Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n1fv_12.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:52 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */ | |
29 | |
30 /* | |
31 * This function contains 48 FP additions, 20 FP multiplications, | |
32 * (or, 30 additions, 2 multiplications, 18 fused multiply/add), | |
33 * 49 stack variables, 2 constants, and 24 memory accesses | |
34 */ | |
35 #include "n1f.h" | |
36 | |
37 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
41 { | |
42 INT i; | |
43 const R *xi; | |
44 R *xo; | |
45 xi = ri; | |
46 xo = ro; | |
47 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { | |
48 V T1, T6, Tk, Tn, Tc, Td, Tf, Tr, T4, Ts, T9, Tg, Te, Tl; | |
49 { | |
50 V T2, T3, T7, T8; | |
51 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
52 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
53 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
54 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
55 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
56 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
57 Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
58 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
59 Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
60 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
61 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
62 Tr = VSUB(T3, T2); | |
63 T4 = VADD(T2, T3); | |
64 Ts = VSUB(T8, T7); | |
65 T9 = VADD(T7, T8); | |
66 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
67 } | |
68 Te = VSUB(Tc, Td); | |
69 Tl = VADD(Td, Tc); | |
70 { | |
71 V T5, TF, TB, Tt, Ta, TG, Th, To, Tm, TI; | |
72 T5 = VFNMS(LDK(KP500000000), T4, T1); | |
73 TF = VADD(T1, T4); | |
74 TB = VADD(Tr, Ts); | |
75 Tt = VSUB(Tr, Ts); | |
76 Ta = VFNMS(LDK(KP500000000), T9, T6); | |
77 TG = VADD(T6, T9); | |
78 Th = VSUB(Tf, Tg); | |
79 To = VADD(Tf, Tg); | |
80 Tm = VFNMS(LDK(KP500000000), Tl, Tk); | |
81 TI = VADD(Tk, Tl); | |
82 { | |
83 V TH, TL, Tb, Tx, TJ, Tp, Ti, TA; | |
84 TH = VSUB(TF, TG); | |
85 TL = VADD(TF, TG); | |
86 Tb = VSUB(T5, Ta); | |
87 Tx = VADD(T5, Ta); | |
88 TJ = VADD(Tn, To); | |
89 Tp = VFNMS(LDK(KP500000000), To, Tn); | |
90 Ti = VADD(Te, Th); | |
91 TA = VSUB(Te, Th); | |
92 { | |
93 V Tq, Ty, TK, TM; | |
94 Tq = VSUB(Tm, Tp); | |
95 Ty = VADD(Tm, Tp); | |
96 TK = VSUB(TI, TJ); | |
97 TM = VADD(TI, TJ); | |
98 { | |
99 V TC, TE, Tj, Tv; | |
100 TC = VMUL(LDK(KP866025403), VSUB(TA, TB)); | |
101 TE = VMUL(LDK(KP866025403), VADD(TB, TA)); | |
102 Tj = VFMA(LDK(KP866025403), Ti, Tb); | |
103 Tv = VFNMS(LDK(KP866025403), Ti, Tb); | |
104 { | |
105 V Tz, TD, Tu, Tw; | |
106 Tz = VSUB(Tx, Ty); | |
107 TD = VADD(Tx, Ty); | |
108 Tu = VFNMS(LDK(KP866025403), Tt, Tq); | |
109 Tw = VFMA(LDK(KP866025403), Tt, Tq); | |
110 ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0])); | |
111 ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0])); | |
112 ST(&(xo[WS(os, 3)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)])); | |
113 ST(&(xo[WS(os, 9)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)])); | |
114 ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0])); | |
115 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); | |
116 ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tz), ovs, &(xo[0])); | |
117 ST(&(xo[WS(os, 2)]), VFMAI(TC, Tz), ovs, &(xo[0])); | |
118 ST(&(xo[WS(os, 5)]), VFNMSI(Tw, Tv), ovs, &(xo[WS(os, 1)])); | |
119 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tv), ovs, &(xo[WS(os, 1)])); | |
120 ST(&(xo[WS(os, 11)]), VFMAI(Tu, Tj), ovs, &(xo[WS(os, 1)])); | |
121 ST(&(xo[WS(os, 1)]), VFNMSI(Tu, Tj), ovs, &(xo[WS(os, 1)])); | |
122 } | |
123 } | |
124 } | |
125 } | |
126 } | |
127 } | |
128 } | |
129 VLEAVE(); | |
130 } | |
131 | |
132 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 }; | |
133 | |
134 void XSIMD(codelet_n1fv_12) (planner *p) { | |
135 X(kdft_register) (p, n1fv_12, &desc); | |
136 } | |
137 | |
138 #else /* HAVE_FMA */ | |
139 | |
140 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n1fv_12 -include n1f.h */ | |
