comparison src/fftw-3.3.3/dft/scalar/codelets/t2_64.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:36:01 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include t.h */
29
30 /*
31 * This function contains 1154 FP additions, 840 FP multiplications,
32 * (or, 520 additions, 206 multiplications, 634 fused multiply/add),
33 * 349 stack variables, 15 constants, and 256 memory accesses
34 */
35 #include "t.h"
36
37 static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
40 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
41 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
42 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
43 DK(KP820678790, +0.820678790828660330972281985331011598767386482);
44 DK(KP098491403, +0.098491403357164253077197521291327432293052451);
45 DK(KP534511135, +0.534511135950791641089685961295362908582039528);
46 DK(KP303346683, +0.303346683607342391675883946941299872384187453);
47 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
48 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
49 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
50 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
51 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
54 {
55 INT m;
56 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) {
57 E Tg0, TlC, TlB, Tg3;
58 {
59 E T2, T3, Tc, T8, Te, T5, T6, T14, T3d, T3i, TJ, T7, Tr, T3g, TG;
60 E T10, T3a, TL, TP, Tb, Tt, T17, Td, Ti, T3N, T3R, T1i, Tu, T1I, T2U;
61 E T1t, T3U, T5O, T48, T2u, T7B, TK, T79, T3D, T2h, T2l, T3G, T1x, T3X, T2d;
62 E T1M, T2X, T4B, T4x, T3j, T4T, T29, T5s, T81, T5w, T7X, T7N, T7h, T64, T6a;
63 E T6e, T7l, T60, T7R, T6h, T5A, T7o, T6J, T6k, T5E, T6N, T7r, T6x, T6t, T7c;
64 E TO, T2x, T7E, TU, TQ, T2C, T2y, T5R, T4b, T4c, T4g, T4W, T3m, T3r, T3n;
65 E T1k, Tx, Ty, T4p, T4s, TC, T23, T1Z, T19, Th, T31, T35, T1e, T44, T41;
66 E T1a, T6W, T70, T55, T59, T3v, T3z, Tf, T1R, T2N, T2Q, T1V, T1p, T1l, Tm;
67 {
68 E T1H, T1s, T2g, Tg, Tw, TH, T2t, T47, T3h, T3M, T4w, T28, T3Q, T4A, T2c;
69 E Ts;
70 {
71 E T4, T13, TI, TF, TZ, Ta, T9;
72 T2 = W[0];
73 T3 = W[2];
74 Tc = W[5];
75 T8 = W[4];
76 Te = W[6];
77 T4 = T2 * T3;
78 T13 = T2 * Tc;
79 TI = T3 * Tc;
80 TF = T3 * T8;
81 T1H = T8 * Te;
82 TZ = T2 * T8;
83 T5 = W[1];
84 T6 = W[3];
85 T1s = T3 * Te;
86 T2g = T2 * Te;
87 T14 = FNMS(T5, T8, T13);
88 T3d = FMA(T5, T8, T13);
89 T3i = FNMS(T6, T8, TI);
90 TJ = FMA(T6, T8, TI);
91 T7 = FNMS(T5, T6, T4);
92 Tr = FMA(T5, T6, T4);
93 Ta = T2 * T6;
94 Tg = T7 * Tc;
95 Tw = Tr * Tc;
96 T3g = FMA(T6, Tc, TF);
97 TG = FNMS(T6, Tc, TF);
98 T10 = FMA(T5, Tc, TZ);
99 T3a = FNMS(T5, Tc, TZ);
100 TH = TG * Te;
101 T2t = T10 * Te;
102 T47 = T3a * Te;
103 T3h = T3g * Te;
104 TL = W[8];
105 TP = W[9];
106 T9 = T7 * T8;
107 Tb = FMA(T5, T3, Ta);
108 Tt = FNMS(T5, T3, Ta);
109 T3M = T2 * TL;
110 T4w = T8 * TL;
111 T28 = T3 * TL;
112 T3Q = T2 * TP;
113 T4A = T8 * TP;
114 T2c = T3 * TP;
115 T17 = FNMS(Tb, Tc, T9);
116 Td = FMA(Tb, Tc, T9);
117 Ts = Tr * T8;
118 Ti = W[7];
119 }
120 {
121 E T5r, T80, T1L, T2k, T1w, T5z, T2B, T2v;
122 T3N = FMA(T5, TP, T3M);
123 T3R = FNMS(T5, TL, T3Q);
124 T1i = FMA(Tt, Tc, Ts);
125 Tu = FNMS(Tt, Tc, Ts);
126 T1I = FNMS(Tc, Ti, T1H);
127 T2U = FMA(Tc, Ti, T1H);
128 T1t = FMA(T6, Ti, T1s);
129 T3U = FNMS(T6, Ti, T1s);
130 T5O = FNMS(T3d, Ti, T47);
131 T48 = FMA(T3d, Ti, T47);
132 T2u = FMA(T14, Ti, T2t);
133 T7B = FNMS(T14, Ti, T2t);
134 T1L = T8 * Ti;
135 T2k = T2 * Ti;
136 T1w = T3 * Ti;
137 TK = FMA(TJ, Ti, TH);
138 T79 = FNMS(TJ, Ti, TH);
139 T3D = FMA(T5, Ti, T2g);
140 T2h = FNMS(T5, Ti, T2g);
141 T2l = FMA(T5, Te, T2k);
142 T3G = FNMS(T5, Te, T2k);
143 T1x = FNMS(T6, Te, T1w);
144 T3X = FMA(T6, Te, T1w);
145 T2d = FNMS(T6, TL, T2c);
146 T1M = FMA(Tc, Te, T1L);
147 T2X = FNMS(Tc, Te, T1L);
148 T4B = FNMS(Tc, TL, T4A);
149 T4x = FMA(Tc, TP, T4w);
150 T3j = FMA(T3i, Ti, T3h);
151 T4T = FNMS(T3i, Ti, T3h);
152 T29 = FMA(T6, TP, T28);
153 T5r = T3g * TL;
154 T80 = T7 * TP;
155 {
156 E T7M, T7g, T63, T5v, T7W;
157 T5v = T3g * TP;
158 T7W = T7 * TL;
159 T5s = FMA(T3i, TP, T5r);
160 T81 = FNMS(Tb, TL, T80);
161 T5w = FNMS(T3i, TL, T5v);
162 T7X = FMA(Tb, TP, T7W);
163 T7M = TG * TL;
164 T7g = T10 * TL;
165 T63 = T3a * TP;
166 {
167 E T6d, T7k, T69, T5Z, T7Q;
168 T69 = Tr * TL;
169 T7N = FMA(TJ, TP, T7M);
170 T7h = FMA(T14, TP, T7g);
171 T64 = FNMS(T3d, TL, T63);
172 T6a = FMA(Tt, TP, T69);
173 T6d = Tr * TP;
174 T7k = T10 * TP;
175 T5Z = T3a * TL;
176 T7Q = TG * TP;
177 T6e = FNMS(Tt, TL, T6d);
178 T7l = FNMS(T14, TL, T7k);
179 T60 = FMA(T3d, TP, T5Z);
180 T7R = FNMS(TJ, TL, T7Q);
181 T5z = Tr * Te;
182 }
183 }
184 {
185 E T6I, T5D, T6M, T6s, T6w;
186 T6I = T7 * Te;
187 T5D = Tr * Ti;
188 T6M = T7 * Ti;
189 T6h = FNMS(Tt, Ti, T5z);
190 T5A = FMA(Tt, Ti, T5z);
191 T7o = FMA(Tb, Ti, T6I);
192 T6J = FNMS(Tb, Ti, T6I);
193 T6k = FMA(Tt, Te, T5D);
194 T5E = FNMS(Tt, Te, T5D);
195 T6N = FMA(Tb, Te, T6M);
196 T7r = FNMS(Tb, Te, T6M);
197 T6s = T2U * TL;
198 T6w = T2U * TP;
199 {
200 E TN, TT, TM, T2w;
201 TN = TG * Ti;
202 T2w = T10 * Ti;
203 T6x = FNMS(T2X, TL, T6w);
204 T6t = FMA(T2X, TP, T6s);
205 T7c = FMA(TJ, Te, TN);
206 TO = FNMS(TJ, Te, TN);
207 TT = TK * TP;
208 TM = TK * TL;
209 T2x = FNMS(T14, Te, T2w);
210 T7E = FMA(T14, Te, T2w);
211 TU = FNMS(TO, TL, TT);
212 TQ = FMA(TO, TP, TM);
213 T2B = T2u * TP;
214 T2v = T2u * TL;
215 }
216 }
217 {
218 E T1Y, T22, Tv, TB;
219 {
220 E T49, T4f, T4a, T3l, T3q, T3k;
221 T4a = T3a * Ti;
222 T2C = FNMS(T2x, TL, T2B);
223 T2y = FMA(T2x, TP, T2v);
224 T5R = FMA(T3d, Te, T4a);
225 T4b = FNMS(T3d, Te, T4a);
226 T49 = T48 * TL;
227 T4f = T48 * TP;
228 T3l = T3g * Ti;
229 T4c = FMA(T4b, TP, T49);
230 T4g = FNMS(T4b, TL, T4f);
231 T4W = FMA(T3i, Te, T3l);
232 T3m = FNMS(T3i, Te, T3l);
233 T1Y = Tu * TL;
234 T3q = T3j * TP;
235 T3k = T3j * TL;
236 T22 = Tu * TP;
237 Tv = Tu * Te;
238 T3r = FNMS(T3m, TL, T3q);
239 T3n = FMA(T3m, TP, T3k);
240 TB = Tu * Ti;
241 T1k = FNMS(Tt, T8, Tw);
242 Tx = FMA(Tt, T8, Tw);
243 }
244 {
245 E T30, T34, T18, T1d;
246 T30 = T17 * TL;
247 T34 = T17 * TP;
248 T18 = T17 * Te;
249 Ty = FMA(Tx, Ti, Tv);
250 T4p = FNMS(Tx, Ti, Tv);
251 T4s = FMA(Tx, Te, TB);
252 TC = FNMS(Tx, Te, TB);
253 T23 = FNMS(Tx, TL, T22);
254 T1Z = FMA(Tx, TP, T1Y);
255 T1d = T17 * Ti;
256 T19 = FMA(Tb, T8, Tg);
257 Th = FNMS(Tb, T8, Tg);
258 {
259 E T1j, T1o, T1Q, T1U;
260 T1j = T1i * TL;
261 {
262 E T6V, T6Z, T54, T58;
263 T6V = Ty * TL;
264 T6Z = Ty * TP;
265 T31 = FMA(T19, TP, T30);
266 T35 = FNMS(T19, TL, T34);
267 T1e = FMA(T19, Te, T1d);
268 T44 = FNMS(T19, Te, T1d);
269 T41 = FMA(T19, Ti, T18);
270 T1a = FNMS(T19, Ti, T18);
271 T6W = FMA(TC, TP, T6V);
272 T70 = FNMS(TC, TL, T6Z);
273 T1o = T1i * TP;
274 T54 = T41 * TL;
275 T58 = T41 * TP;
276 T1Q = T1i * Te;
277 T1U = T1i * Ti;
278 T55 = FMA(T44, TP, T54);
279 T59 = FNMS(T44, TL, T58);
280 }
281 T3v = Td * TL;
282 T3z = Td * TP;
283 Tf = Td * Te;
284 T1R = FMA(T1k, Ti, T1Q);
285 T2N = FNMS(T1k, Ti, T1Q);
286 T2Q = FMA(T1k, Te, T1U);
287 T1V = FNMS(T1k, Te, T1U);
288 T1p = FNMS(T1k, TL, T1o);
289 T1l = FMA(T1k, TP, T1j);
290 Tm = Td * Ti;
291 }
292 }
293 }
294 }
295 }
296 {
297 E Tl9, TlD, TY, Tg4, T8w, TdS, TkE, Tkd, T2G, Tge, Tgh, TiK, Te1, T98, Te0;
298 E T9f, Te5, T9p, Tgq, T39, Te8, T9M, TiN, Tgn, TeE, TbI, Thr, T74, TeP, TcB;
299 E Tja, Thc, T8D, TdT, T1B, TkD, T8K, TdU, Tg7, Tk7, T8T, TdY, T27, Tg9, T90;
300 E TdX, Tgc, TiJ, T9Y, Tec, T4k, TgB, Tal, Tef, Tgy, TiT, Taz, Tel, T5d, Th0;
301 E Tbs, Tew, TgL, TiZ, T3K, Tgo, Tgt, TiO, T9P, Te6, T9E, Te9, T4L, Tgz, TgE;
302 E TiU, Tao, Ted, Tad, Teg, T5I, TgM, Th3, Tj0, Tbv, Tem, TaO, Tex, T7v, Thd;
303 E Thu, Tjb, TcE, TeF, TbX, TeQ, T68, Tj5, Tez, Teq, Tbj, Tbx, TgS, Th5, T6B;
304 E Tj6, TeA, Tet, Tb4, Tby, TgX, Th6, T7V, Tjg, TeS, TeJ, Tcs, TcG, Thj, Thw;
305 E T84, T83, T85, Tc7, T8k, Tc3, T86, T89, T8b;
306 {
307 E T3w, T3A, T4H, T4E, T8e, T8i, T5j, T5n, T4U, T4S, T4V, Tau, T5b, Tbq, T4X;
308 E T50, T52;
309 {
310 E T72, Tcz, Tcv, T6Q, Tha, TbG, T6U, Tcx, T99, T9e;
311 {
312 E T1, Tkb, Tp, Tka, TR, TV, TE, T8s, TS, T8t;
313 {
314 E Tn, Tj, T8d, T8h, T5i, T5m;
315 T1 = ri[0];
316 T8d = T1R * TL;
317 T8h = T1R * TP;
318 T3w = FMA(Th, TP, T3v);
319 T3A = FNMS(Th, TL, T3z);
320 Tn = FMA(Th, Te, Tm);
321 T4H = FNMS(Th, Te, Tm);
322 T4E = FMA(Th, Ti, Tf);
323 Tj = FNMS(Th, Ti, Tf);
324 T8e = FMA(T1V, TP, T8d);
325 T8i = FNMS(T1V, TL, T8h);
326 Tkb = ii[0];
327 T5i = T4E * TL;
328 T5m = T4E * TP;
329 {
330 E Tk, To, Tl, Tk9;
331 Tk = ri[WS(rs, 32)];
332 To = ii[WS(rs, 32)];
333 T5j = FMA(T4H, TP, T5i);
334 T5n = FNMS(T4H, TL, T5m);
335 Tl = Tj * Tk;
336 Tk9 = Tj * To;
337 {
338 E Tz, TD, TA, T8r;
339 Tz = ri[WS(rs, 16)];
340 TD = ii[WS(rs, 16)];
341 Tp = FMA(Tn, To, Tl);
342 Tka = FNMS(Tn, Tk, Tk9);
343 TA = Ty * Tz;
344 T8r = Ty * TD;
345 TR = ri[WS(rs, 48)];
346 TV = ii[WS(rs, 48)];
347 TE = FMA(TC, TD, TA);
348 T8s = FNMS(TC, Tz, T8r);
349 TS = TQ * TR;
350 T8t = TQ * TV;
351 }
352 }
353 }
354 {
355 E T8q, Tq, Tl7, Tkc, TW, T8u;
356 T8q = T1 - Tp;
357 Tq = T1 + Tp;
358 Tl7 = Tkb - Tka;
359 Tkc = Tka + Tkb;
360 TW = FMA(TU, TV, TS);
361 T8u = FNMS(TU, TR, T8t);
362 {
363 E TX, Tl8, T8v, Tk8;
364 TX = TE + TW;
365 Tl8 = TE - TW;
366 T8v = T8s - T8u;
367 Tk8 = T8s + T8u;
368 Tl9 = Tl7 - Tl8;
369 TlD = Tl8 + Tl7;
370 TY = Tq + TX;
371 Tg4 = Tq - TX;
372 T8w = T8q - T8v;
373 TdS = T8q + T8v;
374 TkE = Tkc - Tk8;
375 Tkd = Tk8 + Tkc;
376 }
377 }
378 }
379 {
380 E T2f, T93, T2E, T9d, T2n, T95, T2s, T9b;
381 {
382 E T2a, T2e, T2i, T2m;
383 T2a = ri[WS(rs, 60)];
384 T2e = ii[WS(rs, 60)];
385 {
386 E T2z, T2D, T2b, T92, T2A, T9c;
387 T2z = ri[WS(rs, 44)];
388 T2D = ii[WS(rs, 44)];
389 T2b = T29 * T2a;
390 T92 = T29 * T2e;
391 T2A = T2y * T2z;
392 T9c = T2y * T2D;
393 T2f = FMA(T2d, T2e, T2b);
394 T93 = FNMS(T2d, T2a, T92);
