Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/n1bv_15.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:37:04 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 15 -name n1bv_15 -include n1b.h */ | |
29 | |
30 /* | |
31 * This function contains 78 FP additions, 49 FP multiplications, | |
32 * (or, 36 additions, 7 multiplications, 42 fused multiply/add), | |
33 * 78 stack variables, 8 constants, and 30 memory accesses | |
34 */ | |
35 #include "n1b.h" | |
36 | |
37 static void n1bv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291); | |
41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
47 { | |
48 INT i; | |
49 const R *xi; | |
50 R *xo; | |
51 xi = ii; | |
52 xo = io; | |
53 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) { | |
54 V Tb, TH, Tw, TA, Th, T11, T5, Ti, T12, Ta, Tx, Te, Tq, T16, Tj; | |
55 V T1, T2, T3; | |
56 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
57 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
58 T3 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
59 { | |
60 V T6, T7, T8, Tm, Tn, To; | |
61 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
62 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
63 T8 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
64 Tm = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
65 Tn = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
66 To = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
67 { | |
68 V T4, Tc, T9, Td, Tp; | |
69 Tb = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
70 T4 = VADD(T2, T3); | |
71 TH = VSUB(T2, T3); | |
72 Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
73 Tw = VSUB(T7, T8); | |
74 T9 = VADD(T7, T8); | |
75 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
76 Tp = VADD(Tn, To); | |
77 TA = VSUB(Tn, To); | |
78 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
79 T11 = VADD(T1, T4); | |
80 T5 = VFNMS(LDK(KP500000000), T4, T1); | |
81 Ti = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
82 T12 = VADD(T6, T9); | |
83 Ta = VFNMS(LDK(KP500000000), T9, T6); | |
84 Tx = VSUB(Tc, Td); | |
85 Te = VADD(Tc, Td); | |
86 Tq = VFNMS(LDK(KP500000000), Tp, Tm); | |
87 T16 = VADD(Tm, Tp); | |
88 Tj = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
89 } | |
90 } | |
91 { | |
92 V TI, Ty, T13, Tf, Tz, Tk; | |
93 TI = VADD(Tw, Tx); | |
94 Ty = VSUB(Tw, Tx); | |
95 T13 = VADD(Tb, Te); | |
96 Tf = VFNMS(LDK(KP500000000), Te, Tb); | |
97 Tz = VSUB(Ti, Tj); | |
98 Tk = VADD(Ti, Tj); | |
99 { | |
100 V T1d, T14, Tg, TE, TJ, TB, T15, Tl; | |
101 T1d = VSUB(T12, T13); | |
102 T14 = VADD(T12, T13); | |
103 Tg = VADD(Ta, Tf); | |
104 TE = VSUB(Ta, Tf); | |
105 TJ = VADD(Tz, TA); | |
106 TB = VSUB(Tz, TA); | |
107 T15 = VADD(Th, Tk); | |
108 Tl = VFNMS(LDK(KP500000000), Tk, Th); | |
109 { | |
110 V TM, TK, TS, TC, T1c, T17, Tr, TF, TL, T10; | |
111 TM = VSUB(TI, TJ); | |
112 TK = VADD(TI, TJ); | |
113 TS = VFNMS(LDK(KP618033988), Ty, TB); | |
114 TC = VFMA(LDK(KP618033988), TB, Ty); | |
115 T1c = VSUB(T15, T16); | |
116 T17 = VADD(T15, T16); | |
117 Tr = VADD(Tl, Tq); | |
118 TF = VSUB(Tl, Tq); | |