141 | |
142 /* | |
143 * This function contains 48 FP additions, 8 FP multiplications, | |
144 * (or, 44 additions, 4 multiplications, 4 fused multiply/add), | |
145 * 27 stack variables, 2 constants, and 24 memory accesses | |
146 */ | |
147 #include "n1f.h" | |
148 | |
149 static void n1fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
150 { | |
151 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
152 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
153 { | |
154 INT i; | |
155 const R *xi; | |
156 R *xo; | |
157 xi = ri; | |
158 xo = ro; | |
159 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { | |
160 V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu; | |
161 { | |
162 V T1, T6, T4, Tw, T9, Tx; | |
163 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
164 T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
165 { | |
166 V T2, T3, T7, T8; | |
167 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
168 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
169 T4 = VADD(T2, T3); | |
170 Tw = VSUB(T3, T2); | |
171 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
172 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
173 T9 = VADD(T7, T8); | |
174 Tx = VSUB(T8, T7); | |
175 } | |
176 T5 = VADD(T1, T4); | |
177 Ta = VADD(T6, T9); | |
178 TJ = VADD(Tw, Tx); | |
179 Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx)); | |
180 Tq = VFNMS(LDK(KP500000000), T9, T6); | |
181 Tp = VFNMS(LDK(KP500000000), T4, T1); | |
182 } | |
183 { | |
184 V Tc, Th, Tf, Ts, Tk, Tt; | |
185 Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
186 Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
187 { | |
188 V Td, Te, Ti, Tj; | |
189 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
190 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
191 Tf = VADD(Td, Te); | |
192 Ts = VSUB(Te, Td); | |
193 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
194 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
195 Tk = VADD(Ti, Tj); | |
196 Tt = VSUB(Tj, Ti); | |
197 } | |
198 Tg = VADD(Tc, Tf); | |
199 Tl = VADD(Th, Tk); | |
200 TI = VADD(Ts, Tt); | |
201 TA = VFNMS(LDK(KP500000000), Tk, Th); | |
202 Tz = VFNMS(LDK(KP500000000), Tf, Tc); | |
203 Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt)); | |
204 } | |
205 { | |
206 V Tb, Tm, Tn, To; | |
207 Tb = VSUB(T5, Ta); | |
208 Tm = VBYI(VSUB(Tg, Tl)); | |
209 ST(&(xo[WS(os, 9)]), VSUB(Tb, Tm), ovs, &(xo[WS(os, 1)])); | |
210 ST(&(xo[WS(os, 3)]), VADD(Tb, Tm), ovs, &(xo[WS(os, 1)])); | |
211 Tn = VADD(T5, Ta); | |
212 To = VADD(Tg, Tl); | |
213 ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0])); | |
214 ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0])); | |
215 } | |
216 { | |
217 V Tv, TE, TC, TD, Tr, TB; | |
218 Tr = VSUB(Tp, Tq); | |
219 Tv = VSUB(Tr, Tu); | |
220 TE = VADD(Tr, Tu); | |
221 TB = VSUB(Tz, TA); | |
222 TC = VBYI(VADD(Ty, TB)); | |
223 TD = VBYI(VSUB(Ty, TB)); | |
224 ST(&(xo[WS(os, 5)]), VSUB(Tv, TC), ovs, &(xo[WS(os, 1)])); | |
225 ST(&(xo[WS(os, 11)]), VSUB(TE, TD), ovs, &(xo[WS(os, 1)])); | |
226 ST(&(xo[WS(os, 7)]), VADD(TC, Tv), ovs, &(xo[WS(os, 1)])); | |
227 ST(&(xo[WS(os, 1)]), VADD(TD, TE), ovs, &(xo[WS(os, 1)])); | |
228 } | |
229 { | |
230 V TK, TM, TH, TL, TF, TG; | |
231 TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ))); | |
232 TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI))); | |
233 TF = VADD(Tp, Tq); | |
234 TG = VADD(Tz, TA); | |
235 TH = VSUB(TF, TG); | |
236 TL = VADD(TF, TG); | |
237 ST(&(xo[WS(os, 10)]), VSUB(TH, TK), ovs, &(xo[0])); | |
238 ST(&(xo[WS(os, 4)]), VADD(TL, TM), ovs, &(xo[0])); | |
239 ST(&(xo[WS(os, 2)]), VADD(TH, TK), ovs, &(xo[0])); | |
240 ST(&(xo[WS(os, 8)]), VSUB(TL, TM), ovs, &(xo[0])); | |
241 } | |
242 } | |
243 } | |
244 VLEAVE(); | |
245 } | |
246 | |
247 static const kdft_desc desc = { 12, XSIMD_STRING("n1fv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 }; | |
248 | |
249 void XSIMD(codelet_n1fv_12) (planner *p) { | |
250 X(kdft_register) (p, n1fv_12, &desc); | |
251 } | |
252 | |
253 #endif /* HAVE_FMA */ |