395 T2E = FMA(T2C, T2D, T2A);
396 T9d = FNMS(T2C, T2z, T9c);
397 }
398 T2i = ri[WS(rs, 28)];
399 T2m = ii[WS(rs, 28)];
400 {
401 E T2p, T2r, T2j, T94, T2q, T9a;
402 T2p = ri[WS(rs, 12)];
403 T2r = ii[WS(rs, 12)];
404 T2j = T2h * T2i;
405 T94 = T2h * T2m;
406 T2q = TG * T2p;
407 T9a = TG * T2r;
408 T2n = FMA(T2l, T2m, T2j);
409 T95 = FNMS(T2l, T2i, T94);
410 T2s = FMA(TJ, T2r, T2q);
411 T9b = FNMS(TJ, T2p, T9a);
412 }
413 }
414 {
415 E T2o, Tgf, T96, T97, T2F, Tgg;
416 T99 = T2f - T2n;
417 T2o = T2f + T2n;
418 Tgf = T93 + T95;
419 T96 = T93 - T95;
420 T97 = T2s - T2E;
421 T2F = T2s + T2E;
422 Tgg = T9b + T9d;
423 T9e = T9b - T9d;
424 T2G = T2o + T2F;
425 Tge = T2o - T2F;
426 Tgh = Tgf - Tgg;
427 TiK = Tgf + Tgg;
428 Te1 = T96 - T97;
429 T98 = T96 + T97;
430 }
431 }
432 {
433 E T9K, T2T, T9G, T9n, Tgl, T9o, T38, T9I;
434 {
435 E T2M, T9k, T37, T2V, T2S, T2W, T2Y, T9m, T32, T33, T36, T2Z, T9H;
436 {
437 E T2J, T2L, T2K, T9j;
438 T2J = ri[WS(rs, 2)];
439 T2L = ii[WS(rs, 2)];
440 T32 = ri[WS(rs, 50)];
441 Te0 = T99 + T9e;
442 T9f = T99 - T9e;
443 T2K = Tr * T2J;
444 T9j = Tr * T2L;
445 T33 = T31 * T32;
446 T36 = ii[WS(rs, 50)];
447 T2M = FMA(Tt, T2L, T2K);
448 T9k = FNMS(Tt, T2J, T9j);
449 }
450 {
451 E T2O, T9J, T2R, T2P, T9l;
452 T2O = ri[WS(rs, 34)];
453 T37 = FMA(T35, T36, T33);
454 T9J = T31 * T36;
455 T2R = ii[WS(rs, 34)];
456 T2P = T2N * T2O;
457 T2V = ri[WS(rs, 18)];
458 T9K = FNMS(T35, T32, T9J);
459 T9l = T2N * T2R;
460 T2S = FMA(T2Q, T2R, T2P);
461 T2W = T2U * T2V;
462 T2Y = ii[WS(rs, 18)];
463 T9m = FNMS(T2Q, T2O, T9l);
464 }
465 T2T = T2M + T2S;
466 T9G = T2M - T2S;
467 T2Z = FMA(T2X, T2Y, T2W);
468 T9H = T2U * T2Y;
469 T9n = T9k - T9m;
470 Tgl = T9k + T9m;
471 T9o = T2Z - T37;
472 T38 = T2Z + T37;
473 T9I = FNMS(T2X, T2V, T9H);
474 }
475 {
476 E T6H, TbD, T6P, T6R, T6T, TbF, T6S, Tcw;
477 {
478 E T6X, T71, T6E, TbC, T6K, TbE;
479 {
480 E T6F, T6G, T9L, Tgm;
481 T6E = ri[WS(rs, 63)];
482 Te5 = T9n - T9o;
483 T9p = T9n + T9o;
484 Tgq = T2T - T38;
485 T39 = T2T + T38;
486 T9L = T9I - T9K;
487 Tgm = T9I + T9K;
488 T6F = TL * T6E;
489 T6G = ii[WS(rs, 63)];
490 Te8 = T9G + T9L;
491 T9M = T9G - T9L;
492 TiN = Tgl + Tgm;
493 Tgn = Tgl - Tgm;
494 TbC = TL * T6G;
495 T6H = FMA(TP, T6G, T6F);
496 }
497 T6X = ri[WS(rs, 47)];
498 T71 = ii[WS(rs, 47)];
499 TbD = FNMS(TP, T6E, TbC);
500 {
501 E T6O, T6L, T6Y, Tcy;
502 T6K = ri[WS(rs, 31)];
503 T6Y = T6W * T6X;
504 Tcy = T6W * T71;
505 T6O = ii[WS(rs, 31)];
506 T6L = T6J * T6K;
507 T72 = FMA(T70, T71, T6Y);
508 Tcz = FNMS(T70, T6X, Tcy);
509 TbE = T6J * T6O;
510 T6P = FMA(T6N, T6O, T6L);
511 }
512 T6R = ri[WS(rs, 15)];
513 T6T = ii[WS(rs, 15)];
514 TbF = FNMS(T6N, T6K, TbE);
515 }
516 Tcv = T6H - T6P;
517 T6Q = T6H + T6P;
518 T6S = TK * T6R;
519 Tcw = TK * T6T;
520 Tha = TbD + TbF;
521 TbG = TbD - TbF;
522 T6U = FMA(TO, T6T, T6S);
523 Tcx = FNMS(TO, T6R, Tcw);
524 }
525 }
526 {
527 E T1J, T1G, T1K, T8O, T25, T8Y, T1N, T1S, T1W;
528 {
529 E T1b, T16, T1c, T8y, T1z, T8I, T1f, T1m, T1q;
530 {
531 E T11, T12, T15, T1u, T1y, T8x, T1v, T8H;
532 T11 = ri[WS(rs, 8)];
533 {
534 E TbH, T73, TcA, Thb;
535 TbH = T6U - T72;
536 T73 = T6U + T72;
537 TcA = Tcx - Tcz;
538 Thb = Tcx + Tcz;
539 TeE = TbG - TbH;
540 TbI = TbG + TbH;
541 Thr = T6Q - T73;
542 T74 = T6Q + T73;
543 TeP = Tcv + TcA;
544 TcB = Tcv - TcA;
545 Tja = Tha + Thb;
546 Thc = Tha - Thb;
547 T12 = T10 * T11;
548 }
549 T15 = ii[WS(rs, 8)];
550 T1u = ri[WS(rs, 24)];
551 T1y = ii[WS(rs, 24)];
552 T1b = ri[WS(rs, 40)];
553 T16 = FMA(T14, T15, T12);
554 T8x = T10 * T15;
555 T1v = T1t * T1u;
556 T8H = T1t * T1y;
557 T1c = T1a * T1b;
558 T8y = FNMS(T14, T11, T8x);
559 T1z = FMA(T1x, T1y, T1v);
560 T8I = FNMS(T1x, T1u, T8H);
561 T1f = ii[WS(rs, 40)];
562 T1m = ri[WS(rs, 56)];
563 T1q = ii[WS(rs, 56)];
564 }
565 {
566 E T1D, T1E, T1F, T20, T24, T8N, T21, T8X;
567 {
568 E T1h, T8C, T8A, T1r, T8G, Tg5, T8B;
569 T1D = ri[WS(rs, 4)];
570 {
571 E T1g, T8z, T1n, T8F;
572 T1g = FMA(T1e, T1f, T1c);
573 T8z = T1a * T1f;
574 T1n = T1l * T1m;
575 T8F = T1l * T1q;
576 T1h = T16 + T1g;
577 T8C = T16 - T1g;
578 T8A = FNMS(T1e, T1b, T8z);
579 T1r = FMA(T1p, T1q, T1n);
580 T8G = FNMS(T1p, T1m, T8F);
581 T1E = T7 * T1D;
582 }
583 Tg5 = T8y + T8A;
584 T8B = T8y - T8A;
585 {
586 E T1A, T8E, Tg6, T8J;
587 T1A = T1r + T1z;
588 T8E = T1r - T1z;
589 Tg6 = T8G + T8I;
590 T8J = T8G - T8I;
591 T8D = T8B - T8C;
592 TdT = T8C + T8B;
593 T1B = T1h + T1A;
594 TkD = T1A - T1h;
595 T8K = T8E + T8J;
596 TdU = T8E - T8J;
597 Tg7 = Tg5 - Tg6;
598 Tk7 = Tg5 + Tg6;
599 T1F = ii[WS(rs, 4)];
600 }
601 }
602 T20 = ri[WS(rs, 52)];
603 T24 = ii[WS(rs, 52)];
604 T1J = ri[WS(rs, 36)];
605 T1G = FMA(Tb, T1F, T1E);
606 T8N = T7 * T1F;
607 T21 = T1Z * T20;
608 T8X = T1Z * T24;
609 T1K = T1I * T1J;
610 T8O = FNMS(Tb, T1D, T8N);
611 T25 = FMA(T23, T24, T21);
612 T8Y = FNMS(T23, T20, T8X);
613 T1N = ii[WS(rs, 36)];
614 T1S = ri[WS(rs, 20)];
615 T1W = ii[WS(rs, 20)];
616 }
617 }
618 {
619 E T3V, T3T, T3W, T9T, T4i, Taj, T3Y, T42, T45;
620 {
621 E T3O, T3P, T3S, T4d, T4h, T9S, T4e, Tai;
622 {
623 E T1P, T8U, T8Q, T1X, T8W, Tga, T8R;
624 T3O = ri[WS(rs, 62)];
625 {
626 E T1O, T8P, T1T, T8V;
627 T1O = FMA(T1M, T1N, T1K);
628 T8P = T1I * T1N;
629 T1T = T1R * T1S;
630 T8V = T1R * T1W;
631 T1P = T1G + T1O;
632 T8U = T1G - T1O;
633 T8Q = FNMS(T1M, T1J, T8P);
634 T1X = FMA(T1V, T1W, T1T);
635 T8W = FNMS(T1V, T1S, T8V);
636 T3P = T3N * T3O;
637 }
638 Tga = T8O + T8Q;
639 T8R = T8O - T8Q;
640 {
641 E T26, T8S, Tgb, T8Z;
642 T26 = T1X + T25;
643 T8S = T1X - T25;
644 Tgb = T8W + T8Y;
645 T8Z = T8W - T8Y;
646 T8T = T8R + T8S;
647 TdY = T8R - T8S;
648 T27 = T1P + T26;
649 Tg9 = T1P - T26;
650 T90 = T8U - T8Z;
651 TdX = T8U + T8Z;
652 Tgc = Tga - Tgb;
653 TiJ = Tga + Tgb;
654 T3S = ii[WS(rs, 62)];
655 }
656 }
657 T4d = ri[WS(rs, 46)];
658 T4h = ii[WS(rs, 46)];
659 T3V = ri[WS(rs, 30)];
660 T3T = FMA(T3R, T3S, T3P);
661 T9S = T3N * T3S;
662 T4e = T4c * T4d;
663 Tai = T4c * T4h;
664 T3W = T3U * T3V;
665 T9T = FNMS(T3R, T3O, T9S);
666 T4i = FMA(T4g, T4h, T4e);
667 Taj = FNMS(T4g, T4d, Tai);
668 T3Y = ii[WS(rs, 30)];
669 T42 = ri[WS(rs, 14)];
670 T45 = ii[WS(rs, 14)];
671 }
672 {
673 E T4P, T4Q, T4R, T56, T5a, Tat, T57, Tbp;
674 {
675 E T40, Taf, T9V, T46, Tah, Tgw, T9W;
676 T4P = ri[WS(rs, 1)];
677 {
678 E T3Z, T9U, T43, Tag;
679 T3Z = FMA(T3X, T3Y, T3W);
680 T9U = T3U * T3Y;
681 T43 = T41 * T42;
682 Tag = T41 * T45;
683 T40 = T3T + T3Z;
684 Taf = T3T - T3Z;
685 T9V = FNMS(T3X, T3V, T9U);
686 T46 = FMA(T44, T45, T43);
687 Tah = FNMS(T44, T42, Tag);
688 T4Q = T2 * T4P;
689 }
690 Tgw = T9T + T9V;
691 T9W = T9T - T9V;
692 {
693 E T4j, T9X, Tgx, Tak;
694 T4j = T46 + T4i;
695 T9X = T46 - T4i;
696 Tgx = Tah + Taj;
697 Tak = Tah - Taj;
698 T9Y = T9W + T9X;
699 Tec = T9W - T9X;
700 T4k = T40 + T4j;
701 TgB = T40 - T4j;
702 Tal = Taf - Tak;
703 Tef = Taf + Tak;
704 Tgy = Tgw - Tgx;
705 TiT = Tgw + Tgx;
706 T4R = ii[WS(rs, 1)];
707 }
708 }
709 T56 = ri[WS(rs, 49)];
710 T5a = ii[WS(rs, 49)];
711 T4U = ri[WS(rs, 33)];
712 T4S = FMA(T5, T4R, T4Q);
713 Tat = T2 * T4R;
714 T57 = T55 * T56;
715 Tbp = T55 * T5a;
716 T4V = T4T * T4U;
717 Tau = FNMS(T5, T4P, Tat);
718 T5b = FMA(T59, T5a, T57);
719 Tbq = FNMS(T59, T56, Tbp);
720 T4X = ii[WS(rs, 33)];
721 T50 = ri[WS(rs, 17)];
722 T52 = ii[WS(rs, 17)];
723 }
724 }
725 }
726 }
727 {
728 E T7a, T78, T7b, TbL, T7t, TbU, T7d, T7i, T7m;
729 {
730 E T4q, T4o, T4r, Ta1, T4J, Taa, T4t, T4y, T4C;
731 {
732 E T3o, T3f, T3p, T9s, T3I, T9B, T3s, T3x, T3B;
733 {
734 E T3b, T3c, T3e, T3E, T3H, T9r, T3F, T9A;
735 {
736 E T4Z, Tbm, Taw, T53, Tbo, TgJ, Tax;
737 T3b = ri[WS(rs, 10)];
738 {
739 E T4Y, Tav, T51, Tbn;
740 T4Y = FMA(T4W, T4X, T4V);
741 Tav = T4T * T4X;
742 T51 = T48 * T50;
743 Tbn = T48 * T52;
744 T4Z = T4S + T4Y;
745 Tbm = T4S - T4Y;
746 Taw = FNMS(T4W, T4U, Tav);
747 T53 = FMA(T4b, T52, T51);
748 Tbo = FNMS(T4b, T50, Tbn);
749 T3c = T3a * T3b;
750 }
751 TgJ = Tau + Taw;
752 Tax = Tau - Taw;
753 {
754 E T5c, Tay, TgK, Tbr;
755 T5c = T53 + T5b;
756 Tay = T53 - T5b;
757 TgK = Tbo + Tbq;
758 Tbr = Tbo - Tbq;
759 Taz = Tax + Tay;
760 Tel = Tax - Tay;
761 T5d = T4Z + T5c;
762 Th0 = T4Z - T5c;
763 Tbs = Tbm - Tbr;
764 Tew = Tbm + Tbr;
765 TgL = TgJ - TgK;
766 TiZ = TgJ + TgK;
767 T3e = ii[WS(rs, 10)];
768 }
769 }
770 T3E = ri[WS(rs, 26)];
771 T3H = ii[WS(rs, 26)];
772 T3o = ri[WS(rs, 42)];
773 T3f = FMA(T3d, T3e, T3c);
774 T9r = T3a * T3e;
775 T3F = T3D * T3E;
776 T9A = T3D * T3H;
777 T3p = T3n * T3o;
778 T9s = FNMS(T3d, T3b, T9r);
779 T3I = FMA(T3G, T3H, T3F);
780 T9B = FNMS(T3G, T3E, T9A);
781 T3s = ii[WS(rs, 42)];
782 T3x = ri[WS(rs, 58)];
783 T3B = ii[WS(rs, 58)];
784 }
785 {
786 E T4l, T4m, T4n, T4F, T4I, Ta0, T4G, Ta9;
787 {
788 E T3u, T9q, T9u, T3C, T9z, Tgr, T9v;
789 T4l = ri[WS(rs, 6)];
790 {
791 E T3t, T9t, T3y, T9y;
792 T3t = FMA(T3r, T3s, T3p);
793 T9t = T3n * T3s;
794 T3y = T3w * T3x;
795 T9y = T3w * T3B;
796 T3u = T3f + T3t;
797 T9q = T3f - T3t;
798 T9u = FNMS(T3r, T3o, T9t);
799 T3C = FMA(T3A, T3B, T3y);
800 T9z = FNMS(T3A, T3x, T9y);
801 T4m = T3g * T4l;
802 }
803 Tgr = T9s + T9u;
804 T9v = T9s - T9u;
805 {
806 E T3J, T9x, Tgs, T9C;
807 T3J = T3C + T3I;
808 T9x = T3C - T3I;
809 Tgs = T9z + T9B;
810 T9C = T9z - T9B;
811 {
812 E T9w, T9O, T9D, T9N;
813 T9w = T9q + T9v;
814 T9O = T9v - T9q;
815 T3K = T3u + T3J;
816 Tgo = T3J - T3u;
817 T9D = T9x - T9C;
818 T9N = T9x + T9C;
819 Tgt = Tgr - Tgs;
820 TiO = Tgr + Tgs;
821 T9P = T9N - T9O;
822 Te6 = T9O + T9N;
823 T9E = T9w - T9D;
824 Te9 = T9w + T9D;
825 T4n = ii[WS(rs, 6)];
826 }
827 }
828 }
829 T4F = ri[WS(rs, 22)];
830 T4I = ii[WS(rs, 22)];
831 T4q = ri[WS(rs, 38)];
832 T4o = FMA(T3i, T4n, T4m);
833 Ta0 = T3g * T4n;
834 T4G = T4E * T4F;
835 Ta9 = T4E * T4I;
836 T4r = T4p * T4q;
837 Ta1 = FNMS(T3i, T4l, Ta0);
838 T4J = FMA(T4H, T4I, T4G);
839 Taa = FNMS(T4H, T4F, Ta9);
840 T4t = ii[WS(rs, 38)];
