Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n1fv_15.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name n1fv_15 -include n1f.h */ | |
29 | |
30 /* | |
31 * This function contains 78 FP additions, 49 FP multiplications, | |
32 * (or, 36 additions, 7 multiplications, 42 fused multiply/add), | |
33 * 78 stack variables, 8 constants, and 30 memory accesses | |
34 */ | |
35 #include "n1f.h" | |
36 | |
37 static void n1fv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291); | |
41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
47 { | |
48 INT i; | |
49 const R *xi; | |
50 R *xo; | |
51 xi = ri; | |
52 xo = ro; | |
53 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) { | |
54 V Tb, TX, TM, TQ, Th, TB, T5, Ti, Ta, TC, TN, Te, TG, Tq, Tj; | |
55 V T1, T2, T3; | |
56 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
57 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
58 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
59 { | |
60 V T6, T7, T8, Tm, Tn, To; | |
61 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
62 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
63 T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
64 Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
65 Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
66 To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
67 { | |
68 V T4, Tc, T9, Td, Tp; | |
69 Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
70 T4 = VADD(T2, T3); | |
71 TX = VSUB(T3, T2); | |
72 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
73 TM = VSUB(T8, T7); | |
74 T9 = VADD(T7, T8); | |
75 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
76 Tp = VADD(Tn, To); | |
77 TQ = VSUB(To, Tn); | |
78 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
79 TB = VFNMS(LDK(KP500000000), T4, T1); | |
80 T5 = VADD(T1, T4); | |
81 Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
82 Ta = VADD(T6, T9); | |
83 TC = VFNMS(LDK(KP500000000), T9, T6); | |
84 TN = VSUB(Td, Tc); | |
85 Te = VADD(Tc, Td); | |
86 TG = VFNMS(LDK(KP500000000), Tp, Tm); | |
87 Tq = VADD(Tm, Tp); | |
88 Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
89 } | |
90 } | |
91 { | |
92 V TY, TO, Tf, TD, TP, Tk; | |
93 TY = VADD(TM, TN); | |
94 TO = VSUB(TM, TN); | |
95 Tf = VADD(Tb, Te); | |
96 TD = VFNMS(LDK(KP500000000), Te, Tb); | |
97 TP = VSUB(Tj, Ti); | |
98 Tk = VADD(Ti, Tj); | |
99 { | |
100 V Tx, Tg, TE, TU, TZ, TR, Tl, TF; | |
101 Tx = VSUB(Ta, Tf); | |
102 Tg = VADD(Ta, Tf); | |
103 TE = VADD(TC, TD); | |
104 TU = VSUB(TC, TD); | |
105 TZ = VADD(TP, TQ); | |
106 TR = VSUB(TP, TQ); | |
107 Tl = VADD(Th, Tk); | |
108 TF = VFNMS(LDK(KP500000000), Tk, Th); | |
109 { | |
110 V T12, T10, T18, TS, Tw, Tr, TH, TV, T11, T1g; | |
111 T12 = VSUB(TY, TZ); | |
112 T10 = VADD(TY, TZ); | |
113 T18 = VFNMS(LDK(KP618033988), TO, TR); | |
114 TS = VFMA(LDK(KP618033988), TR, TO); | |
115 Tw = VSUB(Tl, Tq); | |
116 Tr = VADD(Tl, Tq); | |
117 TH = VADD(TF, TG); | |
118 TV = VSUB(TF, TG); | |
119 T11 = VFNMS(LDK(KP250000000), T10, TX); | |