119 TL = VFNMS(LDK(KP250000000), TK, TH); | |
120 T10 = VMUL(LDK(KP866025403), VADD(TH, TK)); | |
121 { | |
122 V T1g, T1e, T1a, Tu, Ts, TU, TG, TV, TN, T19, T18, Tt, TZ; | |
123 T1g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1c, T1d)); | |
124 T1e = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1d, T1c)); | |
125 T18 = VADD(T14, T17); | |
126 T1a = VSUB(T14, T17); | |
127 Tu = VSUB(Tg, Tr); | |
128 Ts = VADD(Tg, Tr); | |
129 TU = VFNMS(LDK(KP618033988), TE, TF); | |
130 TG = VFMA(LDK(KP618033988), TF, TE); | |
131 TV = VFNMS(LDK(KP559016994), TM, TL); | |
132 TN = VFMA(LDK(KP559016994), TM, TL); | |
133 ST(&(xo[0]), VADD(T11, T18), ovs, &(xo[0])); | |
134 T19 = VFNMS(LDK(KP250000000), T18, T11); | |
135 Tt = VFNMS(LDK(KP250000000), Ts, T5); | |
136 TZ = VADD(T5, Ts); | |
137 { | |
138 V TW, TY, TQ, TO, T1b, T1f, TR, Tv; | |
139 TW = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), TV, TU)); | |
140 TY = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), TV, TU)); | |
141 TQ = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), TN, TG)); | |
142 TO = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), TN, TG)); | |
143 T1b = VFNMS(LDK(KP559016994), T1a, T19); | |
144 T1f = VFMA(LDK(KP559016994), T1a, T19); | |
145 TR = VFNMS(LDK(KP559016994), Tu, Tt); | |
146 Tv = VFMA(LDK(KP559016994), Tu, Tt); | |
147 ST(&(xo[WS(os, 10)]), VFMAI(T10, TZ), ovs, &(xo[0])); | |
148 ST(&(xo[WS(os, 5)]), VFNMSI(T10, TZ), ovs, &(xo[WS(os, 1)])); | |
149 { | |
150 V TT, TX, TP, TD; | |
151 ST(&(xo[WS(os, 12)]), VFNMSI(T1e, T1b), ovs, &(xo[0])); | |
152 ST(&(xo[WS(os, 3)]), VFMAI(T1e, T1b), ovs, &(xo[WS(os, 1)])); | |
153 ST(&(xo[WS(os, 9)]), VFNMSI(T1g, T1f), ovs, &(xo[WS(os, 1)])); | |
154 ST(&(xo[WS(os, 6)]), VFMAI(T1g, T1f), ovs, &(xo[0])); | |
155 TT = VFNMS(LDK(KP823639103), TS, TR); | |
156 TX = VFMA(LDK(KP823639103), TS, TR); | |
157 TP = VFMA(LDK(KP823639103), TC, Tv); | |
158 TD = VFNMS(LDK(KP823639103), TC, Tv); | |
159 ST(&(xo[WS(os, 13)]), VFMAI(TW, TT), ovs, &(xo[WS(os, 1)])); | |
160 ST(&(xo[WS(os, 2)]), VFNMSI(TW, TT), ovs, &(xo[0])); | |
161 ST(&(xo[WS(os, 8)]), VFMAI(TY, TX), ovs, &(xo[0])); | |
162 ST(&(xo[WS(os, 7)]), VFNMSI(TY, TX), ovs, &(xo[WS(os, 1)])); | |
163 ST(&(xo[WS(os, 11)]), VFMAI(TQ, TP), ovs, &(xo[WS(os, 1)])); | |
164 ST(&(xo[WS(os, 4)]), VFNMSI(TQ, TP), ovs, &(xo[0])); | |
165 ST(&(xo[WS(os, 14)]), VFNMSI(TO, TD), ovs, &(xo[0])); | |
166 ST(&(xo[WS(os, 1)]), VFMAI(TO, TD), ovs, &(xo[WS(os, 1)])); | |
167 } | |
168 } | |
169 } | |
170 } | |
171 } | |
172 } | |
173 } | |
174 } | |
175 VLEAVE(); | |
176 } | |
177 | |
178 static const kdft_desc desc = { 15, XSIMD_STRING("n1bv_15"), {36, 7, 42, 0}, &GENUS, 0, 0, 0, 0 }; | |
179 | |
180 void XSIMD(codelet_n1bv_15) (planner *p) { | |
181 X(kdft_register) (p, n1bv_15, &desc); | |
182 } | |
183 | |
184 #else /* HAVE_FMA */ | |
185 | |
186 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 15 -name n1bv_15 -include n1b.h */ | |
187 | |
188 /* | |
189 * This function contains 78 FP additions, 25 FP multiplications, | |