841 T4y = ri[WS(rs, 54)];
842 T4C = ii[WS(rs, 54)];
843 }
844 }
845 {
846 E T5k, T5h, T5l, TaC, T5G, TaL, T5o, T5t, T5x;
847 {
848 E T5e, T5f, T5g, T5B, T5F, TaB, T5C, TaK;
849 {
850 E T4v, T9Z, Ta3, T4D, Ta8, TgC, Ta4;
851 T5e = ri[WS(rs, 9)];
852 {
853 E T4u, Ta2, T4z, Ta7;
854 T4u = FMA(T4s, T4t, T4r);
855 Ta2 = T4p * T4t;
856 T4z = T4x * T4y;
857 Ta7 = T4x * T4C;
858 T4v = T4o + T4u;
859 T9Z = T4o - T4u;
860 Ta3 = FNMS(T4s, T4q, Ta2);
861 T4D = FMA(T4B, T4C, T4z);
862 Ta8 = FNMS(T4B, T4y, Ta7);
863 T5f = T8 * T5e;
864 }
865 TgC = Ta1 + Ta3;
866 Ta4 = Ta1 - Ta3;
867 {
868 E T4K, Ta6, TgD, Tab;
869 T4K = T4D + T4J;
870 Ta6 = T4D - T4J;
871 TgD = Ta8 + Taa;
872 Tab = Ta8 - Taa;
873 {
874 E Ta5, Tan, Tac, Tam;
875 Ta5 = T9Z + Ta4;
876 Tan = Ta4 - T9Z;
877 T4L = T4v + T4K;
878 Tgz = T4K - T4v;
879 Tac = Ta6 - Tab;
880 Tam = Ta6 + Tab;
881 TgE = TgC - TgD;
882 TiU = TgC + TgD;
883 Tao = Tam - Tan;
884 Ted = Tan + Tam;
885 Tad = Ta5 - Tac;
886 Teg = Ta5 + Tac;
887 T5g = ii[WS(rs, 9)];
888 }
889 }
890 }
891 T5B = ri[WS(rs, 25)];
892 T5F = ii[WS(rs, 25)];
893 T5k = ri[WS(rs, 41)];
894 T5h = FMA(Tc, T5g, T5f);
895 TaB = T8 * T5g;
896 T5C = T5A * T5B;
897 TaK = T5A * T5F;
898 T5l = T5j * T5k;
899 TaC = FNMS(Tc, T5e, TaB);
900 T5G = FMA(T5E, T5F, T5C);
901 TaL = FNMS(T5E, T5B, TaK);
902 T5o = ii[WS(rs, 41)];
903 T5t = ri[WS(rs, 57)];
904 T5x = ii[WS(rs, 57)];
905 }
906 {
907 E T75, T76, T77, T7p, T7s, TbK, T7q, TbT;
908 {
909 E T5q, TaA, TaE, T5y, TaJ, Th1, TaF;
910 T75 = ri[WS(rs, 7)];
911 {
912 E T5p, TaD, T5u, TaI;
913 T5p = FMA(T5n, T5o, T5l);
914 TaD = T5j * T5o;
915 T5u = T5s * T5t;
916 TaI = T5s * T5x;
917 T5q = T5h + T5p;
918 TaA = T5h - T5p;
919 TaE = FNMS(T5n, T5k, TaD);
920 T5y = FMA(T5w, T5x, T5u);
921 TaJ = FNMS(T5w, T5t, TaI);
922 T76 = T1i * T75;
923 }
924 Th1 = TaC + TaE;
925 TaF = TaC - TaE;
926 {
927 E T5H, TaH, Th2, TaM;
928 T5H = T5y + T5G;
929 TaH = T5y - T5G;
930 Th2 = TaJ + TaL;
931 TaM = TaJ - TaL;
932 {
933 E TaG, Tbu, TaN, Tbt;
934 TaG = TaA + TaF;
935 Tbu = TaF - TaA;
936 T5I = T5q + T5H;
937 TgM = T5H - T5q;
938 TaN = TaH - TaM;
939 Tbt = TaH + TaM;
940 Th3 = Th1 - Th2;
941 Tj0 = Th1 + Th2;
942 Tbv = Tbt - Tbu;
943 Tem = Tbu + Tbt;
944 TaO = TaG - TaN;
945 Tex = TaG + TaN;
946 T77 = ii[WS(rs, 7)];
947 }
948 }
949 }
950 T7p = ri[WS(rs, 23)];
951 T7s = ii[WS(rs, 23)];
952 T7a = ri[WS(rs, 39)];
953 T78 = FMA(T1k, T77, T76);
954 TbK = T1i * T77;
955 T7q = T7o * T7p;
956 TbT = T7o * T7s;
957 T7b = T79 * T7a;
958 TbL = FNMS(T1k, T75, TbK);
959 T7t = FMA(T7r, T7s, T7q);
960 TbU = FNMS(T7r, T7p, TbT);
961 T7d = ii[WS(rs, 39)];
962 T7i = ri[WS(rs, 55)];
963 T7m = ii[WS(rs, 55)];
964 }
965 }
966 }
967 {
968 E T6i, T6g, T6j, TaY, T6z, TaU, T6l, T6o, T6q;
969 {
970 E T5P, T5N, T5Q, Tbd, T66, Tb9, T5S, T5V, T5X;
971 {
972 E T5K, T5L, T5M, T61, T65, Tbc, T62, Tb8;
973 {
974 E T7f, TbJ, TbN, T7n, TbS, Ths, TbO;
975 T5K = ri[WS(rs, 5)];
976 {
977 E T7e, TbM, T7j, TbR;
978 T7e = FMA(T7c, T7d, T7b);
979 TbM = T79 * T7d;
980 T7j = T7h * T7i;
981 TbR = T7h * T7m;
982 T7f = T78 + T7e;
983 TbJ = T78 - T7e;
984 TbN = FNMS(T7c, T7a, TbM);
985 T7n = FMA(T7l, T7m, T7j);
986 TbS = FNMS(T7l, T7i, TbR);
987 T5L = Td * T5K;
988 }
989 Ths = TbL + TbN;
990 TbO = TbL - TbN;
991 {
992 E T7u, TbQ, Tht, TbV;
993 T7u = T7n + T7t;
994 TbQ = T7n - T7t;
995 Tht = TbS + TbU;
996 TbV = TbS - TbU;
997 {
998 E TbP, TcD, TbW, TcC;
999 TbP = TbJ + TbO;
1000 TcD = TbO - TbJ;
1001 T7v = T7f + T7u;
1002 Thd = T7u - T7f;
1003 TbW = TbQ - TbV;
1004 TcC = TbQ + TbV;
1005 Thu = Ths - Tht;
1006 Tjb = Ths + Tht;
1007 TcE = TcC - TcD;
1008 TeF = TcD + TcC;
1009 TbX = TbP - TbW;
1010 TeQ = TbP + TbW;
1011 T5M = ii[WS(rs, 5)];
1012 }
1013 }
1014 }
1015 T61 = ri[WS(rs, 53)];
1016 T65 = ii[WS(rs, 53)];
1017 T5P = ri[WS(rs, 37)];
1018 T5N = FMA(Th, T5M, T5L);
1019 Tbc = Td * T5M;
1020 T62 = T60 * T61;
1021 Tb8 = T60 * T65;
1022 T5Q = T5O * T5P;
1023 Tbd = FNMS(Th, T5K, Tbc);
1024 T66 = FMA(T64, T65, T62);
1025 Tb9 = FNMS(T64, T61, Tb8);
1026 T5S = ii[WS(rs, 37)];
1027 T5V = ri[WS(rs, 21)];
1028 T5X = ii[WS(rs, 21)];
1029 }
1030 {
1031 E T6b, T6c, T6f, T6u, T6y, TaX, T6v, TaT;
1032 {
1033 E T5U, Tb5, Tbf, T5Y, Tb7;
1034 T6b = ri[WS(rs, 61)];
1035 {
1036 E T5T, Tbe, T5W, Tb6;
1037 T5T = FMA(T5R, T5S, T5Q);
1038 Tbe = T5O * T5S;
1039 T5W = T3j * T5V;
1040 Tb6 = T3j * T5X;
1041 T5U = T5N + T5T;
1042 Tb5 = T5N - T5T;
1043 Tbf = FNMS(T5R, T5P, Tbe);
1044 T5Y = FMA(T3m, T5X, T5W);
1045 Tb7 = FNMS(T3m, T5V, Tb6);
1046 T6c = T6a * T6b;
1047 }
1048 {
1049 E TgO, Tbg, T67, Tbh;
1050 TgO = Tbd + Tbf;
1051 Tbg = Tbd - Tbf;
1052 T67 = T5Y + T66;
1053 Tbh = T5Y - T66;
1054 {
1055 E TgP, Tba, Tbi, Teo;
1056 TgP = Tb7 + Tb9;
1057 Tba = Tb7 - Tb9;
1058 Tbi = Tbg + Tbh;
1059 Teo = Tbg - Tbh;
1060 {
1061 E TgR, Tbb, Tep, TgQ;
1062 TgR = T5U - T67;
1063 T68 = T5U + T67;
1064 Tbb = Tb5 - Tba;
1065 Tep = Tb5 + Tba;
1066 TgQ = TgO - TgP;
1067 Tj5 = TgO + TgP;
1068 Tez = FMA(KP414213562, Teo, Tep);
1069 Teq = FNMS(KP414213562, Tep, Teo);
1070 Tbj = FNMS(KP414213562, Tbi, Tbb);
1071 Tbx = FMA(KP414213562, Tbb, Tbi);
1072 TgS = TgQ - TgR;
1073 Th5 = TgR + TgQ;
1074 T6f = ii[WS(rs, 61)];
1075 }
1076 }
1077 }
1078 }
1079 T6u = ri[WS(rs, 45)];
1080 T6y = ii[WS(rs, 45)];
1081 T6i = ri[WS(rs, 29)];
1082 T6g = FMA(T6e, T6f, T6c);
1083 TaX = T6a * T6f;
1084 T6v = T6t * T6u;
1085 TaT = T6t * T6y;
1086 T6j = T6h * T6i;
1087 TaY = FNMS(T6e, T6b, TaX);
1088 T6z = FMA(T6x, T6y, T6v);
1089 TaU = FNMS(T6x, T6u, TaT);
1090 T6l = ii[WS(rs, 29)];
1091 T6o = ri[WS(rs, 13)];
1092 T6q = ii[WS(rs, 13)];
1093 }
1094 }
1095 {
1096 E T7C, T7A, T7D, Tcm, T7T, Tci, T7F, T7I, T7K;
1097 {
1098 E T7x, T7y, T7z, T7O, T7S, Tcl, T7P, Tch;
1099 {
1100 E T6n, TaQ, Tb0, T6r, TaS;
1101 T7x = ri[WS(rs, 3)];
1102 {
1103 E T6m, TaZ, T6p, TaR;
1104 T6m = FMA(T6k, T6l, T6j);
1105 TaZ = T6h * T6l;
1106 T6p = T17 * T6o;
1107 TaR = T17 * T6q;
1108 T6n = T6g + T6m;
1109 TaQ = T6g - T6m;
1110 Tb0 = FNMS(T6k, T6i, TaZ);
1111 T6r = FMA(T19, T6q, T6p);
1112 TaS = FNMS(T19, T6o, TaR);
1113 T7y = T3 * T7x;
1114 }
1115 {
1116 E TgU, Tb1, T6A, Tb2;
1117 TgU = TaY + Tb0;
1118 Tb1 = TaY - Tb0;
1119 T6A = T6r + T6z;
1120 Tb2 = T6r - T6z;
1121 {
1122 E TgV, TaV, Tb3, Ter;
1123 TgV = TaS + TaU;
1124 TaV = TaS - TaU;
1125 Tb3 = Tb1 + Tb2;
1126 Ter = Tb1 - Tb2;
1127 {
1128 E TgT, TaW, Tes, TgW;
1129 TgT = T6n - T6A;
1130 T6B = T6n + T6A;
1131 TaW = TaQ - TaV;
1132 Tes = TaQ + TaV;
1133 TgW = TgU - TgV;
1134 Tj6 = TgU + TgV;
1135 TeA = FNMS(KP414213562, Ter, Tes);
1136 Tet = FMA(KP414213562, Tes, Ter);
1137 Tb4 = FMA(KP414213562, Tb3, TaW);
1138 Tby = FNMS(KP414213562, TaW, Tb3);
1139 TgX = TgT + TgW;
1140 Th6 = TgT - TgW;
1141 T7z = ii[WS(rs, 3)];
1142 }
1143 }
1144 }
1145 }
1146 T7O = ri[WS(rs, 51)];
1147 T7S = ii[WS(rs, 51)];
1148 T7C = ri[WS(rs, 35)];
1149 T7A = FMA(T6, T7z, T7y);
1150 Tcl = T3 * T7z;
1151 T7P = T7N * T7O;
1152 Tch = T7N * T7S;
1153 T7D = T7B * T7C;
1154 Tcm = FNMS(T6, T7x, Tcl);
1155 T7T = FMA(T7R, T7S, T7P);
1156 Tci = FNMS(T7R, T7O, Tch);
1157 T7F = ii[WS(rs, 35)];
1158 T7I = ri[WS(rs, 19)];
1159 T7K = ii[WS(rs, 19)];
1160 }
1161 {
1162 E T7Y, T7Z, T82, T8f, T8j, Tc6, T8g, Tc2;
1163 {
1164 E T7H, Tce, Tco, T7L, Tcg;
1165 T7Y = ri[WS(rs, 59)];
1166 {
1167 E T7G, Tcn, T7J, Tcf;
1168 T7G = FMA(T7E, T7F, T7D);
1169 Tcn = T7B * T7F;
1170 T7J = T2u * T7I;
1171 Tcf = T2u * T7K;
1172 T7H = T7A + T7G;
1173 Tce = T7A - T7G;
1174 Tco = FNMS(T7E, T7C, Tcn);
1175 T7L = FMA(T2x, T7K, T7J);
1176 Tcg = FNMS(T2x, T7I, Tcf);
1177 T7Z = T7X * T7Y;
1178 }
1179 {
1180 E Thf, Tcp, T7U, Tcq;
1181 Thf = Tcm + Tco;
1182 Tcp = Tcm - Tco;
1183 T7U = T7L + T7T;
1184 Tcq = T7L - T7T;
1185 {
1186 E Thg, Tcj, Tcr, TeH;
1187 Thg = Tcg + Tci;
1188 Tcj = Tcg - Tci;
1189 Tcr = Tcp + Tcq;
1190 TeH = Tcp - Tcq;
1191 {
1192 E Thi, Tck, TeI, Thh;
1193 Thi = T7H - T7U;
1194 T7V = T7H + T7U;
1195 Tck = Tce - Tcj;
1196 TeI = Tce + Tcj;
1197 Thh = Thf - Thg;
1198 Tjg = Thf + Thg;
1199 TeS = FMA(KP414213562, TeH, TeI);
1200 TeJ = FNMS(KP414213562, TeI, TeH);
1201 Tcs = FNMS(KP414213562, Tcr, Tck);
1202 TcG = FMA(KP414213562, Tck, Tcr);
1203 Thj = Thh - Thi;
1204 Thw = Thi + Thh;
1205 T82 = ii[WS(rs, 59)];
1206 }
1207 }
1208 }
1209 }
1210 T8f = ri[WS(rs, 43)];
1211 T8j = ii[WS(rs, 43)];
1212 T84 = ri[WS(rs, 27)];
1213 T83 = FMA(T81, T82, T7Z);
1214 Tc6 = T7X * T82;
1215 T8g = T8e * T8f;
1216 Tc2 = T8e * T8j;
1217 T85 = Te * T84;
1218 Tc7 = FNMS(T81, T7Y, Tc6);
1219 T8k = FMA(T8i, T8j, T8g);
1220 Tc3 = FNMS(T8i, T8f, Tc2);
1221 T86 = ii[WS(rs, 27)];
1222 T89 = ri[WS(rs, 11)];
1223 T8b = ii[WS(rs, 11)];
1224 }
1225 }
1226 }
1227 }
1228 }
1229 {
1230 E TeT, TeM, Tcd, TcH, Tho, Thx, Tkw, Tkv, Tl6, Tl5;
1231 {
1232 E TiI, Tkp, TiQ, TiS, TiL, Tkq, TiP, TiV, Tjf, Tjd, Tjc, Tji, Tj4, Tj2, Tj1;
1233 E Tj7, Tkh, Tki;
1234 {
1235 E TjG, T2I, Tkj, T4N, Tkk, Tkf, Tk5, TjJ, T8o, Tk2, TjL, T6D, TjY, TjU, Tk1;
1236 E TjO;
1237 {
1238 E T8m, Tjh, T3L, T4M, Tk6, Tke, TjH, TjI;
1239 {
1240 E T1C, T88, TbZ, Tc9, T8c, Tc1, T2H;
1241 T1C = TY + T1B;
1242 TiI = TY - T1B;
1243 {
1244 E T87, Tc8, T8a, Tc0;
1245 T87 = FMA(Ti, T86, T85);
1246 Tc8 = Te * T86;
1247 T8a = Tu * T89;
1248 Tc0 = Tu * T8b;
1249 T88 = T83 + T87;
1250 TbZ = T83 - T87;
1251 Tc9 = FNMS(Ti, T84, Tc8);
1252 T8c = FMA(Tx, T8b, T8a);
1253 Tc1 = FNMS(Tx, T89, Tc0);
1254 T2H = T27 + T2G;
1255 Tkp = T2G - T27;
1256 }
1257 {
1258 E Thl, Tca, T8l, Tcb;
1259 Thl = Tc7 + Tc9;
1260 Tca = Tc7 - Tc9;
1261 T8l = T8c + T8k;
1262 Tcb = T8c - T8k;
1263 {
1264 E Thm, Tc4, Tcc, TeK;
1265 Thm = Tc1 + Tc3;
1266 Tc4 = Tc1 - Tc3;
1267 Tcc = Tca + Tcb;
1268 TeK = Tca - Tcb;
1269 {
1270 E Thk, Tc5, TeL, Thn;
1271 Thk = T88 - T8l;
1272 T8m = T88 + T8l;
1273 Tc5 = TbZ - Tc4;
1274 TeL = TbZ + Tc4;
1275 Thn = Thl - Thm;
1276 Tjh = Thl + Thm;
1277 TeT = FNMS(KP414213562, TeK, TeL);