120 T1g = VMUL(LDK(KP866025403), VADD(TX, T10)); | |
121 { | |
122 V TA, Ty, Tu, TK, TI, T1a, TW, T1b, T13, Tt, Ts, TJ, T1f; | |
123 TA = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tx)); | |
124 Ty = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tx, Tw)); | |
125 Ts = VADD(Tg, Tr); | |
126 Tu = VSUB(Tg, Tr); | |
127 TK = VSUB(TE, TH); | |
128 TI = VADD(TE, TH); | |
129 T1a = VFNMS(LDK(KP618033988), TU, TV); | |
130 TW = VFMA(LDK(KP618033988), TV, TU); | |
131 T1b = VFNMS(LDK(KP559016994), T12, T11); | |
132 T13 = VFMA(LDK(KP559016994), T12, T11); | |
133 ST(&(xo[0]), VADD(T5, Ts), ovs, &(xo[0])); | |
134 Tt = VFNMS(LDK(KP250000000), Ts, T5); | |
135 TJ = VFNMS(LDK(KP250000000), TI, TB); | |
136 T1f = VADD(TB, TI); | |
137 { | |
138 V T1c, T1e, T16, T14, Tv, Tz, T17, TL; | |
139 T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T1b, T1a)); | |
140 T1e = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T1b, T1a)); | |
141 T16 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T13, TW)); | |
142 T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T13, TW)); | |
143 Tv = VFNMS(LDK(KP559016994), Tu, Tt); | |
144 Tz = VFMA(LDK(KP559016994), Tu, Tt); | |
145 T17 = VFNMS(LDK(KP559016994), TK, TJ); | |
146 TL = VFMA(LDK(KP559016994), TK, TJ); | |
147 ST(&(xo[WS(os, 10)]), VFMAI(T1g, T1f), ovs, &(xo[0])); | |
148 ST(&(xo[WS(os, 5)]), VFNMSI(T1g, T1f), ovs, &(xo[WS(os, 1)])); | |
149 { | |
150 V T19, T1d, T15, TT; | |
151 ST(&(xo[WS(os, 12)]), VFMAI(Ty, Tv), ovs, &(xo[0])); | |
152 ST(&(xo[WS(os, 3)]), VFNMSI(Ty, Tv), ovs, &(xo[WS(os, 1)])); | |
153 ST(&(xo[WS(os, 9)]), VFMAI(TA, Tz), ovs, &(xo[WS(os, 1)])); | |
154 ST(&(xo[WS(os, 6)]), VFNMSI(TA, Tz), ovs, &(xo[0])); | |
155 T19 = VFMA(LDK(KP823639103), T18, T17); | |
156 T1d = VFNMS(LDK(KP823639103), T18, T17); | |
157 T15 = VFNMS(LDK(KP823639103), TS, TL); | |
158 TT = VFMA(LDK(KP823639103), TS, TL); | |
159 ST(&(xo[WS(os, 2)]), VFMAI(T1c, T19), ovs, &(xo[0])); | |
160 ST(&(xo[WS(os, 13)]), VFNMSI(T1c, T19), ovs, &(xo[WS(os, 1)])); | |
161 ST(&(xo[WS(os, 7)]), VFMAI(T1e, T1d), ovs, &(xo[WS(os, 1)])); | |
162 ST(&(xo[WS(os, 8)]), VFNMSI(T1e, T1d), ovs, &(xo[0])); | |
163 ST(&(xo[WS(os, 4)]), VFMAI(T16, T15), ovs, &(xo[0])); | |
164 ST(&(xo[WS(os, 11)]), VFNMSI(T16, T15), ovs, &(xo[WS(os, 1)])); | |
165 ST(&(xo[WS(os, 14)]), VFMAI(T14, TT), ovs, &(xo[0])); | |
166 ST(&(xo[WS(os, 1)]), VFNMSI(T14, TT), ovs, &(xo[WS(os, 1)])); | |
167 } | |
168 } | |
169 } | |
170 } | |
171 } | |
172 } | |
173 } | |
174 } | |
175 VLEAVE(); | |
176 } | |
177 | |
178 static const kdft_desc desc = { 15, XSIMD_STRING("n1fv_15"), {36, 7, 42, 0}, &GENUS, 0, 0, 0, 0 }; | |
179 | |
180 void XSIMD(codelet_n1fv_15) (planner *p) { | |
181 X(kdft_register) (p, n1fv_15, &desc); | |
182 } | |
183 | |
184 #else /* HAVE_FMA */ | |
185 | |
186 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name n1fv_15 -include n1f.h */ | |
187 | |
188 /* | |
189 * This function contains 78 FP additions, 25 FP multiplications, | |
