Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n1bv_9.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:59 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include n1b.h */ | |
29 | |
30 /* | |
31 * This function contains 46 FP additions, 38 FP multiplications, | |
32 * (or, 12 additions, 4 multiplications, 34 fused multiply/add), | |
33 * 68 stack variables, 19 constants, and 18 memory accesses | |
34 */ | |
35 #include "n1b.h" | |
36 | |
37 static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
40 DVK(KP907603734, +0.907603734547952313649323976213898122064543220); | |
41 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
42 DVK(KP666666666, +0.666666666666666666666666666666666666666666667); | |
43 DVK(KP879385241, +0.879385241571816768108218554649462939872416269); | |
44 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
45 DVK(KP826351822, +0.826351822333069651148283373230685203999624323); | |
46 DVK(KP347296355, +0.347296355333860697703433253538629592000751354); | |
47 DVK(KP898197570, +0.898197570222573798468955502359086394667167570); | |
48 DVK(KP673648177, +0.673648177666930348851716626769314796000375677); | |
49 DVK(KP420276625, +0.420276625461206169731530603237061658838781920); | |
50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
51 DVK(KP586256827, +0.586256827714544512072145703099641959914944179); | |
52 DVK(KP968908795, +0.968908795874236621082202410917456709164223497); | |
53 DVK(KP726681596, +0.726681596905677465811651808188092531873167623); | |
54 DVK(KP439692620, +0.439692620785908384054109277324731469936208134); | |
55 DVK(KP203604859, +0.203604859554852403062088995281827210665664861); | |
56 DVK(KP152703644, +0.152703644666139302296566746461370407999248646); | |
57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
58 { | |
59 INT i; | |
60 const R *xi; | |
61 R *xo; | |
62 xi = ii; | |
63 xo = io; | |
64 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { | |
65 V T1, T2, T3, T6, Tf, T7, T8, Tb, Tc, Tp, T4; | |
66 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
67 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
68 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
69 T6 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
70 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
71 T7 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
72 T8 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
73 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
74 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
75 Tp = VSUB(T2, T3); | |
76 T4 = VADD(T2, T3); | |
77 { | |
78 V Te, T9, Tg, Td, TF, T5; | |
79 Te = VSUB(T8, T7); | |
80 T9 = VADD(T7, T8); | |
81 Tg = VADD(Tb, Tc); | |
82 Td = VSUB(Tb, Tc); | |
83 TF = VADD(T1, T4); | |
84 T5 = VFNMS(LDK(KP500000000), T4, T1); | |
85 { | |
86 V Ta, TH, Th, TG; | |
87 Ta = VFNMS(LDK(KP500000000), T9, T6); | |
88 TH = VADD(T6, T9); | |
89 Th = VFNMS(LDK(KP500000000), Tg, Tf); | |
90 TG = VADD(Tf, Tg); | |
91 { | |
92 V Tr, Tu, Tm, Tv, Ts, Ti, TI, TK; | |
93 Tr = VFNMS(LDK(KP152703644), Te, Ta); | |
94 Tu = VFMA(LDK(KP203604859), Ta, Te); | |
95 Tm = VFNMS(LDK(KP439692620), Td, Ta); | |
96 Tv = VFNMS(LDK(KP726681596), Td, Th); | |
97 Ts = VFMA(LDK(KP968908795), Th, Td); | |
98 Ti = VFNMS(LDK(KP586256827), Th, Te); | |
99 TI = VADD(TG, TH); | |