1278 TeM = FMA(KP414213562, TeL, TeK);
1279 Tcd = FMA(KP414213562, Tcc, Tc5);
1280 TcH = FNMS(KP414213562, Tc5, Tcc);
1281 Tho = Thk + Thn;
1282 Thx = Thk - Thn;
1283 TjG = T1C - T2H;
1284 T2I = T1C + T2H;
1285 }
1286 }
1287 }
1288 }
1289 TiQ = T39 - T3K;
1290 T3L = T39 + T3K;
1291 T4M = T4k + T4L;
1292 TiS = T4k - T4L;
1293 TiL = TiJ - TiK;
1294 Tk6 = TiJ + TiK;
1295 Tke = Tk7 + Tkd;
1296 Tkq = Tkd - Tk7;
1297 TiP = TiN - TiO;
1298 TjH = TiN + TiO;
1299 Tkj = T4M - T3L;
1300 T4N = T3L + T4M;
1301 Tkk = Tke - Tk6;
1302 Tkf = Tk6 + Tke;
1303 TjI = TiT + TiU;
1304 TiV = TiT - TiU;
1305 {
1306 E TjR, TjQ, TjS, T7w, T8n;
1307 Tjf = T74 - T7v;
1308 T7w = T74 + T7v;
1309 T8n = T7V + T8m;
1310 Tjd = T8m - T7V;
1311 Tjc = Tja - Tjb;
1312 TjR = Tja + Tjb;
1313 Tk5 = TjH + TjI;
1314 TjJ = TjH - TjI;
1315 TjQ = T7w - T8n;
1316 T8o = T7w + T8n;
1317 Tji = Tjg - Tjh;
1318 TjS = Tjg + Tjh;
1319 {
1320 E TjM, TjN, T5J, T6C, TjT;
1321 Tj4 = T5d - T5I;
1322 T5J = T5d + T5I;
1323 T6C = T68 + T6B;
1324 Tj2 = T6B - T68;
1325 TjT = TjR - TjS;
1326 Tk2 = TjR + TjS;
1327 Tj1 = TiZ - Tj0;
1328 TjM = TiZ + Tj0;
1329 TjL = T5J - T6C;
1330 T6D = T5J + T6C;
1331 Tj7 = Tj5 - Tj6;
1332 TjN = Tj5 + Tj6;
1333 TjY = TjQ + TjT;
1334 TjU = TjQ - TjT;
1335 Tk1 = TjM + TjN;
1336 TjO = TjM - TjN;
1337 }
1338 }
1339 }
1340 {
1341 E Tk0, Tk3, TjW, Tko, Tkn, Tkl, Tkm, TjZ;
1342 {
1343 E TjP, TjX, Tk4, Tkg, T4O, T8p, TjK, TjV;
1344 Tk0 = T2I - T4N;
1345 T4O = T2I + T4N;
1346 T8p = T6D + T8o;
1347 Tkh = T8o - T6D;
1348 TjP = TjL + TjO;
1349 TjX = TjO - TjL;
1350 Tk3 = Tk1 - Tk2;
1351 Tk4 = Tk1 + Tk2;
1352 ri[0] = T4O + T8p;
1353 ri[WS(rs, 32)] = T4O - T8p;
1354 Tkg = Tk5 + Tkf;
1355 Tki = Tkf - Tk5;
1356 TjW = TjG - TjJ;
1357 TjK = TjG + TjJ;
1358 TjV = TjP + TjU;
1359 Tko = TjU - TjP;
1360 Tkn = Tkk - Tkj;
1361 Tkl = Tkj + Tkk;
1362 ii[WS(rs, 32)] = Tkg - Tk4;
1363 ii[0] = Tk4 + Tkg;
1364 ri[WS(rs, 8)] = FMA(KP707106781, TjV, TjK);
1365 ri[WS(rs, 40)] = FNMS(KP707106781, TjV, TjK);
1366 Tkm = TjX + TjY;
1367 TjZ = TjX - TjY;
1368 }
1369 ii[WS(rs, 40)] = FNMS(KP707106781, Tkm, Tkl);
1370 ii[WS(rs, 8)] = FMA(KP707106781, Tkm, Tkl);
1371 ri[WS(rs, 24)] = FMA(KP707106781, TjZ, TjW);
1372 ri[WS(rs, 56)] = FNMS(KP707106781, TjZ, TjW);
1373 ii[WS(rs, 56)] = FNMS(KP707106781, Tko, Tkn);
1374 ii[WS(rs, 24)] = FMA(KP707106781, Tko, Tkn);
1375 ri[WS(rs, 16)] = Tk0 + Tk3;
1376 ri[WS(rs, 48)] = Tk0 - Tk3;
1377 }
1378 }
1379 {
1380 E Tjq, TiM, Tkx, Tkr, Tjt, Tky, Tks, TiX, Tjz, Tje, Tjx, TjD, Tjn, Tj9, Tjr;
1381 E TiR;
1382 ii[WS(rs, 48)] = Tki - Tkh;
1383 ii[WS(rs, 16)] = Tkh + Tki;
1384 Tjq = TiI + TiL;
1385 TiM = TiI - TiL;
1386 Tkx = Tkq - Tkp;
1387 Tkr = Tkp + Tkq;
1388 Tjr = TiQ + TiP;
1389 TiR = TiP - TiQ;
1390 {
1391 E Tjw, Tj3, Tjs, TiW, Tjv, Tj8;
1392 Tjs = TiS - TiV;
1393 TiW = TiS + TiV;
1394 Tjw = Tj1 + Tj2;
1395 Tj3 = Tj1 - Tj2;
1396 Tjt = Tjr + Tjs;
1397 Tky = Tjs - Tjr;
1398 Tks = TiR + TiW;
1399 TiX = TiR - TiW;
1400 Tjv = Tj4 + Tj7;
1401 Tj8 = Tj4 - Tj7;
1402 Tjz = Tjc + Tjd;
1403 Tje = Tjc - Tjd;
1404 Tjx = FMA(KP414213562, Tjw, Tjv);
1405 TjD = FNMS(KP414213562, Tjv, Tjw);
1406 Tjn = FNMS(KP414213562, Tj3, Tj8);
1407 Tj9 = FMA(KP414213562, Tj8, Tj3);
1408 }
1409 {
1410 E Tjm, TiY, Tkz, TkB, Tjy, Tjj;
1411 Tjm = FNMS(KP707106781, TiX, TiM);
1412 TiY = FMA(KP707106781, TiX, TiM);
1413 Tkz = FMA(KP707106781, Tky, Tkx);
1414 TkB = FNMS(KP707106781, Tky, Tkx);
1415 Tjy = Tjf + Tji;
1416 Tjj = Tjf - Tji;
1417 {
1418 E TjC, Tkt, Tku, TjF;
1419 {
1420 E Tju, TjE, Tjo, Tjk, TjB, TjA;
1421 TjC = FNMS(KP707106781, Tjt, Tjq);
1422 Tju = FMA(KP707106781, Tjt, Tjq);
1423 TjA = FNMS(KP414213562, Tjz, Tjy);
1424 TjE = FMA(KP414213562, Tjy, Tjz);
1425 Tjo = FMA(KP414213562, Tje, Tjj);
1426 Tjk = FNMS(KP414213562, Tjj, Tje);
1427 TjB = Tjx + TjA;
1428 Tkw = TjA - Tjx;
1429 Tkv = FNMS(KP707106781, Tks, Tkr);
1430 Tkt = FMA(KP707106781, Tks, Tkr);
1431 {
1432 E Tjp, TkA, TkC, Tjl;
1433 Tjp = Tjn + Tjo;
1434 TkA = Tjo - Tjn;
1435 TkC = Tj9 + Tjk;
1436 Tjl = Tj9 - Tjk;
1437 ri[WS(rs, 4)] = FMA(KP923879532, TjB, Tju);
1438 ri[WS(rs, 36)] = FNMS(KP923879532, TjB, Tju);
1439 ri[WS(rs, 60)] = FMA(KP923879532, Tjp, Tjm);
1440 ri[WS(rs, 28)] = FNMS(KP923879532, Tjp, Tjm);
1441 ii[WS(rs, 44)] = FNMS(KP923879532, TkA, Tkz);
1442 ii[WS(rs, 12)] = FMA(KP923879532, TkA, Tkz);
1443 ii[WS(rs, 60)] = FMA(KP923879532, TkC, TkB);
1444 ii[WS(rs, 28)] = FNMS(KP923879532, TkC, TkB);
1445 ri[WS(rs, 12)] = FMA(KP923879532, Tjl, TiY);
1446 ri[WS(rs, 44)] = FNMS(KP923879532, Tjl, TiY);
1447 Tku = TjD + TjE;
1448 TjF = TjD - TjE;
1449 }
1450 }
1451 ii[WS(rs, 36)] = FNMS(KP923879532, Tku, Tkt);
1452 ii[WS(rs, 4)] = FMA(KP923879532, Tku, Tkt);
1453 ri[WS(rs, 20)] = FMA(KP923879532, TjF, TjC);
1454 ri[WS(rs, 52)] = FNMS(KP923879532, TjF, TjC);
1455 }
1456 }
1457 }
1458 }
1459 {
1460 E TkV, Tl1, ThG, Tgk, TkH, TkN, Tis, Ti0, Thv, ThJ, TkO, TkI, TgH, Thy, TiC;
1461 E TiG, Tiq, Tim, ThN, ThT, ThD, Th9, TkW, Tiv, Tl2, Ti7, ThP, Thq, Tiz, TiF;
1462 E Tip, Tif;
1463 {
1464 E Ti1, Ti2, Ti4, Ti5, Thp, The, Tij, TiB, Tii, Tik;
1465 {
1466 E ThW, Tg8, TkT, TkF, ThX, ThY, TkU, Tgj, Tgd, Tgi;
1467 ThW = Tg4 - Tg7;
1468 Tg8 = Tg4 + Tg7;
1469 TkT = TkE - TkD;
1470 TkF = TkD + TkE;
1471 ThX = Tgc - Tg9;
1472 Tgd = Tg9 + Tgc;
1473 ii[WS(rs, 52)] = FNMS(KP923879532, Tkw, Tkv);
1474 ii[WS(rs, 20)] = FMA(KP923879532, Tkw, Tkv);
1475 Tgi = Tge - Tgh;
1476 ThY = Tge + Tgh;
1477 TkU = Tgi - Tgd;
1478 Tgj = Tgd + Tgi;
1479 {
1480 E TgA, ThH, Tgv, TgF;
1481 {
1482 E Tgp, TkG, ThZ, Tgu;
1483 Ti1 = Tgn - Tgo;
1484 Tgp = Tgn + Tgo;
1485 TkV = FMA(KP707106781, TkU, TkT);
1486 Tl1 = FNMS(KP707106781, TkU, TkT);
1487 ThG = FMA(KP707106781, Tgj, Tg8);
1488 Tgk = FNMS(KP707106781, Tgj, Tg8);
1489 TkG = ThX + ThY;
1490 ThZ = ThX - ThY;
1491 Tgu = Tgq + Tgt;
1492 Ti2 = Tgq - Tgt;
1493 Ti4 = Tgy - Tgz;
1494 TgA = Tgy + Tgz;
1495 TkH = FMA(KP707106781, TkG, TkF);
1496 TkN = FNMS(KP707106781, TkG, TkF);
1497 Tis = FNMS(KP707106781, ThZ, ThW);
1498 Ti0 = FMA(KP707106781, ThZ, ThW);
1499 ThH = FMA(KP414213562, Tgp, Tgu);
1500 Tgv = FNMS(KP414213562, Tgu, Tgp);
1501 TgF = TgB + TgE;
1502 Ti5 = TgB - TgE;
1503 }
1504 {
1505 E Tig, Tih, ThI, TgG;
1506 Thv = Thr + Thu;
1507 Tig = Thr - Thu;
1508 Tih = Tho - Thj;
1509 Thp = Thj + Tho;
1510 The = Thc + Thd;
1511 Tij = Thc - Thd;
1512 ThI = FNMS(KP414213562, TgA, TgF);
1513 TgG = FMA(KP414213562, TgF, TgA);
1514 TiB = FMA(KP707106781, Tih, Tig);
1515 Tii = FNMS(KP707106781, Tih, Tig);
1516 ThJ = ThH + ThI;
1517 TkO = ThI - ThH;
1518 TkI = Tgv + TgG;
1519 TgH = Tgv - TgG;
1520 Tik = Thw - Thx;
1521 Thy = Thw + Thx;
1522 }
1523 }
1524 }
1525 {
1526 E Tic, Tia, Ti9, Tid, Tit, Ti3;
1527 {
1528 E Th4, ThM, TgZ, Th7, ThL, Th8;
1529 {
1530 E TgN, TgY, TiA, Til;
1531 Tic = TgL - TgM;
1532 TgN = TgL + TgM;
1533 TgY = TgS + TgX;
1534 Tia = TgX - TgS;
1535 Ti9 = Th0 - Th3;
1536 Th4 = Th0 + Th3;
1537 TiA = FMA(KP707106781, Tik, Tij);
1538 Til = FNMS(KP707106781, Tik, Tij);
1539 ThM = FMA(KP707106781, TgY, TgN);
1540 TgZ = FNMS(KP707106781, TgY, TgN);
1541 TiC = FNMS(KP198912367, TiB, TiA);
1542 TiG = FMA(KP198912367, TiA, TiB);
1543 Tiq = FMA(KP668178637, Tii, Til);
1544 Tim = FNMS(KP668178637, Til, Tii);
1545 Th7 = Th5 + Th6;
1546 Tid = Th5 - Th6;
1547 }
1548 ThL = FMA(KP707106781, Th7, Th4);
1549 Th8 = FNMS(KP707106781, Th7, Th4);
1550 Tit = FNMS(KP414213562, Ti1, Ti2);
1551 Ti3 = FMA(KP414213562, Ti2, Ti1);
1552 ThN = FMA(KP198912367, ThM, ThL);
1553 ThT = FNMS(KP198912367, ThL, ThM);
1554 ThD = FNMS(KP668178637, TgZ, Th8);
1555 Th9 = FMA(KP668178637, Th8, TgZ);
1556 }
1557 {
1558 E Tiy, Tib, Tiu, Ti6, Tix, Tie;
1559 Tiu = FMA(KP414213562, Ti4, Ti5);
1560 Ti6 = FNMS(KP414213562, Ti5, Ti4);
1561 Tiy = FMA(KP707106781, Tia, Ti9);
1562 Tib = FNMS(KP707106781, Tia, Ti9);
1563 TkW = Tiu - Tit;
1564 Tiv = Tit + Tiu;
1565 Tl2 = Ti3 + Ti6;
1566 Ti7 = Ti3 - Ti6;
1567 Tix = FMA(KP707106781, Tid, Tic);
1568 Tie = FNMS(KP707106781, Tid, Tic);
1569 ThP = FMA(KP707106781, Thp, The);
1570 Thq = FNMS(KP707106781, Thp, The);
1571 Tiz = FMA(KP198912367, Tiy, Tix);
1572 TiF = FNMS(KP198912367, Tix, Tiy);
1573 Tip = FNMS(KP668178637, Tib, Tie);
1574 Tif = FMA(KP668178637, Tie, Tib);
1575 }
1576 }
1577 }
1578 {
1579 E TkM, TkL, Tl0, TkZ;
1580 {
1581 E ThC, TgI, TkP, TkR, ThO, Thz;
1582 ThC = FNMS(KP923879532, TgH, Tgk);
1583 TgI = FMA(KP923879532, TgH, Tgk);
1584 TkP = FMA(KP923879532, TkO, TkN);
1585 TkR = FNMS(KP923879532, TkO, TkN);
1586 ThO = FMA(KP707106781, Thy, Thv);
1587 Thz = FNMS(KP707106781, Thy, Thv);
1588 {
1589 E ThS, TkJ, TkK, ThV;
1590 {
1591 E ThK, ThU, ThE, ThA, ThR, ThQ;
1592 ThS = FNMS(KP923879532, ThJ, ThG);
1593 ThK = FMA(KP923879532, ThJ, ThG);
1594 ThQ = FNMS(KP198912367, ThP, ThO);
1595 ThU = FMA(KP198912367, ThO, ThP);
1596 ThE = FMA(KP668178637, Thq, Thz);
1597 ThA = FNMS(KP668178637, Thz, Thq);
1598 ThR = ThN + ThQ;
1599 TkM = ThQ - ThN;
1600 TkL = FNMS(KP923879532, TkI, TkH);
1601 TkJ = FMA(KP923879532, TkI, TkH);
1602 {
1603 E ThF, TkQ, TkS, ThB;
1604 ThF = ThD + ThE;
1605 TkQ = ThE - ThD;
1606 TkS = Th9 + ThA;
1607 ThB = Th9 - ThA;
1608 ri[WS(rs, 2)] = FMA(KP980785280, ThR, ThK);
1609 ri[WS(rs, 34)] = FNMS(KP980785280, ThR, ThK);
1610 ri[WS(rs, 58)] = FMA(KP831469612, ThF, ThC);
1611 ri[WS(rs, 26)] = FNMS(KP831469612, ThF, ThC);
1612 ii[WS(rs, 42)] = FNMS(KP831469612, TkQ, TkP);
1613 ii[WS(rs, 10)] = FMA(KP831469612, TkQ, TkP);
1614 ii[WS(rs, 58)] = FMA(KP831469612, TkS, TkR);
1615 ii[WS(rs, 26)] = FNMS(KP831469612, TkS, TkR);
1616 ri[WS(rs, 10)] = FMA(KP831469612, ThB, TgI);
1617 ri[WS(rs, 42)] = FNMS(KP831469612, ThB, TgI);
1618 TkK = ThT + ThU;
1619 ThV = ThT - ThU;
1620 }
1621 }
1622 ii[WS(rs, 34)] = FNMS(KP980785280, TkK, TkJ);
1623 ii[WS(rs, 2)] = FMA(KP980785280, TkK, TkJ);
1624 ri[WS(rs, 18)] = FMA(KP980785280, ThV, ThS);