190 * (or, 64 additions, 11 multiplications, 14 fused multiply/add), | |
191 * 55 stack variables, 10 constants, and 30 memory accesses | |
192 */ | |
193 #include "n1f.h" | |
194 | |
195 static void n1fv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
196 { | |
197 DVK(KP216506350, +0.216506350946109661690930792688234045867850657); | |
198 DVK(KP509036960, +0.509036960455127183450980863393907648510733164); | |
199 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
200 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
201 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
202 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
203 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
204 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
205 DVK(KP484122918, +0.484122918275927110647408174972799951354115213); | |
206 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
207 { | |
208 INT i; | |
209 const R *xi; | |
210 R *xo; | |
211 xi = ri; | |
212 xo = ro; | |
213 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) { | |
214 V T5, T10, TB, TO, TU, TV, TR, Ta, Tf, Tg, Tl, Tq, Tr, TE, TH; | |
215 V TI, TZ, T11, T1f, T1g; | |
216 { | |
217 V T1, T2, T3, T4; | |
218 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
219 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
220 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
221 T4 = VADD(T2, T3); | |
222 T5 = VADD(T1, T4); | |
223 T10 = VSUB(T3, T2); | |
224 TB = VFNMS(LDK(KP500000000), T4, T1); | |
225 } | |
226 { | |
227 V T6, T9, TC, TP, Tm, Tp, TG, TN, Tb, Te, TD, TQ, Th, Tk, TF; | |
228 V TM, TX, TY; | |
229 { | |
230 V T7, T8, Tn, To; | |
231 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
232 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
233 T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
234 T9 = VADD(T7, T8); | |
235 TC = VFNMS(LDK(KP500000000), T9, T6); | |
236 TP = VSUB(T8, T7); | |
237 Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
238 Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
239 To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
240 Tp = VADD(Tn, To); | |
241 TG = VFNMS(LDK(KP500000000), Tp, Tm); | |
242 TN = VSUB(To, Tn); | |
243 } | |
244 { | |
245 V Tc, Td, Ti, Tj; | |
246 Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
247 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
248 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
249 Te = VADD(Tc, Td); | |
250 TD = VFNMS(LDK(KP500000000), Te, Tb); | |
251 TQ = VSUB(Td, Tc); | |
252 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
253 Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
254 Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
255 Tk = VADD(Ti, Tj); | |
256 TF = VFNMS(LDK(KP500000000), Tk, Th); | |
257 TM = VSUB(Tj, Ti); | |
258 } | |
259 TO = VSUB(TM, TN); | |
260 TU = VSUB(TF, TG); | |
261 TV = VSUB(TC, TD); | |
262 TR = VSUB(TP, TQ); | |
263 Ta = VADD(T6, T9); | |
264 Tf = VADD(Tb, Te); | |
265 Tg = VADD(Ta, Tf); | |
266 Tl = VADD(Th, Tk); | |
267 Tq = VADD(Tm, Tp); | |
268 Tr = VADD(Tl, Tq); | |
