo[WS(os, 1)])); | |
153 ST(&(xo[WS(os, 15)]), VFMAI(T12, T11), ovs, &(xo[WS(os, 1)])); | |
154 ST(&(xo[WS(os, 7)]), VFMAI(T10, TT), ovs, &(xo[WS(os, 1)])); | |
155 ST(&(xo[WS(os, 9)]), VFNMSI(T10, TT), ovs, &(xo[WS(os, 1)])); | |
156 ST(&(xo[WS(os, 14)]), VFNMSI(Ty, Tx), ovs, &(xo[0])); | |
157 ST(&(xo[WS(os, 2)]), VFMAI(Ty, Tx), ovs, &(xo[0])); | |
158 ST(&(xo[WS(os, 10)]), VFMAI(Tw, Tn), ovs, &(xo[0])); | |
159 ST(&(xo[WS(os, 6)]), VFNMSI(Tw, Tn), ovs, &(xo[0])); | |
160 } | |
161 } | |
162 } | |
163 } | |
164 } | |
165 } | |
166 } | |
167 } | |
168 VLEAVE(); | |
169 } | |
170 | |
171 static const kdft_desc desc = { 16, XSIMD_STRING("n1fv_16"), {38, 0, 34, 0}, &GENUS, 0, 0, 0, 0 }; | |
172 | |
173 void XSIMD(codelet_n1fv_16) (planner *p) { | |
174 X(kdft_register) (p, n1fv_16, &desc); | |
175 } | |
176 | |
177 #else /* HAVE_FMA */ | |
178 | |
179 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n1fv_16 -include n1f.h */ | |
180 | |
181 /* | |
182 * This function contains 72 FP additions, 12 FP multiplications, | |
183 * (or, 68 additions, 8 multiplications, 4 fused multiply/add), | |
184 * 30 stack variables, 3 constants, and 32 memory accesses | |
185 */ | |
186 #include "n1f.h" | |
187 | |
188 static void n1fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
189 { | |
190 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
191 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
192 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
193 { | |
194 INT i; | |
195 const R *xi; | |
196 R *xo; | |
197 xi = ri; | |
198 xo = ro; | |
199 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { | |
200 V Tp, T13, Tu, TN, Tm, T14, Tv, TY, T7, T17, Ty, TT, Te, T16, Tx; | |
201 V TQ; | |
202 { | |
203 V Tn, To, TM, Ts, Tt, TL; | |
204 Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
205 To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
206 TM = VADD(Tn, To); | |
207 Ts = LD(&(xi[0]), ivs, &(xi[0])); | |
208 Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
209 TL = VADD(Ts, Tt); | |
210 Tp = VSUB(Tn, To); | |
211 T13 = VADD(TL, TM); | |
212 Tu = VSUB(Ts, Tt); | |
213 TN = VSUB(TL, TM); | |
214 } | |
215 { | |
216 V Ti, TW, Tl, TX; | |
217 { | |
218 V Tg, Th, Tj, Tk; | |
219 Tg = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
220 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
221 Ti = VSUB(Tg, Th); | |
222 TW = VADD(Tg, Th); | |
223 Tj = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
224 Tk = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
225 Tl = VSUB(Tj, Tk); | |
226 TX = VADD(Tj, Tk); | |
227 } | |
228 Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl)); | |
229 T14 = VADD(TX, TW); | |
230 Tv = VMUL(LDK(KP707106781), VADD(Tl, Ti)); | |
231 TY = VSUB(TW, TX); | |
232 } | |
233 { | |
234 V T3, TR, T6, TS; | |
235 { | |
236 V T1, T2, T4, T5; | |
237 T1 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); | |
238 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
239 T3 = VSUB(T1, T2); | |
240 TR = VADD(T1, T2); | |
241 T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
242 T5 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
243 T6 = VSUB(T4, T5); | |
244 TS = VADD(T4, T5); | |
245 } | |