1625 ri[WS(rs, 50)] = FNMS(KP980785280, ThV, ThS);
1626 }
1627 }
1628 {
1629 E Tio, TkX, TkY, Tir, Ti8, Tin;
1630 Tio = FNMS(KP923879532, Ti7, Ti0);
1631 Ti8 = FMA(KP923879532, Ti7, Ti0);
1632 Tin = Tif + Tim;
1633 Tl0 = Tim - Tif;
1634 TkZ = FNMS(KP923879532, TkW, TkV);
1635 TkX = FMA(KP923879532, TkW, TkV);
1636 ii[WS(rs, 50)] = FNMS(KP980785280, TkM, TkL);
1637 ii[WS(rs, 18)] = FMA(KP980785280, TkM, TkL);
1638 ri[WS(rs, 6)] = FMA(KP831469612, Tin, Ti8);
1639 ri[WS(rs, 38)] = FNMS(KP831469612, Tin, Ti8);
1640 TkY = Tip + Tiq;
1641 Tir = Tip - Tiq;
1642 ii[WS(rs, 38)] = FNMS(KP831469612, TkY, TkX);
1643 ii[WS(rs, 6)] = FMA(KP831469612, TkY, TkX);
1644 ri[WS(rs, 22)] = FMA(KP831469612, Tir, Tio);
1645 ri[WS(rs, 54)] = FNMS(KP831469612, Tir, Tio);
1646 }
1647 {
1648 E TiE, Tl3, Tl4, TiH, Tiw, TiD;
1649 TiE = FMA(KP923879532, Tiv, Tis);
1650 Tiw = FNMS(KP923879532, Tiv, Tis);
1651 TiD = Tiz - TiC;
1652 Tl6 = Tiz + TiC;
1653 Tl5 = FMA(KP923879532, Tl2, Tl1);
1654 Tl3 = FNMS(KP923879532, Tl2, Tl1);
1655 ii[WS(rs, 54)] = FNMS(KP831469612, Tl0, TkZ);
1656 ii[WS(rs, 22)] = FMA(KP831469612, Tl0, TkZ);
1657 ri[WS(rs, 14)] = FMA(KP980785280, TiD, Tiw);
1658 ri[WS(rs, 46)] = FNMS(KP980785280, TiD, Tiw);
1659 Tl4 = TiG - TiF;
1660 TiH = TiF + TiG;
1661 ii[WS(rs, 46)] = FNMS(KP980785280, Tl4, Tl3);
1662 ii[WS(rs, 14)] = FMA(KP980785280, Tl4, Tl3);
1663 ri[WS(rs, 62)] = FMA(KP980785280, TiH, TiE);
1664 ri[WS(rs, 30)] = FNMS(KP980785280, TiH, TiE);
1665 }
1666 }
1667 }
1668 {
1669 E Tla, TdV, TdO, Tm6, Tm5, TdR;
1670 {
1671 E TcT, TlO, TlI, Tar, TcX, Td3, TcN, TbB, TdM, TdQ, TdA, Tdw, TdJ, TdP, Tdz;
1672 E Tdp, TlW, TdF, Tm2, Tdh, Td7, T91, Td6, T8M, TlT, TlF, Td0, Td4, TcO, TcK;
1673 E T9g, Td8;
1674 {
1675 E Tdb, Tdc, Tde, Tdf, Tdm, Tdk, Tdj, Tdn, TcF, Tct, TbY, Tdt, TdL, Tds, Tdu;
1676 E TcI, TdD, Tdd;
1677 {
1678 E Tae, TcR, T9R, Tap, T9F, T9Q;
1679 Tdb = FMA(KP707106781, T9E, T9p);
1680 T9F = FNMS(KP707106781, T9E, T9p);
1681 T9Q = FNMS(KP707106781, T9P, T9M);
1682 Tdc = FMA(KP707106781, T9P, T9M);
1683 Tde = FMA(KP707106781, Tad, T9Y);
1684 Tae = FNMS(KP707106781, Tad, T9Y);
1685 ii[WS(rs, 62)] = FMA(KP980785280, Tl6, Tl5);
1686 ii[WS(rs, 30)] = FNMS(KP980785280, Tl6, Tl5);
1687 TcR = FMA(KP668178637, T9F, T9Q);
1688 T9R = FNMS(KP668178637, T9Q, T9F);
1689 Tap = FNMS(KP707106781, Tao, Tal);
1690 Tdf = FMA(KP707106781, Tao, Tal);
1691 {
1692 E Tbw, TcW, Tbl, Tbz;
1693 {
1694 E TaP, Tbk, TcS, Taq;
1695 Tdm = FMA(KP707106781, TaO, Taz);
1696 TaP = FNMS(KP707106781, TaO, Taz);
1697 Tbk = Tb4 - Tbj;
1698 Tdk = Tbj + Tb4;
1699 Tdj = FMA(KP707106781, Tbv, Tbs);
1700 Tbw = FNMS(KP707106781, Tbv, Tbs);
1701 TcS = FNMS(KP668178637, Tae, Tap);
1702 Taq = FMA(KP668178637, Tap, Tae);
1703 TcW = FMA(KP923879532, Tbk, TaP);
1704 Tbl = FNMS(KP923879532, Tbk, TaP);
1705 TcT = TcR + TcS;
1706 TlO = TcS - TcR;
1707 TlI = T9R + Taq;
1708 Tar = T9R - Taq;
1709 Tbz = Tbx - Tby;
1710 Tdn = Tbx + Tby;
1711 }
1712 {
1713 E Tdq, Tdr, TcV, TbA;
1714 TcF = FNMS(KP707106781, TcE, TcB);
1715 Tdq = FMA(KP707106781, TcE, TcB);
1716 Tdr = Tcs + Tcd;
1717 Tct = Tcd - Tcs;
1718 TbY = FNMS(KP707106781, TbX, TbI);
1719 Tdt = FMA(KP707106781, TbX, TbI);
1720 TcV = FMA(KP923879532, Tbz, Tbw);
1721 TbA = FNMS(KP923879532, Tbz, Tbw);
1722 TdL = FMA(KP923879532, Tdr, Tdq);
1723 Tds = FNMS(KP923879532, Tdr, Tdq);
1724 TcX = FMA(KP303346683, TcW, TcV);
1725 Td3 = FNMS(KP303346683, TcV, TcW);
1726 TcN = FNMS(KP534511135, Tbl, TbA);
1727 TbB = FMA(KP534511135, TbA, Tbl);
1728 Tdu = TcG + TcH;
1729 TcI = TcG - TcH;
1730 }
1731 }
1732 }
1733 {
1734 E TdI, Tdl, TdK, Tdv, TdH, Tdo;
1735 TdK = FMA(KP923879532, Tdu, Tdt);
1736 Tdv = FNMS(KP923879532, Tdu, Tdt);
1737 TdI = FMA(KP923879532, Tdk, Tdj);
1738 Tdl = FNMS(KP923879532, Tdk, Tdj);
1739 TdM = FNMS(KP098491403, TdL, TdK);
1740 TdQ = FMA(KP098491403, TdK, TdL);
1741 TdA = FMA(KP820678790, Tds, Tdv);
1742 Tdw = FNMS(KP820678790, Tdv, Tds);
1743 TdH = FMA(KP923879532, Tdn, Tdm);
1744 Tdo = FNMS(KP923879532, Tdn, Tdm);
1745 TdD = FNMS(KP198912367, Tdb, Tdc);
1746 Tdd = FMA(KP198912367, Tdc, Tdb);
1747 TdJ = FMA(KP098491403, TdI, TdH);
1748 TdP = FNMS(KP098491403, TdH, TdI);
1749 Tdz = FNMS(KP820678790, Tdl, Tdo);
1750 Tdp = FMA(KP820678790, Tdo, Tdl);
1751 }
1752 {
1753 E TcZ, Tcu, TdE, Tdg;
1754 TdE = FMA(KP198912367, Tde, Tdf);
1755 Tdg = FNMS(KP198912367, Tdf, Tde);
1756 TcZ = FMA(KP923879532, Tct, TbY);
1757 Tcu = FNMS(KP923879532, Tct, TbY);
1758 TlW = TdE - TdD;
1759 TdF = TdD + TdE;
1760 Tm2 = Tdd + Tdg;
1761 Tdh = Tdd - Tdg;
1762 {
1763 E T8L, TlE, TcY, TcJ;
1764 Tla = T8D + T8K;
1765 T8L = T8D - T8K;
1766 TlE = TdU - TdT;
1767 TdV = TdT + TdU;
1768 Td7 = FNMS(KP414213562, T8T, T90);
1769 T91 = FMA(KP414213562, T90, T8T);
1770 TcY = FMA(KP923879532, TcI, TcF);
1771 TcJ = FNMS(KP923879532, TcI, TcF);
1772 Td6 = FNMS(KP707106781, T8L, T8w);
1773 T8M = FMA(KP707106781, T8L, T8w);
1774 TlT = FNMS(KP707106781, TlE, TlD);
1775 TlF = FMA(KP707106781, TlE, TlD);
1776 Td0 = FNMS(KP303346683, TcZ, TcY);
1777 Td4 = FMA(KP303346683, TcY, TcZ);
1778 TcO = FMA(KP534511135, Tcu, TcJ);
1779 TcK = FNMS(KP534511135, TcJ, Tcu);
1780 T9g = FNMS(KP414213562, T9f, T98);
1781 Td8 = FMA(KP414213562, T98, T9f);
1782 }
1783 }
1784 }
1785 {
1786 E Tm1, TlV, TdC, Tda, Td2, TlM, TlL, Td5;
1787 {
1788 E TlS, TcQ, TlH, TcM, TlR, TcP;
1789 {
1790 E TcL, Tas, TlP, TlQ, TlN;
1791 TlS = TbB + TcK;
1792 TcL = TbB - TcK;
1793 {
1794 E TlU, T9h, TlG, Td9, T9i;
1795 TlU = T91 + T9g;
1796 T9h = T91 - T9g;
1797 TlG = Td8 - Td7;
1798 Td9 = Td7 + Td8;
1799 Tm1 = FMA(KP923879532, TlU, TlT);
1800 TlV = FNMS(KP923879532, TlU, TlT);
1801 TcQ = FMA(KP923879532, T9h, T8M);
1802 T9i = FNMS(KP923879532, T9h, T8M);
1803 TlN = FNMS(KP923879532, TlG, TlF);
1804 TlH = FMA(KP923879532, TlG, TlF);
1805 TdC = FMA(KP923879532, Td9, Td6);
1806 Tda = FNMS(KP923879532, Td9, Td6);
1807 Tas = FMA(KP831469612, Tar, T9i);
1808 TcM = FNMS(KP831469612, Tar, T9i);
1809 }
1810 TlR = FNMS(KP831469612, TlO, TlN);
1811 TlP = FMA(KP831469612, TlO, TlN);
1812 TlQ = TcO - TcN;
1813 TcP = TcN + TcO;
1814 ri[WS(rs, 11)] = FMA(KP881921264, TcL, Tas);
1815 ri[WS(rs, 43)] = FNMS(KP881921264, TcL, Tas);
1816 ii[WS(rs, 43)] = FNMS(KP881921264, TlQ, TlP);
1817 ii[WS(rs, 11)] = FMA(KP881921264, TlQ, TlP);
1818 }
1819 {
1820 E TcU, Td1, TlJ, TlK;
1821 Td2 = FNMS(KP831469612, TcT, TcQ);
1822 TcU = FMA(KP831469612, TcT, TcQ);
1823 ri[WS(rs, 59)] = FMA(KP881921264, TcP, TcM);
1824 ri[WS(rs, 27)] = FNMS(KP881921264, TcP, TcM);
1825 ii[WS(rs, 59)] = FMA(KP881921264, TlS, TlR);
1826 ii[WS(rs, 27)] = FNMS(KP881921264, TlS, TlR);
1827 Td1 = TcX + Td0;
1828 TlM = Td0 - TcX;
1829 TlL = FNMS(KP831469612, TlI, TlH);
1830 TlJ = FMA(KP831469612, TlI, TlH);
1831 TlK = Td3 + Td4;
1832 Td5 = Td3 - Td4;
1833 ri[WS(rs, 3)] = FMA(KP956940335, Td1, TcU);
1834 ri[WS(rs, 35)] = FNMS(KP956940335, Td1, TcU);
1835 ii[WS(rs, 35)] = FNMS(KP956940335, TlK, TlJ);
1836 ii[WS(rs, 3)] = FMA(KP956940335, TlK, TlJ);
1837 }
1838 }
1839 {
1840 E Tdy, Tm0, TlZ, TdB;
1841 {
1842 E Tdi, Tdx, TlX, TlY;
1843 Tdy = FNMS(KP980785280, Tdh, Tda);
1844 Tdi = FMA(KP980785280, Tdh, Tda);
1845 ri[WS(rs, 19)] = FMA(KP956940335, Td5, Td2);
1846 ri[WS(rs, 51)] = FNMS(KP956940335, Td5, Td2);
1847 ii[WS(rs, 51)] = FNMS(KP956940335, TlM, TlL);
1848 ii[WS(rs, 19)] = FMA(KP956940335, TlM, TlL);
1849 Tdx = Tdp + Tdw;
1850 Tm0 = Tdw - Tdp;
1851 TlZ = FNMS(KP980785280, TlW, TlV);
1852 TlX = FMA(KP980785280, TlW, TlV);
1853 TlY = Tdz + TdA;
1854 TdB = Tdz - TdA;
1855 ri[WS(rs, 7)] = FMA(KP773010453, Tdx, Tdi);
1856 ri[WS(rs, 39)] = FNMS(KP773010453, Tdx, Tdi);
1857 ii[WS(rs, 39)] = FNMS(KP773010453, TlY, TlX);
1858 ii[WS(rs, 7)] = FMA(KP773010453, TlY, TlX);
1859 }
1860 {
1861 E TdG, TdN, Tm3, Tm4;
1862 TdO = FMA(KP980785280, TdF, TdC);
1863 TdG = FNMS(KP980785280, TdF, TdC);
1864 ri[WS(rs, 23)] = FMA(KP773010453, TdB, Tdy);
1865 ri[WS(rs, 55)] = FNMS(KP773010453, TdB, Tdy);
1866 ii[WS(rs, 55)] = FNMS(KP773010453, Tm0, TlZ);
1867 ii[WS(rs, 23)] = FMA(KP773010453, Tm0, TlZ);
1868 TdN = TdJ - TdM;
1869 Tm6 = TdJ + TdM;
1870 Tm5 = FMA(KP980785280, Tm2, Tm1);
1871 Tm3 = FNMS(KP980785280, Tm2, Tm1);
1872 Tm4 = TdQ - TdP;
1873 TdR = TdP + TdQ;
1874 ri[WS(rs, 15)] = FMA(KP995184726, TdN, TdG);
1875 ri[WS(rs, 47)] = FNMS(KP995184726, TdN, TdG);
1876 ii[WS(rs, 47)] = FNMS(KP995184726, Tm4, Tm3);
1877 ii[WS(rs, 15)] = FMA(KP995184726, Tm4, Tm3);
1878 }
1879 }
1880 }
1881 }
1882 {
1883 E Tf5, Tlk, Tle, Tej, Tf9, Tff, TeZ, TeD, TfY, Tg2, TfM, TfI, TfV, Tg1, TfL;
1884 E TfB, Tls, TfR, Tly, Tft, Tfj, TdZ, Tfi, TdW, Tlp, Tlb, Tfc, Tfg, Tf0, TeW;
1885 E Te2, Tfk;
1886 {
1887 E Tfn, Tfo, Tfq, Tfr, Tfy, Tfw, Tfv, Tfz, TeR, TeN, TeG, TfF, TfX, TfE, TfG;
1888 E TeU, TfP, Tfp;
1889 {
1890 E Te7, Tea, Tee, Teh;
1891 Tfn = FNMS(KP707106781, Te6, Te5);
1892 Te7 = FMA(KP707106781, Te6, Te5);
1893 ri[WS(rs, 63)] = FMA(KP995184726, TdR, TdO);
1894 ri[WS(rs, 31)] = FNMS(KP995184726, TdR, TdO);
1895 ii[WS(rs, 63)] = FMA(KP995184726, Tm6, Tm5);
1896 ii[WS(rs, 31)] = FNMS(KP995184726, Tm6, Tm5);
1897 Tea = FMA(KP707106781, Te9, Te8);
1898 Tfo = FNMS(KP707106781, Te9, Te8);
1899 Tfq = FNMS(KP707106781, Ted, Tec);
1900 Tee = FMA(KP707106781, Ted, Tec);
1901 Teh = FMA(KP707106781, Teg, Tef);
1902 Tfr = FNMS(KP707106781, Teg, Tef);
1903 {
1904 E Tey, Tf8, Tev, TeB;
1905 {
1906 E Ten, Tf3, Teb, Tf4, Tei, Teu;
1907 Tfy = FNMS(KP707106781, Tem, Tel);
1908 Ten = FMA(KP707106781, Tem, Tel);
1909 Tf3 = FMA(KP198912367, Te7, Tea);
1910 Teb = FNMS(KP198912367, Tea, Te7);
1911 Tf4 = FNMS(KP198912367, Tee, Teh);
1912 Tei = FMA(KP198912367, Teh, Tee);
1913 Teu = Teq + Tet;
1914 Tfw = Tet - Teq;
1915 Tfv = FNMS(KP707106781, Tex, Tew);
1916 Tey = FMA(KP707106781, Tex, Tew);
1917 Tf5 = Tf3 + Tf4;
1918 Tlk = Tf4 - Tf3;
1919 Tle = Teb + Tei;
1920 Tej = Teb - Tei;
1921 Tf8 = FMA(KP923879532, Teu, Ten);