269 TE = VADD(TC, TD); | |
270 TH = VADD(TF, TG); | |
271 TI = VADD(TE, TH); | |
272 TX = VADD(TP, TQ); | |
273 TY = VADD(TM, TN); | |
274 TZ = VMUL(LDK(KP484122918), VSUB(TX, TY)); | |
275 T11 = VADD(TX, TY); | |
276 } | |
277 T1f = VADD(TB, TI); | |
278 T1g = VBYI(VMUL(LDK(KP866025403), VADD(T10, T11))); | |
279 ST(&(xo[WS(os, 5)]), VSUB(T1f, T1g), ovs, &(xo[WS(os, 1)])); | |
280 ST(&(xo[WS(os, 10)]), VADD(T1f, T1g), ovs, &(xo[0])); | |
281 { | |
282 V Tu, Ts, Tt, Ty, TA, Tw, Tx, Tz, Tv; | |
283 Tu = VMUL(LDK(KP559016994), VSUB(Tg, Tr)); | |
284 Ts = VADD(Tg, Tr); | |
285 Tt = VFNMS(LDK(KP250000000), Ts, T5); | |
286 Tw = VSUB(Tl, Tq); | |
287 Tx = VSUB(Ta, Tf); | |
288 Ty = VBYI(VFNMS(LDK(KP587785252), Tx, VMUL(LDK(KP951056516), Tw))); | |
289 TA = VBYI(VFMA(LDK(KP951056516), Tx, VMUL(LDK(KP587785252), Tw))); | |
290 ST(&(xo[0]), VADD(T5, Ts), ovs, &(xo[0])); | |
291 Tz = VADD(Tu, Tt); | |
292 ST(&(xo[WS(os, 6)]), VSUB(Tz, TA), ovs, &(xo[0])); | |
293 ST(&(xo[WS(os, 9)]), VADD(TA, Tz), ovs, &(xo[WS(os, 1)])); | |
294 Tv = VSUB(Tt, Tu); | |
295 ST(&(xo[WS(os, 3)]), VSUB(Tv, Ty), ovs, &(xo[WS(os, 1)])); | |
296 ST(&(xo[WS(os, 12)]), VADD(Ty, Tv), ovs, &(xo[0])); | |
297 } | |
298 { | |
299 V TS, TW, T1b, T18, T13, T1a, TL, T17, T12, TJ, TK; | |
300 TS = VFNMS(LDK(KP509036960), TR, VMUL(LDK(KP823639103), TO)); | |
301 TW = VFNMS(LDK(KP587785252), TV, VMUL(LDK(KP951056516), TU)); | |
302 T1b = VFMA(LDK(KP951056516), TV, VMUL(LDK(KP587785252), TU)); | |
303 T18 = VFMA(LDK(KP823639103), TR, VMUL(LDK(KP509036960), TO)); | |
304 T12 = VFNMS(LDK(KP216506350), T11, VMUL(LDK(KP866025403), T10)); | |
305 T13 = VSUB(TZ, T12); | |
306 T1a = VADD(TZ, T12); | |
307 TJ = VFNMS(LDK(KP250000000), TI, TB); | |
308 TK = VMUL(LDK(KP559016994), VSUB(TE, TH)); | |
309 TL = VSUB(TJ, TK); | |
310 T17 = VADD(TK, TJ); | |
311 { | |
312 V TT, T14, T1d, T1e; | |
313 TT = VSUB(TL, TS); | |
314 T14 = VBYI(VSUB(TW, T13)); | |
315 ST(&(xo[WS(os, 8)]), VSUB(TT, T14), ovs, &(xo[0])); | |
316 ST(&(xo[WS(os, 7)]), VADD(TT, T14), ovs, &(xo[WS(os, 1)])); | |
317 T1d = VSUB(T17, T18); | |
318 T1e = VBYI(VADD(T1b, T1a)); | |
319 ST(&(xo[WS(os, 11)]), VSUB(T1d, T1e), ovs, &(xo[WS(os, 1)])); | |
320 ST(&(xo[WS(os, 4)]), VADD(T1d, T1e), ovs, &(xo[0])); | |
321 } | |
322 { | |
323 V T15, T16, T19, T1c; | |
324 T15 = VADD(TL, TS); | |
325 T16 = VBYI(VADD(TW, T13)); | |
326 ST(&(xo[WS(os, 13)]), VSUB(T15, T16), ovs, &(xo[WS(os, 1)])); | |
327 ST(&(xo[WS(os, 2)]), VADD(T15, T16), ovs, &(xo[0])); | |
328 T19 = VADD(T17, T18); | |
329 T1c = VBYI(VSUB(T1a, T1b)); | |
330 ST(&(xo[WS(os, 14)]), VSUB(T19, T1c), ovs, &(xo[0])); | |
331 ST(&(xo[WS(os, 1)]), VADD(T19, T1c), ovs, &(xo[WS(os, 1)])); | |
332 } | |
333 } | |
334 } | |
335 } | |
336 VLEAVE(); | |
337 } | |
338 | |
339 static const kdft_desc desc = { 15, XSIMD_STRING("n1fv_15"), {64, 11, 14, 0}, &GENUS, 0, 0, 0, 0 }; | |
340 | |
341 void XSIMD(codelet_n1fv_15) (planner *p) { | |
342 X(kdft_register) (p, n1fv_15, &desc); | |
343 } | |
344 | |
345 #endif /* HAVE_FMA */ |