190 * (or, 64 additions, 11 multiplications, 14 fused multiply/add), | |
191 * 55 stack variables, 10 constants, and 30 memory accesses | |
192 */ | |
193 #include "n1b.h" | |
194 | |
195 static void n1bv_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
196 { | |
197 DVK(KP216506350, +0.216506350946109661690930792688234045867850657); | |
198 DVK(KP509036960, +0.509036960455127183450980863393907648510733164); | |
199 DVK(KP823639103, +0.823639103546331925877420039278190003029660514); | |
200 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
201 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
202 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
203 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
204 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
205 DVK(KP484122918, +0.484122918275927110647408174972799951354115213); | |
206 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
207 { | |
208 INT i; | |
209 const R *xi; | |
210 R *xo; | |
211 xi = ii; | |
212 xo = io; | |
213 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(30, is), MAKE_VOLATILE_STRIDE(30, os)) { | |
214 V Ti, T11, TH, Ts, TL, TM, Tz, TC, TD, TI, T12, T13, T14, T15, T16; | |
215 V T17, Tf, Tj, TZ, T10; | |
216 { | |
217 V TF, Tg, Th, TG; | |
218 TF = LD(&(xi[0]), ivs, &(xi[0])); | |
219 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
220 Th = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); | |
221 TG = VADD(Tg, Th); | |
222 Ti = VSUB(Tg, Th); | |
223 T11 = VADD(TF, TG); | |
224 TH = VFNMS(LDK(KP500000000), TG, TF); | |
225 } | |
226 { | |
227 V Tm, Tn, T3, To, Tw, Tx, Td, Ty, Tp, Tq, T6, Tr, Tt, Tu, Ta; | |
228 V Tv, T7, Te; | |
229 { | |
230 V T1, T2, Tb, Tc; | |
231 Tm = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
232 T1 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
233 T2 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); | |
234 Tn = VADD(T1, T2); | |
235 T3 = VSUB(T1, T2); | |
236 To = VFNMS(LDK(KP500000000), Tn, Tm); | |
237 Tw = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); | |
238 Tb = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); | |
239 Tc = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
240 Tx = VADD(Tb, Tc); | |
241 Td = VSUB(Tb, Tc); | |
242 Ty = VFNMS(LDK(KP500000000), Tx, Tw); | |
243 } | |
244 { | |
245 V T4, T5, T8, T9; | |
246 Tp = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); | |
247 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
248 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
249 Tq = VADD(T4, T5); | |
250 T6 = VSUB(T4, T5); | |
251 Tr = VFNMS(LDK(KP500000000), Tq, Tp); | |
252 Tt = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
253 T8 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); | |
254 T9 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
255 Tu = VADD(T8, T9); | |
256 Ta = VSUB(T8, T9); | |
257 Tv = VFNMS(LDK(KP500000000), Tu, Tt); | |
258 } | |
259 Ts = VSUB(To, Tr); | |
260 TL = VSUB(T3, T6); | |
261 TM = VSUB(Ta, Td); | |
262 Tz = VSUB(Tv, Ty); | |
263 TC = VADD(To, Tr); | |
264 TD = VADD(Tv, Ty); | |
265 TI = VADD(TC, TD); | |
266 T12 = VADD(Tm, Tn); | |