1922 Tev = FNMS(KP923879532, Teu, Ten);
1923 TeB = Tez + TeA;
1924 Tfz = Tez - TeA;
1925 }
1926 {
1927 E TfC, TfD, Tf7, TeC;
1928 TeR = FMA(KP707106781, TeQ, TeP);
1929 TfC = FNMS(KP707106781, TeQ, TeP);
1930 TfD = TeM - TeJ;
1931 TeN = TeJ + TeM;
1932 TeG = FMA(KP707106781, TeF, TeE);
1933 TfF = FNMS(KP707106781, TeF, TeE);
1934 Tf7 = FMA(KP923879532, TeB, Tey);
1935 TeC = FNMS(KP923879532, TeB, Tey);
1936 TfX = FMA(KP923879532, TfD, TfC);
1937 TfE = FNMS(KP923879532, TfD, TfC);
1938 Tf9 = FMA(KP098491403, Tf8, Tf7);
1939 Tff = FNMS(KP098491403, Tf7, Tf8);
1940 TeZ = FNMS(KP820678790, Tev, TeC);
1941 TeD = FMA(KP820678790, TeC, Tev);
1942 TfG = TeS - TeT;
1943 TeU = TeS + TeT;
1944 }
1945 }
1946 }
1947 {
1948 E TfU, Tfx, TfW, TfH, TfT, TfA;
1949 TfW = FMA(KP923879532, TfG, TfF);
1950 TfH = FNMS(KP923879532, TfG, TfF);
1951 TfU = FMA(KP923879532, Tfw, Tfv);
1952 Tfx = FNMS(KP923879532, Tfw, Tfv);
1953 TfY = FNMS(KP303346683, TfX, TfW);
1954 Tg2 = FMA(KP303346683, TfW, TfX);
1955 TfM = FMA(KP534511135, TfE, TfH);
1956 TfI = FNMS(KP534511135, TfH, TfE);
1957 TfT = FMA(KP923879532, Tfz, Tfy);
1958 TfA = FNMS(KP923879532, Tfz, Tfy);
1959 TfP = FNMS(KP668178637, Tfn, Tfo);
1960 Tfp = FMA(KP668178637, Tfo, Tfn);
1961 TfV = FMA(KP303346683, TfU, TfT);
1962 Tg1 = FNMS(KP303346683, TfT, TfU);
1963 TfL = FNMS(KP534511135, Tfx, TfA);
1964 TfB = FMA(KP534511135, TfA, Tfx);
1965 }
1966 {
1967 E Tfb, TeO, TfQ, Tfs, Tfa, TeV;
1968 TfQ = FMA(KP668178637, Tfq, Tfr);
1969 Tfs = FNMS(KP668178637, Tfr, Tfq);
1970 Tfb = FMA(KP923879532, TeN, TeG);
1971 TeO = FNMS(KP923879532, TeN, TeG);
1972 Tls = TfQ - TfP;
1973 TfR = TfP + TfQ;
1974 Tly = Tfp + Tfs;
1975 Tft = Tfp - Tfs;
1976 Tfj = FNMS(KP414213562, TdX, TdY);
1977 TdZ = FMA(KP414213562, TdY, TdX);
1978 Tfa = FMA(KP923879532, TeU, TeR);
1979 TeV = FNMS(KP923879532, TeU, TeR);
1980 Tfi = FNMS(KP707106781, TdV, TdS);
1981 TdW = FMA(KP707106781, TdV, TdS);
1982 Tlp = FNMS(KP707106781, Tla, Tl9);
1983 Tlb = FMA(KP707106781, Tla, Tl9);
1984 Tfc = FNMS(KP098491403, Tfb, Tfa);
1985 Tfg = FMA(KP098491403, Tfa, Tfb);
1986 Tf0 = FMA(KP820678790, TeO, TeV);
1987 TeW = FNMS(KP820678790, TeV, TeO);
1988 Te2 = FNMS(KP414213562, Te1, Te0);
1989 Tfk = FMA(KP414213562, Te0, Te1);
1990 }
1991 }
1992 {
1993 E Tlx, Tlr, TfO, Tfm, Tfe, Tli, Tlh, Tfh;
1994 {
1995 E Tlo, Tf2, Tld, TeY, Tln, Tf1;
1996 {
1997 E TeX, Tek, Tll, Tlm, Tlj;
1998 Tlo = TeD + TeW;
1999 TeX = TeD - TeW;
2000 {
2001 E Tlq, Te3, Tlc, Tfl, Te4;
2002 Tlq = Te2 - TdZ;
2003 Te3 = TdZ + Te2;
2004 Tlc = Tfj + Tfk;
2005 Tfl = Tfj - Tfk;
2006 Tlx = FNMS(KP923879532, Tlq, Tlp);
2007 Tlr = FMA(KP923879532, Tlq, Tlp);
2008 Tf2 = FMA(KP923879532, Te3, TdW);
2009 Te4 = FNMS(KP923879532, Te3, TdW);
2010 Tlj = FNMS(KP923879532, Tlc, Tlb);
2011 Tld = FMA(KP923879532, Tlc, Tlb);
2012 TfO = FNMS(KP923879532, Tfl, Tfi);
2013 Tfm = FMA(KP923879532, Tfl, Tfi);
2014 Tek = FMA(KP980785280, Tej, Te4);
2015 TeY = FNMS(KP980785280, Tej, Te4);
2016 }
2017 Tln = FNMS(KP980785280, Tlk, Tlj);
2018 Tll = FMA(KP980785280, Tlk, Tlj);
2019 Tlm = Tf0 - TeZ;
2020 Tf1 = TeZ + Tf0;
2021 ri[WS(rs, 9)] = FMA(KP773010453, TeX, Tek);
2022 ri[WS(rs, 41)] = FNMS(KP773010453, TeX, Tek);
2023 ii[WS(rs, 41)] = FNMS(KP773010453, Tlm, Tll);
2024 ii[WS(rs, 9)] = FMA(KP773010453, Tlm, Tll);
2025 }
2026 {
2027 E Tf6, Tfd, Tlf, Tlg;
2028 Tfe = FNMS(KP980785280, Tf5, Tf2);
2029 Tf6 = FMA(KP980785280, Tf5, Tf2);
2030 ri[WS(rs, 57)] = FMA(KP773010453, Tf1, TeY);
2031 ri[WS(rs, 25)] = FNMS(KP773010453, Tf1, TeY);
2032 ii[WS(rs, 57)] = FMA(KP773010453, Tlo, Tln);
2033 ii[WS(rs, 25)] = FNMS(KP773010453, Tlo, Tln);
2034 Tfd = Tf9 + Tfc;
2035 Tli = Tfc - Tf9;
2036 Tlh = FNMS(KP980785280, Tle, Tld);
2037 Tlf = FMA(KP980785280, Tle, Tld);
2038 Tlg = Tff + Tfg;
2039 Tfh = Tff - Tfg;
2040 ri[WS(rs, 1)] = FMA(KP995184726, Tfd, Tf6);
2041 ri[WS(rs, 33)] = FNMS(KP995184726, Tfd, Tf6);
2042 ii[WS(rs, 33)] = FNMS(KP995184726, Tlg, Tlf);
2043 ii[WS(rs, 1)] = FMA(KP995184726, Tlg, Tlf);
2044 }
2045 }
2046 {
2047 E TfK, Tlw, Tlv, TfN;
2048 {
2049 E Tfu, TfJ, Tlt, Tlu;
2050 TfK = FNMS(KP831469612, Tft, Tfm);
2051 Tfu = FMA(KP831469612, Tft, Tfm);
2052 ri[WS(rs, 17)] = FMA(KP995184726, Tfh, Tfe);
2053 ri[WS(rs, 49)] = FNMS(KP995184726, Tfh, Tfe);
2054 ii[WS(rs, 49)] = FNMS(KP995184726, Tli, Tlh);
2055 ii[WS(rs, 17)] = FMA(KP995184726, Tli, Tlh);
2056 TfJ = TfB + TfI;
2057 Tlw = TfI - TfB;
2058 Tlv = FNMS(KP831469612, Tls, Tlr);
2059 Tlt = FMA(KP831469612, Tls, Tlr);
2060 Tlu = TfL + TfM;
2061 TfN = TfL - TfM;
2062 ri[WS(rs, 5)] = FMA(KP881921264, TfJ, Tfu);
2063 ri[WS(rs, 37)] = FNMS(KP881921264, TfJ, Tfu);
2064 ii[WS(rs, 37)] = FNMS(KP881921264, Tlu, Tlt);
2065 ii[WS(rs, 5)] = FMA(KP881921264, Tlu, Tlt);
2066 }
2067 {
2068 E TfS, TfZ, Tlz, TlA;
2069 Tg0 = FMA(KP831469612, TfR, TfO);
2070 TfS = FNMS(KP831469612, TfR, TfO);
2071 ri[WS(rs, 21)] = FMA(KP881921264, TfN, TfK);
2072 ri[WS(rs, 53)] = FNMS(KP881921264, TfN, TfK);
2073 ii[WS(rs, 53)] = FNMS(KP881921264, Tlw, Tlv);
2074 ii[WS(rs, 21)] = FMA(KP881921264, Tlw, Tlv);
2075 TfZ = TfV - TfY;
2076 TlC = TfV + TfY;
2077 TlB = FMA(KP831469612, Tly, Tlx);
2078 Tlz = FNMS(KP831469612, Tly, Tlx);
2079 TlA = Tg2 - Tg1;
2080 Tg3 = Tg1 + Tg2;
2081 ri[WS(rs, 13)] = FMA(KP956940335, TfZ, TfS);
2082 ri[WS(rs, 45)] = FNMS(KP956940335, TfZ, TfS);
2083 ii[WS(rs, 45)] = FNMS(KP956940335, TlA, Tlz);
2084 ii[WS(rs, 13)] = FMA(KP956940335, TlA, Tlz);
2085 }
2086 }
2087 }
2088 }
2089 }
2090 }
2091 }
2092 }
2093 ri[WS(rs, 61)] = FMA(KP956940335, Tg3, Tg0);
2094 ri[WS(rs, 29)] = FNMS(KP956940335, Tg3, Tg0);
2095 ii[WS(rs, 61)] = FMA(KP956940335, TlC, TlB);
2096 ii[WS(rs, 29)] = FNMS(KP956940335, TlC, TlB);
2097 }
2098 }
2099 }
2100
2101 static const tw_instr twinstr[] = {
2102 {TW_CEXP, 0, 1},
2103 {TW_CEXP, 0, 3},
2104 {TW_CEXP, 0, 9},
2105 {TW_CEXP, 0, 27},
2106 {TW_CEXP, 0, 63},
2107 {TW_NEXT, 1, 0}
2108 };
2109
2110 static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {520, 206, 634, 0}, 0, 0, 0 };
2111
2112 void X(codelet_t2_64) (planner *p) {
2113 X(kdft_dit_register) (p, t2_64, &desc);
2114 }
2115 #else /* HAVE_FMA */
2116
2117 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include t.h */
2118
2119 /*
2120 * This function contains 1154 FP additions, 660 FP multiplications,
2121 * (or, 880 additions, 386 multiplications, 274 fused multiply/add),
2122 * 302 stack variables, 15 constants, and 256 memory accesses
2123 */
2124 #include "t.h"
2125
2126 static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
2127 {
2128 DK(KP471396736, +0.471396736825997648556387625905254377657460319);
2129 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
2130 DK(KP290284677, +0.290284677254462367636192375817395274691476278);
2131 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
2132 DK(KP634393284, +0.634393284163645498215171613225493370675687095);
2133 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
2134 DK(KP098017140, +0.098017140329560601994195563888641845861136673);
2135 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
2136 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
2137 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
2138 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
2139 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
2140 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
2141 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
2142 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
2143 {
2144 INT m;
2145 for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) {
2146 E T2, T5, T3, T6, Te, T9, TP, T3e, T1e, T39, T3c, TT, T1a, T37, T8;
2147 E Tw, Td, Ty, Tm, Th, T1C, T3K, T1V, T3x, T3I, T1G, T1R, T3v, T2m, T2q;
2148 E T5Y, T6u, T53, T5B, T62, T6w, T57, T5D, T2V, T2X, Tg, TE, T3Y, T3V, T3j;
2149 E Tl, TA, T3g, T1j, T1t, TV, T2C, T2z, T1u, TZ, T1h, To, T1p, T6j, T6H;
2150 E Ts, T1l, T6l, T6F, T2P, T4b, T4x, T5i, T2R, T49, T4z, T5g, TG, T4k, T4m;
2151 E TK, T21, T3O, T3Q, T25, TW, T10, T11, T79, T6X, T5M, T6b, T1v, T30, T69;
2152 E T77, T13, T2F, T2D, T6p, T6O, T1x, T2a, T2f, T6V, T28, T6r, T2h, T6Q, T32;
2153 E T5K, T5w, T4G, T4Q, T3m, T4h, T4I, T5y, T3k, T4f, T41, T4S, T4Y, T3q, T3D;
2154 E T3F, T5r, T3s, T4W, T3Z, T5p;
2155 {
2156 E Ta, Tj, Tx, TC, Tf, Tk, Tz, TD, T1B, T1E, T2o, T2l, T1T, T1Q, T1A;
2157 E T1F, T2p, T2k, T1U, T1P;
2158 {
2159 E T4, T1d, T19, Tb, T1c, T7, Tc, T18, TR, TO, TS, TN;
2160 T2 = W[0];
2161 T5 = W[1];
2162 T3 = W[2];
2163 T6 = W[3];
2164 Te = W[5];
2165 T9 = W[4];
2166 T4 = T2 * T3;
2167 T1d = T5 * T9;
2168 T19 = T5 * Te;
2169 Tb = T2 * T6;
2170 T1c = T2 * Te;
2171 T7 = T5 * T6;
2172 Tc = T5 * T3;
2173 T18 = T2 * T9;
2174 TR = T3 * Te;
2175 TO = T6 * Te;
2176 TS = T6 * T9;
2177 TN = T3 * T9;
2178 TP = TN - TO;
2179 T3e = TR - TS;
2180 T1e = T1c - T1d;
2181 T39 = T1c + T1d;
2182 T3c = TN + TO;
2183 TT = TR + TS;
2184 T1a = T18 + T19;
2185 T37 = T18 - T19;
2186 T8 = T4 - T7;
2187 Ta = T8 * T9;
2188 Tj = T8 * Te;
2189 Tw = T4 + T7;
2190 Tx = Tw * T9;
2191 TC = Tw * Te;
2192 Td = Tb + Tc;
2193 Tf = Td * Te;
2194 Tk = Td * T9;
2195 Ty = Tb - Tc;
2196 Tz = Ty * Te;
2197 TD = Ty * T9;
2198 Tm = W[7];
2199 T1B = T6 * Tm;
2200 T1E = T3 * Tm;
2201 T2o = T2 * Tm;
2202 T2l = T5 * Tm;
2203 T1T = T9 * Tm;
2204 T1Q = Te * Tm;
2205 Th = W[6];
2206 T1A = T3 * Th;
2207 T1F = T6 * Th;
2208 T2p = T5 * Th;
2209 T2k = T2 * Th;
2210 T1U = Te * Th;
2211 T1P = T9 * Th;
2212 }
2213 T1C = T1A + T1B;
2214 T3K = T1E + T1F;
2215 T1V = T1T + T1U;
2216 T3x = T2o - T2p;
2217 T3I = T1A - T1B;
2218 T1G = T1E - T1F;
2219 T1R = T1P - T1Q;
2220 {
2221 E T5W, T5X, T55, T56;
2222 T3v = T2k + T2l;
2223 T2m = T2k - T2l;
2224 T2q = T2o + T2p;
2225 T5W = T8 * Th;
2226 T5X = Td * Tm;
2227 T5Y = T5W - T5X;
2228 T6u = T5W + T5X;
2229 {
2230 E T51, T52, T60, T61;
2231 T51 = Tw * Th;