100 TK = VMUL(LDK(KP866025403), VSUB(TG, TH)); | |
101 { | |
102 V Tt, TA, Tw, Tz, Tj, TJ, To, TE, Tn; | |
103 Tn = VFNMS(LDK(KP420276625), Tm, Te); | |
104 Tt = VFNMS(LDK(KP673648177), Ts, Tr); | |
105 TA = VFMA(LDK(KP673648177), Ts, Tr); | |
106 Tw = VFMA(LDK(KP898197570), Tv, Tu); | |
107 Tz = VFNMS(LDK(KP898197570), Tv, Tu); | |
108 Tj = VFNMS(LDK(KP347296355), Ti, Td); | |
109 ST(&(xo[0]), VADD(TI, TF), ovs, &(xo[0])); | |
110 TJ = VFNMS(LDK(KP500000000), TI, TF); | |
111 To = VFNMS(LDK(KP826351822), Tn, Th); | |
112 TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tp, TA)); | |
113 { | |
114 V TB, TD, Tx, Tk, Tq, TC, Ty, Tl; | |
115 TB = VFMA(LDK(KP666666666), TA, Tz); | |
116 TD = VFMA(LDK(KP852868531), Tw, T5); | |
117 Tx = VFNMS(LDK(KP500000000), Tw, Tt); | |
118 Tk = VFNMS(LDK(KP907603734), Tj, Ta); | |
119 ST(&(xo[WS(os, 6)]), VFNMSI(TK, TJ), ovs, &(xo[0])); | |
120 ST(&(xo[WS(os, 3)]), VFMAI(TK, TJ), ovs, &(xo[WS(os, 1)])); | |
121 Tq = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tp, To)); | |
122 TC = VMUL(LDK(KP866025403), VFNMS(LDK(KP852868531), TB, Tp)); | |
123 ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0])); | |
124 ST(&(xo[WS(os, 1)]), VFMAI(TE, TD), ovs, &(xo[WS(os, 1)])); | |
125 Ty = VFMA(LDK(KP852868531), Tx, T5); | |
126 Tl = VFNMS(LDK(KP939692620), Tk, T5); | |
127 ST(&(xo[WS(os, 5)]), VFNMSI(TC, Ty), ovs, &(xo[WS(os, 1)])); | |
128 ST(&(xo[WS(os, 4)]), VFMAI(TC, Ty), ovs, &(xo[0])); | |
129 ST(&(xo[WS(os, 2)]), VFMAI(Tq, Tl), ovs, &(xo[0])); | |
130 ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tl), ovs, &(xo[WS(os, 1)])); | |
131 } | |
132 } | |
133 } | |
134 } | |
135 } | |
136 } | |
137 } | |
138 VLEAVE(); | |
139 } | |
140 | |
141 static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), {12, 4, 34, 0}, &GENUS, 0, 0, 0, 0 }; | |
142 | |
143 void XSIMD(codelet_n1bv_9) (planner *p) { | |
144 X(kdft_register) (p, n1bv_9, &desc); | |
145 } | |
146 | |
147 #else /* HAVE_FMA */ | |
148 | |
149 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 9 -name n1bv_9 -include n1b.h */ | |
150 | |
151 /* | |
152 * This function contains 46 FP additions, 26 FP multiplications, | |
153 * (or, 30 additions, 10 multiplications, 16 fused multiply/add), | |
154 * 41 stack variables, 14 constants, and 18 memory accesses | |
155 */ | |
156 #include "n1b.h" | |
157 | |
158 static void n1bv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
159 { | |
160 DVK(KP342020143, +0.342020143325668733044099614682259580763083368); | |
161 DVK(KP813797681, +0.813797681349373692844693217248393223289101568); | |
162 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
163 DVK(KP296198132, +0.296198132726023843175338011893050938967728390); | |
164 DVK(KP642787609, +0.642787609686539326322643409907263432907559884); | |
165 DVK(KP663413948, +0.663413948168938396205421319635891297216863310); | |
166 DVK(KP556670399, +0.556670399226419366452912952047023132968291906); | |
167 DVK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
168 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
169 DVK(KP150383733, +0.150383733180435296639271897612501926072238258); | |
170 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
171 DVK(KP173648177, +0.173648177666930348851716626769314796000375677); | |
172 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