267 T13 = VADD(Tp, Tq); | |
268 T14 = VADD(T12, T13); | |
269 T15 = VADD(Tt, Tu); | |
270 T16 = VADD(Tw, Tx); | |
271 T17 = VADD(T15, T16); | |
272 T7 = VADD(T3, T6); | |
273 Te = VADD(Ta, Td); | |
274 Tf = VMUL(LDK(KP484122918), VSUB(T7, Te)); | |
275 Tj = VADD(T7, Te); | |
276 } | |
277 TZ = VADD(TH, TI); | |
278 T10 = VBYI(VMUL(LDK(KP866025403), VADD(Ti, Tj))); | |
279 ST(&(xo[WS(os, 5)]), VSUB(TZ, T10), ovs, &(xo[WS(os, 1)])); | |
280 ST(&(xo[WS(os, 10)]), VADD(T10, TZ), ovs, &(xo[0])); | |
281 { | |
282 V T1a, T18, T19, T1e, T1f, T1c, T1d, T1g, T1b; | |
283 T1a = VMUL(LDK(KP559016994), VSUB(T14, T17)); | |
284 T18 = VADD(T14, T17); | |
285 T19 = VFNMS(LDK(KP250000000), T18, T11); | |
286 T1c = VSUB(T12, T13); | |
287 T1d = VSUB(T15, T16); | |
288 T1e = VBYI(VFNMS(LDK(KP951056516), T1d, VMUL(LDK(KP587785252), T1c))); | |
289 T1f = VBYI(VFMA(LDK(KP951056516), T1c, VMUL(LDK(KP587785252), T1d))); | |
290 ST(&(xo[0]), VADD(T11, T18), ovs, &(xo[0])); | |
291 T1g = VADD(T1a, T19); | |
292 ST(&(xo[WS(os, 6)]), VADD(T1f, T1g), ovs, &(xo[0])); | |
293 ST(&(xo[WS(os, 9)]), VSUB(T1g, T1f), ovs, &(xo[WS(os, 1)])); | |
294 T1b = VSUB(T19, T1a); | |
295 ST(&(xo[WS(os, 3)]), VSUB(T1b, T1e), ovs, &(xo[WS(os, 1)])); | |
296 ST(&(xo[WS(os, 12)]), VADD(T1e, T1b), ovs, &(xo[0])); | |
297 } | |
298 { | |
299 V TA, TN, TU, TS, Tl, TR, TK, TV, Tk, TE, TJ; | |
300 TA = VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tz)); | |
301 TN = VFMA(LDK(KP823639103), TL, VMUL(LDK(KP509036960), TM)); | |
302 TU = VFNMS(LDK(KP823639103), TM, VMUL(LDK(KP509036960), TL)); | |
303 TS = VFNMS(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), Ts)); | |
304 Tk = VFNMS(LDK(KP216506350), Tj, VMUL(LDK(KP866025403), Ti)); | |
305 Tl = VADD(Tf, Tk); | |
306 TR = VSUB(Tf, Tk); | |
307 TE = VMUL(LDK(KP559016994), VSUB(TC, TD)); | |
308 TJ = VFNMS(LDK(KP250000000), TI, TH); | |
309 TK = VADD(TE, TJ); | |
310 TV = VSUB(TJ, TE); | |
311 { | |
312 V TB, TO, TX, TY; | |
313 TB = VBYI(VADD(Tl, TA)); | |
314 TO = VSUB(TK, TN); | |
315 ST(&(xo[WS(os, 1)]), VADD(TB, TO), ovs, &(xo[WS(os, 1)])); | |
316 ST(&(xo[WS(os, 14)]), VSUB(TO, TB), ovs, &(xo[0])); | |
317 TX = VBYI(VSUB(TS, TR)); | |
318 TY = VSUB(TV, TU); | |
319 ST(&(xo[WS(os, 7)]), VADD(TX, TY), ovs, &(xo[WS(os, 1)])); | |
320 ST(&(xo[WS(os, 8)]), VSUB(TY, TX), ovs, &(xo[0])); | |
321 } | |
322 { | |
323 V TP, TQ, TT, TW; | |
324 TP = VBYI(VSUB(Tl, TA)); | |
325 TQ = VADD(TN, TK); | |
326 ST(&(xo[WS(os, 4)]), VADD(TP, TQ), ovs, &(xo[0])); | |
327 ST(&(xo[WS(os, 11)]), VSUB(TQ, TP), ovs, &(xo[WS(os, 1)])); | |
328 TT = VBYI(VADD(TR, TS)); | |
329 TW = VADD(TU, TV); | |
330 ST(&(xo[WS(os, 2)]), VADD(TT, TW), ovs, &(xo[0])); | |
331 ST(&(xo[WS(os, 13)]), VSUB(TW, TT), ovs, &(xo[WS(os, 1)])); | |
332 } | |
333 } | |
334 } | |
335 } | |
336 VLEAVE(); | |
337 } | |
338 | |
339 static const kdft_desc desc = { 15, XSIMD_STRING("n1bv_15"), {64, 11, 14, 0}, &GENUS, 0, 0, 0, 0 }; | |
340 | |
341 void XSIMD(codelet_n1bv_15) (planner *p) { | |
342 X(kdft_register) (p, n1bv_15, &desc); | |
343 } | |
344 | |
345 #endif /* HAVE_FMA */ |