2232 T52 = Ty * Tm;
2233 T53 = T51 + T52;
2234 T5B = T51 - T52;
2235 T60 = T8 * Tm;
2236 T61 = Td * Th;
2237 T62 = T60 + T61;
2238 T6w = T60 - T61;
2239 }
2240 T55 = Tw * Tm;
2241 T56 = Ty * Th;
2242 T57 = T55 - T56;
2243 T5D = T55 + T56;
2244 {
2245 E Ti, Tq, TF, TJ, T3W, T3X, T3T, T3U, T3h, T3i, Tn, Tr, TB, TI, T3d;
2246 E T3f, T1k, T1o, T1Z, T23, TQ, TU, T2A, T2B, T2x, T2y, T20, T24, TX, TY;
2247 E T1i, T1n;
2248 T2V = T1P + T1Q;
2249 T2X = T1T - T1U;
2250 Tg = Ta + Tf;
2251 Ti = Tg * Th;
2252 Tq = Tg * Tm;
2253 TE = TC + TD;
2254 TF = TE * Tm;
2255 TJ = TE * Th;
2256 T3W = T37 * Tm;
2257 T3X = T39 * Th;
2258 T3Y = T3W - T3X;
2259 T3T = T37 * Th;
2260 T3U = T39 * Tm;
2261 T3V = T3T + T3U;
2262 T3h = T3c * Tm;
2263 T3i = T3e * Th;
2264 T3j = T3h - T3i;
2265 Tl = Tj - Tk;
2266 Tn = Tl * Tm;
2267 Tr = Tl * Th;
2268 TA = Tx - Tz;
2269 TB = TA * Th;
2270 TI = TA * Tm;
2271 T3d = T3c * Th;
2272 T3f = T3e * Tm;
2273 T3g = T3d + T3f;
2274 T1j = Tj + Tk;
2275 T1k = T1j * Tm;
2276 T1o = T1j * Th;
2277 T1t = Tx + Tz;
2278 T1Z = T1t * Th;
2279 T23 = T1t * Tm;
2280 TQ = TP * Th;
2281 TU = TT * Tm;
2282 TV = TQ + TU;
2283 T2A = T1a * Tm;
2284 T2B = T1e * Th;
2285 T2C = T2A - T2B;
2286 T2x = T1a * Th;
2287 T2y = T1e * Tm;
2288 T2z = T2x + T2y;
2289 T1u = TC - TD;
2290 T20 = T1u * Tm;
2291 T24 = T1u * Th;
2292 TX = TP * Tm;
2293 TY = TT * Th;
2294 TZ = TX - TY;
2295 T1h = Ta - Tf;
2296 T1i = T1h * Th;
2297 T1n = T1h * Tm;
2298 To = Ti - Tn;
2299 T1p = T1n + T1o;
2300 T6j = TQ - TU;
2301 T6H = T2A + T2B;
2302 Ts = Tq + Tr;
2303 T1l = T1i - T1k;
2304 T6l = TX + TY;
2305 T6F = T2x - T2y;
2306 T2P = T1Z - T20;
2307 T4b = TI + TJ;
2308 T4x = T3d - T3f;
2309 T5i = T3W + T3X;
2310 T2R = T23 + T24;
2311 T49 = TB - TF;
2312 T4z = T3h + T3i;
2313 T5g = T3T - T3U;
2314 TG = TB + TF;
2315 T4k = Ti + Tn;
2316 T4m = Tq - Tr;
2317 TK = TI - TJ;
2318 T21 = T1Z + T20;
2319 T3O = T1i + T1k;
2320 T3Q = T1n - T1o;
2321 T25 = T23 - T24;
2322 TW = W[8];
2323 T10 = W[9];
2324 T11 = FMA(TV, TW, TZ * T10);
2325 T79 = FNMS(T25, TW, T21 * T10);
2326 T6X = FNMS(Td, TW, T8 * T10);
2327 T5M = FNMS(T2X, TW, T2V * T10);
2328 T6b = FNMS(TK, TW, TG * T10);
2329 T1v = FMA(T1t, TW, T1u * T10);
2330 T30 = FMA(T1h, TW, T1j * T10);
2331 T69 = FMA(TG, TW, TK * T10);
2332 T77 = FMA(T21, TW, T25 * T10);
2333 T13 = FNMS(TZ, TW, TV * T10);
2334 T2F = FNMS(T2C, TW, T2z * T10);
2335 T2D = FMA(T2z, TW, T2C * T10);
2336 T6p = FMA(T1a, TW, T1e * T10);
2337 T6O = FMA(TP, TW, TT * T10);
2338 T1x = FNMS(T1u, TW, T1t * T10);
2339 T2a = FNMS(TE, TW, TA * T10);
2340 T2f = FMA(T3, TW, T6 * T10);
2341 T6V = FMA(T8, TW, Td * T10);
2342 T28 = FMA(TA, TW, TE * T10);
2343 T6r = FNMS(T1e, TW, T1a * T10);
2344 T2h = FNMS(T6, TW, T3 * T10);
2345 T6Q = FNMS(TT, TW, TP * T10);
2346 T32 = FNMS(T1j, TW, T1h * T10);
2347 T5K = FMA(T2V, TW, T2X * T10);
2348 T5w = FMA(Tw, TW, Ty * T10);
2349 T4G = FMA(T3O, TW, T3Q * T10);
2350 T4Q = FMA(T4k, TW, T4m * T10);
2351 T3m = FNMS(T3j, TW, T3g * T10);
2352 T4h = FNMS(Te, TW, T9 * T10);
2353 T4I = FNMS(T3Q, TW, T3O * T10);
2354 T5y = FNMS(Ty, TW, Tw * T10);
2355 T3k = FMA(T3g, TW, T3j * T10);
2356 T4f = FMA(T9, TW, Te * T10);
2357 T41 = FNMS(T3Y, TW, T3V * T10);
2358 T4S = FNMS(T4m, TW, T4k * T10);
2359 T4Y = FNMS(T3e, TW, T3c * T10);
2360 T3q = FMA(Tg, TW, Tl * T10);
2361 T3D = FMA(T2, TW, T5 * T10);
2362 T3F = FNMS(T5, TW, T2 * T10);
2363 T5r = FNMS(T39, TW, T37 * T10);
2364 T3s = FNMS(Tl, TW, Tg * T10);
2365 T4W = FMA(T3c, TW, T3e * T10);
2366 T3Z = FMA(T3V, TW, T3Y * T10);
2367 T5p = FMA(T37, TW, T39 * T10);
2368 }
2369 }
2370 }
2371 {
2372 E T17, TdV, Tj3, Tjx, T7l, TbJ, Ti3, Tix, T1K, Tiw, TdY, ThY, T7w, Tj0, TbM;
2373 E Tjw, T2e, TgA, T7I, TaY, TbQ, Tda, Te4, TfO, T2J, TgB, T7T, TaZ, TbT, Tdb;
2374 E Te9, TfP, T36, T3B, TgH, TgE, TgF, TgG, T80, TbW, Tel, TfT, T8b, Tc0, T8k;
2375 E TbX, Teg, TfS, T8h, TbZ, T45, T4q, TgJ, TgK, TgL, TgM, T8r, Tc6, Tew, TfW;
2376 E T8C, Tc4, T8L, Tc7, Ter, TfV, T8I, Tc3, T6B, Th1, Tfm, Tga, Th8, ThI, T9N;
2377 E Tcv, T9Y, TcH, Tav, Tcw, Tf5, Tg7, Tas, TcG, T5c, TgV, TeV, Tg0, TgS, ThD;
2378 E T8U, Tcc, T95, Tco, T9C, Tcd, TeE, Tg3, T9z, Tcn, T5R, TgT, TeO, TeW, TgY;
2379 E ThE, T9h, T9F, T9s, T9E, Tck, Tcq, TeJ, TeX, Tch, Tcr, T7e, Th9, Tff, Tfn;
2380 E Th4, ThJ, Taa, Tay, Tal, Tax, TcD, TcJ, Tfa, Tfo, TcA, TcK;
2381 {
2382 E T1, Ti1, Tu, Ti0, TM, T7i, T15, T7j, Tp, Tt;
2383 T1 = ri[0];
2384 Ti1 = ii[0];
2385 Tp = ri[WS(rs, 32)];
2386 Tt = ii[WS(rs, 32)];
2387 Tu = FMA(To, Tp, Ts * Tt);
2388 Ti0 = FNMS(Ts, Tp, To * Tt);
2389 {
2390 E TH, TL, T12, T14;
2391 TH = ri[WS(rs, 16)];
2392 TL = ii[WS(rs, 16)];
2393 TM = FMA(TG, TH, TK * TL);
2394 T7i = FNMS(TK, TH, TG * TL);
2395 T12 = ri[WS(rs, 48)];
2396 T14 = ii[WS(rs, 48)];
2397 T15 = FMA(T11, T12, T13 * T14);
2398 T7j = FNMS(T13, T12, T11 * T14);
2399 }
2400 {
2401 E Tv, T16, Tj1, Tj2;
2402 Tv = T1 + Tu;
2403 T16 = TM + T15;
2404 T17 = Tv + T16;
2405 TdV = Tv - T16;
2406 Tj1 = Ti1 - Ti0;
2407 Tj2 = TM - T15;
2408 Tj3 = Tj1 - Tj2;
2409 Tjx = Tj2 + Tj1;
2410 }
2411 {
2412 E T7h, T7k, ThZ, Ti2;
2413 T7h = T1 - Tu;
2414 T7k = T7i - T7j;
2415 T7l = T7h - T7k;
2416 TbJ = T7h + T7k;
2417 ThZ = T7i + T7j;
2418 Ti2 = Ti0 + Ti1;
2419 Ti3 = ThZ + Ti2;
2420 Tix = Ti2 - ThZ;
2421 }
2422 }
2423 {
2424 E T1g, T7m, T1r, T7n, T7o, T7p, T1z, T7s, T1I, T7t, T7r, T7u;
2425 {
2426 E T1b, T1f, T1m, T1q;
2427 T1b = ri[WS(rs, 8)];
2428 T1f = ii[WS(rs, 8)];
2429 T1g = FMA(T1a, T1b, T1e * T1f);
2430 T7m = FNMS(T1e, T1b, T1a * T1f);
2431 T1m = ri[WS(rs, 40)];
2432 T1q = ii[WS(rs, 40)];
2433 T1r = FMA(T1l, T1m, T1p * T1q);
2434 T7n = FNMS(T1p, T1m, T1l * T1q);
2435 }
2436 T7o = T7m - T7n;
2437 T7p = T1g - T1r;
2438 {
2439 E T1w, T1y, T1D, T1H;
2440 T1w = ri[WS(rs, 56)];
2441 T1y = ii[WS(rs, 56)];
2442 T1z = FMA(T1v, T1w, T1x * T1y);
2443 T7s = FNMS(T1x, T1w, T1v * T1y);
2444 T1D = ri[WS(rs, 24)];
2445 T1H = ii[WS(rs, 24)];
2446 T1I = FMA(T1C, T1D, T1G * T1H);
2447 T7t = FNMS(T1G, T1D, T1C * T1H);
2448 }
2449 T7r = T1z - T1I;
2450 T7u = T7s - T7t;
2451 {
2452 E T1s, T1J, TdW, TdX;
2453 T1s = T1g + T1r;
2454 T1J = T1z + T1I;
2455 T1K = T1s + T1J;
2456 Tiw = T1J - T1s;
2457 TdW = T7m + T7n;
2458 TdX = T7s + T7t;
2459 TdY = TdW - TdX;
2460 ThY = TdW + TdX;
2461 }
2462 {
2463 E T7q, T7v, TbK, TbL;
2464 T7q = T7o - T7p;
2465 T7v = T7r + T7u;
2466 T7w = KP707106781 * (T7q - T7v);
2467 Tj0 = KP707106781 * (T7q + T7v);
2468 TbK = T7p + T7o;
2469 TbL = T7r - T7u;
2470 TbM = KP707106781 * (TbK + TbL);
2471 Tjw = KP707106781 * (TbL - TbK);
2472 }
2473 }
2474 {
2475 E T1Y, Te0, T7A, T7D, T2d, Te1, T7B, T7G, T7C, T7H;
2476 {
2477 E T1O, T7y, T1X, T7z;
2478 {
2479 E T1M, T1N, T1S, T1W;
2480 T1M = ri[WS(rs, 4)];
2481 T1N = ii[WS(rs, 4)];
2482 T1O = FMA(T8, T1M, Td * T1N);
2483 T7y = FNMS(Td, T1M, T8 * T1N);
2484 T1S = ri[WS(rs, 36)];
2485 T1W = ii[WS(rs, 36)];
2486 T1X = FMA(T1R, T1S, T1V * T1W);
2487 T7z = FNMS(T1V, T1S, T1R * T1W);
2488 }
2489 T1Y = T1O + T1X;
2490 Te0 = T7y + T7z;
2491 T7A = T7y - T7z;
2492 T7D = T1O - T1X;
2493 }
2494 {
2495 E T27, T7E, T2c, T7F;
2496 {
2497 E T22, T26, T29, T2b;
2498 T22 = ri[WS(rs, 20)];
2499 T26 = ii[WS(rs, 20)];
2500 T27 = FMA(T21, T22, T25 * T26);
2501 T7E = FNMS(T25, T22, T21 * T26);
2502 T29 = ri[WS(rs, 52)];
2503 T2b = ii[WS(rs, 52)];
2504 T2c = FMA(T28, T29, T2a * T2b);
2505 T7F = FNMS(T2a, T29, T28 * T2b);
2506 }
2507 T2d = T27 + T2c;
2508 Te1 = T7E + T7F;
2509 T7B = T27 - T2c;
2510 T7G = T7E - T7F;
2511 }
2512 T2e = T1Y + T2d;
2513 TgA = Te0 + Te1;
2514 T7C = T7A + T7B;
2515 T7H = T7D - T7G;
2516 T7I = FNMS(KP923879532, T7H, KP382683432 * T7C);
2517 TaY = FMA(KP923879532, T7C, KP382683432 * T7H);
2518 {
2519 E TbO, TbP, Te2, Te3;
2520 TbO = T7A - T7B;
2521 TbP = T7D + T7G;
2522 TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO);
2523 Tda = FMA(KP382683432, TbO, KP923879532 * TbP);
2524 Te2 = Te0 - Te1;
2525 Te3 = T1Y - T2d;
2526 Te4 = Te2 - Te3;
2527 TfO = Te3 + Te2;
2528 }
2529 }
2530 {
2531 E T2t, Te6, T7L, T7O, T2I, Te7, T7M, T7R, T7N, T7S;
2532 {
2533 E T2j, T7J, T2s, T7K;
2534 {
2535 E T2g, T2i, T2n, T2r;
2536 T2g = ri[WS(rs, 60)];
2537 T2i = ii[WS(rs, 60)];
2538 T2j = FMA(T2f, T2g, T2h * T2i);
2539 T7J = FNMS(T2h, T2g, T2f * T2i);
2540 T2n = ri[WS(rs, 28)];
2541 T2r = ii[WS(rs, 28)];
2542 T2s = FMA(T2m, T2n, T2q * T2r);
2543 T7K = FNMS(T2q, T2n, T2m * T2r);
2544 }
2545 T2t = T2j + T2s;
2546 Te6 = T7J + T7K;
2547 T7L = T7J - T7K;
2548 T7O = T2j - T2s;
2549 }
2550 {
2551 E T2w, T7P, T2H, T7Q;
2552 {
2553 E T2u, T2v, T2E, T2G;
2554 T2u = ri[WS(rs, 12)];
2555 T2v = ii[WS(rs, 12)];
2556 T2w = FMA(TP, T2u, TT * T2v);
2557 T7P = FNMS(TT, T2u, TP * T2v);
2558 T2E = ri[WS(rs, 44)];
2559 T2G = ii[WS(rs, 44)];
2560 T2H = FMA(T2D, T2E, T2F * T2G);
2561 T7Q = FNMS(T2F, T2E, T2D * T2G);
2562 }
2563 T2I = T2w + T2H;
2564 Te7 = T7P + T7Q;
2565 T7M = T2w - T2H;
2566 T7R = T7P - T7Q;
2567 }
2568 T2J = T2t + T2I;
2569 TgB = Te6 + Te7;
2570 T7N = T7L + T7M;
2571 T7S = T7O - T7R;
2572 T7T = FMA(KP382683432, T7N, KP923879532 * T7S);
2573 TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S);
2574 {
2575 E TbR, TbS, Te5, Te8;
2576 TbR = T7L - T7M;
2577 TbS = T7O + T7R;
2578 TbT = FMA(KP923879532, TbR, KP382683432 * TbS);
2579 Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS);
2580 Te5 = T2t - T2I;
2581 Te8 = Te6 - Te7;
2582 Te9 = Te5 + Te8;
2583 TfP = Te5 - Te8;
2584 }
2585 }
2586 {
2587 E T2O, T7W, T2T, T7X, T2U, Tec, T2Z, T8e, T34, T8f, T35, Ted, T3p, Tei, T86;
2588 E T89, T3A, Tej, T81, T84;
2589 {
2590 E T2M, T2N, T2Q, T2S;
2591 T2M = ri[WS(rs, 2)];
2592 T2N = ii[WS(rs, 2)];
2593 T2O = FMA(Tw, T2M, Ty * T2N);
2594 T7W = FNMS(Ty, T2M, Tw * T2N);
2595 T2Q = ri[WS(rs, 34)];
2596 T2S = ii[WS(rs, 34)];
2597 T2T = FMA(T2P, T2Q, T2R * T2S);
2598 T7X = FNMS(T2R, T2Q, T2P * T2S);
2599 }
2600 T2U = T2O + T2T;
2601 Tec = T7W + T7X;