173 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
174 { | |
175 INT i; | |
176 const R *xi; | |
177 R *xo; | |
178 xi = ii; | |
179 xo = io; | |
180 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { | |
181 V T5, Ty, Tm, Ti, Tw, Th, Tj, To, Tb, Tv, Ta, Tc, Tn; | |
182 { | |
183 V T1, T2, T3, T4; | |
184 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
185 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
186 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
187 T4 = VADD(T2, T3); | |
188 T5 = VFNMS(LDK(KP500000000), T4, T1); | |
189 Ty = VADD(T1, T4); | |
190 Tm = VMUL(LDK(KP866025403), VSUB(T2, T3)); | |
191 } | |
192 { | |
193 V Td, Tg, Te, Tf; | |
194 Td = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
195 Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
196 Tf = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
197 Tg = VADD(Te, Tf); | |
198 Ti = VSUB(Te, Tf); | |
199 Tw = VADD(Td, Tg); | |
200 Th = VFNMS(LDK(KP500000000), Tg, Td); | |
201 Tj = VFNMS(LDK(KP852868531), Ti, VMUL(LDK(KP173648177), Th)); | |
202 To = VFMA(LDK(KP150383733), Ti, VMUL(LDK(KP984807753), Th)); | |
203 } | |
204 { | |
205 V T6, T9, T7, T8; | |
206 T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
207 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
208 T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
209 T9 = VADD(T7, T8); | |
210 Tb = VSUB(T7, T8); | |
211 Tv = VADD(T6, T9); | |
212 Ta = VFNMS(LDK(KP500000000), T9, T6); | |
213 Tc = VFNMS(LDK(KP556670399), Tb, VMUL(LDK(KP766044443), Ta)); | |
214 Tn = VFMA(LDK(KP663413948), Tb, VMUL(LDK(KP642787609), Ta)); | |
215 } | |
216 { | |
217 V Tx, Tz, TA, Tt, Tu; | |
218 Tx = VBYI(VMUL(LDK(KP866025403), VSUB(Tv, Tw))); | |
219 Tz = VADD(Tv, Tw); | |
220 TA = VFNMS(LDK(KP500000000), Tz, Ty); | |
221 ST(&(xo[WS(os, 3)]), VADD(Tx, TA), ovs, &(xo[WS(os, 1)])); | |
222 ST(&(xo[0]), VADD(Ty, Tz), ovs, &(xo[0])); | |
223 ST(&(xo[WS(os, 6)]), VSUB(TA, Tx), ovs, &(xo[0])); | |
224 Tt = VFMA(LDK(KP852868531), Tb, VFMA(LDK(KP173648177), Ta, VFMA(LDK(KP296198132), Ti, VFNMS(LDK(KP939692620), Th, T5)))); | |
225 Tu = VBYI(VSUB(VFMA(LDK(KP984807753), Ta, VFMA(LDK(KP813797681), Ti, VFNMS(LDK(KP150383733), Tb, VMUL(LDK(KP342020143), Th)))), Tm)); | |
226 ST(&(xo[WS(os, 7)]), VSUB(Tt, Tu), ovs, &(xo[WS(os, 1)])); | |
227 ST(&(xo[WS(os, 2)]), VADD(Tt, Tu), ovs, &(xo[0])); | |
228 { | |
229 V Tl, Ts, Tq, Tr, Tk, Tp; | |
230 Tk = VADD(Tc, Tj); | |
231 Tl = VADD(T5, Tk); | |
232 Ts = VFMA(LDK(KP866025403), VSUB(To, Tn), VFNMS(LDK(KP500000000), Tk, T5)); | |
233 Tp = VADD(Tn, To); | |
234 Tq = VBYI(VADD(Tm, Tp)); | |
235 Tr = VBYI(VADD(Tm, VFNMS(LDK(KP500000000), Tp, VMUL(LDK(KP866025403), VSUB(Tc, Tj))))); | |
236 ST(&(xo[WS(os, 8)]), VSUB(Tl, Tq), ovs, &(xo[0])); | |
237 ST(&(xo[WS(os, 5)]), VSUB(Ts, Tr), ovs, &(xo[WS(os, 1)])); | |
238 ST(&(xo[WS(os, 1)]), VADD(Tl, Tq), ovs, &(xo[WS(os, 1)])); | |
239 ST(&(xo[WS(os, 4)]), VADD(Tr, Ts), ovs, &(xo[0])); | |
240 } | |
241 } | |
242 } | |
243 } | |
244 VLEAVE(); | |
245 } | |
246 | |
247 static const kdft_desc desc = { 9, XSIMD_STRING("n1bv_9"), {30, 10, 16, 0}, &GENUS, 0, 0, 0, 0 }; | |
248 | |
249 void XSIMD(codelet_n1bv_9) (planner *p) { | |
250 X(kdft_register) (p, n1bv_9, &desc); | |
251 } | |
252 | |
253 #endif /* HAVE_FMA */ |