246 T7 = VFNMS(LDK(KP923879532), T6, VMUL(LDK(KP382683432), T3)); | |
247 T17 = VADD(TR, TS); | |
248 Ty = VFMA(LDK(KP923879532), T3, VMUL(LDK(KP382683432), T6)); | |
249 TT = VSUB(TR, TS); | |
250 } | |
251 { | |
252 V Ta, TO, Td, TP; | |
253 { | |
254 V T8, T9, Tb, Tc; | |
255 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
256 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
257 Ta = VSUB(T8, T9); | |
258 TO = VADD(T8, T9); | |
259 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
260 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
261 Td = VSUB(Tb, Tc); | |
262 TP = VADD(Tb, Tc); | |
263 } | |
264 Te = VFMA(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td)); | |
265 T16 = VADD(TO, TP); | |
266 Tx = VFNMS(LDK(KP382683432), Td, VMUL(LDK(KP923879532), Ta)); | |
267 TQ = VSUB(TO, TP); | |
268 } | |
269 { | |
270 V T15, T18, T19, T1a; | |
271 T15 = VADD(T13, T14); | |
272 T18 = VADD(T16, T17); | |
273 ST(&(xo[WS(os, 8)]), VSUB(T15, T18), ovs, &(xo[0])); | |
274 ST(&(xo[0]), VADD(T15, T18), ovs, &(xo[0])); | |
275 T19 = VSUB(T13, T14); | |
276 T1a = VBYI(VSUB(T17, T16)); | |
277 ST(&(xo[WS(os, 12)]), VSUB(T19, T1a), ovs, &(xo[0])); | |
278 ST(&(xo[WS(os, 4)]), VADD(T19, T1a), ovs, &(xo[0])); | |
279 } | |
280 { | |
281 V TV, T11, T10, T12, TU, TZ; | |
282 TU = VMUL(LDK(KP707106781), VADD(TQ, TT)); | |
283 TV = VADD(TN, TU); | |
284 T11 = VSUB(TN, TU); | |
285 TZ = VMUL(LDK(KP707106781), VSUB(TT, TQ)); | |
286 T10 = VBYI(VADD(TY, TZ)); | |
287 T12 = VBYI(VSUB(TZ, TY)); | |
288 ST(&(xo[WS(os, 14)]), VSUB(TV, T10), ovs, &(xo[0])); | |
289 ST(&(xo[WS(os, 6)]), VADD(T11, T12), ovs, &(xo[0])); | |
290 ST(&(xo[WS(os, 2)]), VADD(TV, T10), ovs, &(xo[0])); | |
291 ST(&(xo[WS(os, 10)]), VSUB(T11, T12), ovs, &(xo[0])); | |
292 } | |
293 { | |
294 V Tr, TB, TA, TC; | |
295 { | |
296 V Tf, Tq, Tw, Tz; | |
297 Tf = VSUB(T7, Te); | |
298 Tq = VSUB(Tm, Tp); | |
299 Tr = VBYI(VSUB(Tf, Tq)); | |
300 TB = VBYI(VADD(Tq, Tf)); | |
301 Tw = VADD(Tu, Tv); | |
302 Tz = VADD(Tx, Ty); | |
303 TA = VSUB(Tw, Tz); | |
304 TC = VADD(Tw, Tz); | |
305 } | |
306 ST(&(xo[WS(os, 7)]), VADD(Tr, TA), ovs, &(xo[WS(os, 1)])); | |
307 ST(&(xo[WS(os, 15)]), VSUB(TC, TB), ovs, &(xo[WS(os, 1)])); | |
308 ST(&(xo[WS(os, 9)]), VSUB(TA, Tr), ovs, &(xo[WS(os, 1)])); | |
309 ST(&(xo[WS(os, 1)]), VADD(TB, TC), ovs, &(xo[WS(os, 1)])); | |
310 } | |
311 { | |
312 V TF, TJ, TI, TK; | |
313 { | |
314 V TD, TE, TG, TH; | |
315 TD = VSUB(Tu, Tv); | |
316 TE = VADD(Te, T7); | |
317 TF = VADD(TD, TE); | |
318 TJ = VSUB(TD, TE); | |
319 TG = VADD(Tp, Tm); | |
320 TH = VSUB(Ty, Tx); | |
321 TI = VBYI(VADD(TG, TH)); | |
322 TK = VBYI(VSUB(TH, TG)); | |
323 } | |
324 ST(&(xo[WS(os, 13)]), VSUB(TF, TI), ovs, &(xo[WS(os, 1)])); | |
325 ST(&(xo[WS(os, 5)]), VADD(TJ, TK), ovs, &(xo[WS(os, 1)])); | |
326 ST(&(xo[WS(os, 3)]), VADD(TF, TI), ovs, &(xo[WS(os, 1)])); | |
327 ST(&(xo[WS(os, 11)]), VSUB(TJ, TK), ovs, &(xo[WS(os, 1)])); | |
328 } | |
329 } | |
330 } | |
331 VLEAVE(); | |
332 } | |
333 | |
334 static const kdft_desc desc = { 16, XSIMD_STRING("n1fv_16"), {68, 8, 4, 0}, &GENUS, 0, 0, 0, 0 }; | |
335 | |
336 void XSIMD(codelet_n1fv_16) (planner *p) { | |
337 X(kdft_register) (p, n1fv_16, &desc); | |
338 } | |
339 | |
340 #endif /* HAVE_FMA */ |