2602 {
2603 E T2W, T2Y, T31, T33;
2604 T2W = ri[WS(rs, 18)];
2605 T2Y = ii[WS(rs, 18)];
2606 T2Z = FMA(T2V, T2W, T2X * T2Y);
2607 T8e = FNMS(T2X, T2W, T2V * T2Y);
2608 T31 = ri[WS(rs, 50)];
2609 T33 = ii[WS(rs, 50)];
2610 T34 = FMA(T30, T31, T32 * T33);
2611 T8f = FNMS(T32, T31, T30 * T33);
2612 }
2613 T35 = T2Z + T34;
2614 Ted = T8e + T8f;
2615 {
2616 E T3b, T87, T3o, T88;
2617 {
2618 E T38, T3a, T3l, T3n;
2619 T38 = ri[WS(rs, 10)];
2620 T3a = ii[WS(rs, 10)];
2621 T3b = FMA(T37, T38, T39 * T3a);
2622 T87 = FNMS(T39, T38, T37 * T3a);
2623 T3l = ri[WS(rs, 42)];
2624 T3n = ii[WS(rs, 42)];
2625 T3o = FMA(T3k, T3l, T3m * T3n);
2626 T88 = FNMS(T3m, T3l, T3k * T3n);
2627 }
2628 T3p = T3b + T3o;
2629 Tei = T87 + T88;
2630 T86 = T3b - T3o;
2631 T89 = T87 - T88;
2632 }
2633 {
2634 E T3u, T82, T3z, T83;
2635 {
2636 E T3r, T3t, T3w, T3y;
2637 T3r = ri[WS(rs, 58)];
2638 T3t = ii[WS(rs, 58)];
2639 T3u = FMA(T3q, T3r, T3s * T3t);
2640 T82 = FNMS(T3s, T3r, T3q * T3t);
2641 T3w = ri[WS(rs, 26)];
2642 T3y = ii[WS(rs, 26)];
2643 T3z = FMA(T3v, T3w, T3x * T3y);
2644 T83 = FNMS(T3x, T3w, T3v * T3y);
2645 }
2646 T3A = T3u + T3z;
2647 Tej = T82 + T83;
2648 T81 = T3u - T3z;
2649 T84 = T82 - T83;
2650 }
2651 T36 = T2U + T35;
2652 T3B = T3p + T3A;
2653 TgH = T36 - T3B;
2654 TgE = Tec + Ted;
2655 TgF = Tei + Tej;
2656 TgG = TgE - TgF;
2657 {
2658 E T7Y, T7Z, Teh, Tek;
2659 T7Y = T7W - T7X;
2660 T7Z = T2Z - T34;
2661 T80 = T7Y + T7Z;
2662 TbW = T7Y - T7Z;
2663 Teh = T2U - T35;
2664 Tek = Tei - Tej;
2665 Tel = Teh - Tek;
2666 TfT = Teh + Tek;
2667 }
2668 {
2669 E T85, T8a, T8i, T8j;
2670 T85 = T81 - T84;
2671 T8a = T86 + T89;
2672 T8b = KP707106781 * (T85 - T8a);
2673 Tc0 = KP707106781 * (T8a + T85);
2674 T8i = T89 - T86;
2675 T8j = T81 + T84;
2676 T8k = KP707106781 * (T8i - T8j);
2677 TbX = KP707106781 * (T8i + T8j);
2678 }
2679 {
2680 E Tee, Tef, T8d, T8g;
2681 Tee = Tec - Ted;
2682 Tef = T3A - T3p;
2683 Teg = Tee - Tef;
2684 TfS = Tee + Tef;
2685 T8d = T2O - T2T;
2686 T8g = T8e - T8f;
2687 T8h = T8d - T8g;
2688 TbZ = T8d + T8g;
2689 }
2690 }
2691 {
2692 E T3H, T8n, T3M, T8o, T3N, Ten, T3S, T8F, T43, T8G, T44, Teo, T4e, Tet, T8x;
2693 E T8A, T4p, Teu, T8s, T8v;
2694 {
2695 E T3E, T3G, T3J, T3L;
2696 T3E = ri[WS(rs, 62)];
2697 T3G = ii[WS(rs, 62)];
2698 T3H = FMA(T3D, T3E, T3F * T3G);
2699 T8n = FNMS(T3F, T3E, T3D * T3G);
2700 T3J = ri[WS(rs, 30)];
2701 T3L = ii[WS(rs, 30)];
2702 T3M = FMA(T3I, T3J, T3K * T3L);
2703 T8o = FNMS(T3K, T3J, T3I * T3L);
2704 }
2705 T3N = T3H + T3M;
2706 Ten = T8n + T8o;
2707 {
2708 E T3P, T3R, T40, T42;
2709 T3P = ri[WS(rs, 14)];
2710 T3R = ii[WS(rs, 14)];
2711 T3S = FMA(T3O, T3P, T3Q * T3R);
2712 T8F = FNMS(T3Q, T3P, T3O * T3R);
2713 T40 = ri[WS(rs, 46)];
2714 T42 = ii[WS(rs, 46)];
2715 T43 = FMA(T3Z, T40, T41 * T42);
2716 T8G = FNMS(T41, T40, T3Z * T42);
2717 }
2718 T44 = T3S + T43;
2719 Teo = T8F + T8G;
2720 {
2721 E T48, T8y, T4d, T8z;
2722 {
2723 E T46, T47, T4a, T4c;
2724 T46 = ri[WS(rs, 6)];
2725 T47 = ii[WS(rs, 6)];
2726 T48 = FMA(T3c, T46, T3e * T47);
2727 T8y = FNMS(T3e, T46, T3c * T47);
2728 T4a = ri[WS(rs, 38)];
2729 T4c = ii[WS(rs, 38)];
2730 T4d = FMA(T49, T4a, T4b * T4c);
2731 T8z = FNMS(T4b, T4a, T49 * T4c);
2732 }
2733 T4e = T48 + T4d;
2734 Tet = T8y + T8z;
2735 T8x = T48 - T4d;
2736 T8A = T8y - T8z;
2737 }
2738 {
2739 E T4j, T8t, T4o, T8u;
2740 {
2741 E T4g, T4i, T4l, T4n;
2742 T4g = ri[WS(rs, 54)];
2743 T4i = ii[WS(rs, 54)];
2744 T4j = FMA(T4f, T4g, T4h * T4i);
2745 T8t = FNMS(T4h, T4g, T4f * T4i);
2746 T4l = ri[WS(rs, 22)];
2747 T4n = ii[WS(rs, 22)];
2748 T4o = FMA(T4k, T4l, T4m * T4n);
2749 T8u = FNMS(T4m, T4l, T4k * T4n);
2750 }
2751 T4p = T4j + T4o;
2752 Teu = T8t + T8u;
2753 T8s = T4j - T4o;
2754 T8v = T8t - T8u;
2755 }
2756 T45 = T3N + T44;
2757 T4q = T4e + T4p;
2758 TgJ = T45 - T4q;
2759 TgK = Ten + Teo;
2760 TgL = Tet + Teu;
2761 TgM = TgK - TgL;
2762 {
2763 E T8p, T8q, Tes, Tev;
2764 T8p = T8n - T8o;
2765 T8q = T3S - T43;
2766 T8r = T8p + T8q;
2767 Tc6 = T8p - T8q;
2768 Tes = T3N - T44;
2769 Tev = Tet - Teu;
2770 Tew = Tes - Tev;
2771 TfW = Tes + Tev;
2772 }
2773 {
2774 E T8w, T8B, T8J, T8K;
2775 T8w = T8s - T8v;
2776 T8B = T8x + T8A;
2777 T8C = KP707106781 * (T8w - T8B);
2778 Tc4 = KP707106781 * (T8B + T8w);
2779 T8J = T8A - T8x;
2780 T8K = T8s + T8v;
2781 T8L = KP707106781 * (T8J - T8K);
2782 Tc7 = KP707106781 * (T8J + T8K);
2783 }
2784 {
2785 E Tep, Teq, T8E, T8H;
2786 Tep = Ten - Teo;
2787 Teq = T4p - T4e;
2788 Ter = Tep - Teq;
2789 TfV = Tep + Teq;
2790 T8E = T3H - T3M;
2791 T8H = T8F - T8G;
2792 T8I = T8E - T8H;
2793 Tc3 = T8E + T8H;
2794 }
2795 }
2796 {
2797 E T5V, Tao, T64, Tap, T65, Tfi, T68, T9K, T6d, T9L, T6e, Tfj, T6o, Tf2, T9Q;
2798 E T9R, T6z, Tf3, T9T, T9W;
2799 {
2800 E T5T, T5U, T5Z, T63;
2801 T5T = ri[WS(rs, 63)];
2802 T5U = ii[WS(rs, 63)];
2803 T5V = FMA(TW, T5T, T10 * T5U);
2804 Tao = FNMS(T10, T5T, TW * T5U);
2805 T5Z = ri[WS(rs, 31)];
2806 T63 = ii[WS(rs, 31)];
2807 T64 = FMA(T5Y, T5Z, T62 * T63);
2808 Tap = FNMS(T62, T5Z, T5Y * T63);
2809 }
2810 T65 = T5V + T64;
2811 Tfi = Tao + Tap;
2812 {
2813 E T66, T67, T6a, T6c;
2814 T66 = ri[WS(rs, 15)];
2815 T67 = ii[WS(rs, 15)];
2816 T68 = FMA(TV, T66, TZ * T67);
2817 T9K = FNMS(TZ, T66, TV * T67);
2818 T6a = ri[WS(rs, 47)];
2819 T6c = ii[WS(rs, 47)];
2820 T6d = FMA(T69, T6a, T6b * T6c);
2821 T9L = FNMS(T6b, T6a, T69 * T6c);
2822 }
2823 T6e = T68 + T6d;
2824 Tfj = T9K + T9L;
2825 {
2826 E T6i, T9O, T6n, T9P;
2827 {
2828 E T6g, T6h, T6k, T6m;
2829 T6g = ri[WS(rs, 7)];
2830 T6h = ii[WS(rs, 7)];
2831 T6i = FMA(T1t, T6g, T1u * T6h);
2832 T9O = FNMS(T1u, T6g, T1t * T6h);
2833 T6k = ri[WS(rs, 39)];
2834 T6m = ii[WS(rs, 39)];
2835 T6n = FMA(T6j, T6k, T6l * T6m);
2836 T9P = FNMS(T6l, T6k, T6j * T6m);
2837 }
2838 T6o = T6i + T6n;
2839 Tf2 = T9O + T9P;
2840 T9Q = T9O - T9P;
2841 T9R = T6i - T6n;
2842 }
2843 {
2844 E T6t, T9U, T6y, T9V;
2845 {
2846 E T6q, T6s, T6v, T6x;
2847 T6q = ri[WS(rs, 55)];
2848 T6s = ii[WS(rs, 55)];
2849 T6t = FMA(T6p, T6q, T6r * T6s);
2850 T9U = FNMS(T6r, T6q, T6p * T6s);
2851 T6v = ri[WS(rs, 23)];
2852 T6x = ii[WS(rs, 23)];
2853 T6y = FMA(T6u, T6v, T6w * T6x);
2854 T9V = FNMS(T6w, T6v, T6u * T6x);
2855 }
2856 T6z = T6t + T6y;
2857 Tf3 = T9U + T9V;
2858 T9T = T6t - T6y;
2859 T9W = T9U - T9V;
2860 }
2861 {
2862 E T6f, T6A, Tfk, Tfl;
2863 T6f = T65 + T6e;
2864 T6A = T6o + T6z;
2865 T6B = T6f + T6A;
2866 Th1 = T6f - T6A;
2867 Tfk = Tfi - Tfj;
2868 Tfl = T6z - T6o;
2869 Tfm = Tfk - Tfl;
2870 Tga = Tfk + Tfl;
2871 }
2872 {
2873 E Th6, Th7, T9J, T9M;
2874 Th6 = Tfi + Tfj;
2875 Th7 = Tf2 + Tf3;
2876 Th8 = Th6 - Th7;
2877 ThI = Th6 + Th7;
2878 T9J = T5V - T64;
2879 T9M = T9K - T9L;
2880 T9N = T9J - T9M;
2881 Tcv = T9J + T9M;
2882 }
2883 {
2884 E T9S, T9X, Tat, Tau;
2885 T9S = T9Q - T9R;
2886 T9X = T9T + T9W;
2887 T9Y = KP707106781 * (T9S - T9X);
2888 TcH = KP707106781 * (T9S + T9X);
2889 Tat = T9T - T9W;
2890 Tau = T9R + T9Q;
2891 Tav = KP707106781 * (Tat - Tau);
2892 Tcw = KP707106781 * (Tau + Tat);
2893 }
2894 {
2895 E Tf1, Tf4, Taq, Tar;
2896 Tf1 = T65 - T6e;
2897 Tf4 = Tf2 - Tf3;
2898 Tf5 = Tf1 - Tf4;
2899 Tg7 = Tf1 + Tf4;
2900 Taq = Tao - Tap;
2901 Tar = T68 - T6d;
2902 Tas = Taq + Tar;
2903 TcG = Taq - Tar;
2904 }
2905 }
2906 {
2907 E T4w, T8Q, T4B, T8R, T4C, TeA, T4F, T9w, T4K, T9x, T4L, TeB, T4V, TeS, T90;
2908 E T93, T5a, TeT, T8V, T8Y;
2909 {
2910 E T4u, T4v, T4y, T4A;
2911 T4u = ri[WS(rs, 1)];
2912 T4v = ii[WS(rs, 1)];
2913 T4w = FMA(T2, T4u, T5 * T4v);
2914 T8Q = FNMS(T5, T4u, T2 * T4v);
2915 T4y = ri[WS(rs, 33)];
2916 T4A = ii[WS(rs, 33)];
2917 T4B = FMA(T4x, T4y, T4z * T4A);
2918 T8R = FNMS(T4z, T4y, T4x * T4A);
2919 }
2920 T4C = T4w + T4B;
2921 TeA = T8Q + T8R;
2922 {
2923 E T4D, T4E, T4H, T4J;
2924 T4D = ri[WS(rs, 17)];
2925 T4E = ii[WS(rs, 17)];
2926 T4F = FMA(T3V, T4D, T3Y * T4E);
2927 T9w = FNMS(T3Y, T4D, T3V * T4E);
2928 T4H = ri[WS(rs, 49)];
2929 T4J = ii[WS(rs, 49)];
2930 T4K = FMA(T4G, T4H, T4I * T4J);
2931 T9x = FNMS(T4I, T4H, T4G * T4J);
2932 }
2933 T4L = T4F + T4K;
2934 TeB = T9w + T9x;
2935 {
2936 E T4P, T91, T4U, T92;
2937 {
2938 E T4N, T4O, T4R, T4T;
2939 T4N = ri[WS(rs, 9)];
2940 T4O = ii[WS(rs, 9)];
2941 T4P = FMA(T9, T4N, Te * T4O);
2942 T91 = FNMS(Te, T4N, T9 * T4O);
2943 T4R = ri[WS(rs, 41)];
2944 T4T = ii[WS(rs, 41)];
2945 T4U = FMA(T4Q, T4R, T4S * T4T);
2946 T92 = FNMS(T4S, T4R, T4Q * T4T);
2947 }
2948 T4V = T4P + T4U;
2949 TeS = T91 + T92;
2950 T90 = T4P - T4U;
2951 T93 = T91 - T92;
2952 }
2953 {
2954 E T50, T8W, T59, T8X;
2955 {
2956 E T4X, T4Z, T54, T58;
2957 T4X = ri[WS(rs, 57)];
2958 T4Z = ii[WS(rs, 57)];
2959 T50 = FMA(T4W, T4X, T4Y * T4Z);
2960 T8W = FNMS(T4Y, T4X, T4W * T4Z);
2961 T54 = ri[WS(rs, 25)];
2962 T58 = ii[WS(rs, 25)];
2963 T59 = FMA(T53, T54, T57 * T58);
2964 T8X = FNMS(T57, T54, T53 * T58);
2965 }
2966 T5a = T50 + T59;
2967 TeT = T8W + T8X;
2968 T8V = T50 - T59;
2969 T8Y = T8W - T8X;
2970 }
2971 {
2972 E T4M, T5b, TeR, TeU;
2973 T4M = T4C + T4L;
2974 T5b = T4V + T5a;
2975 T5c = T4M + T5b;
2976 TgV = T4M - T5b;
2977 TeR = T4C - T4L;
2978 TeU = TeS - TeT;
2979 TeV = TeR - TeU;
2980 Tg0 = TeR + TeU;
2981 }
2982 {
2983 E TgQ, TgR, T8S, T8T;
2984 TgQ = TeA + TeB;
2985 TgR = TeS + TeT;
2986 TgS = TgQ - TgR;
2987 ThD = TgQ + TgR;
2988 T8S = T8Q - T8R;
2989 T8T = T4F - T4K;
2990 T8U = T8S + T8T;
2991 Tcc = T8S - T8T;
2992 }
2993 {
2994 E T8Z, T94, T9A, T9B;
2995 T8Z = T8V - T8Y;
2996 T94 = T90 + T93;
2997 T95 = KP707106781 * (T8Z - T94);
2998 Tco = KP707106781 * (T94 + T8Z);
2999 T9A = T93 - T90;
3000 T9B = T8V + T8Y;
3001 T9C = KP707106781 * (T9A - T9B);
3002 Tcd = KP707106781 * (T9A + T9B);
3003 }
3004 {
3005 E TeC, TeD, T9v, T9y;
3006 TeC = TeA - TeB;
3007 TeD = T5a - T4V;
3008 TeE = TeC - TeD;
3009 Tg3 = TeC + TeD;
3010 T9v = T4w - T4B;
3011 T9y = T9w - T9x;
3012 T9z = T9v - T9y;
3013 Tcn = T9v + T9y;
3014 }
3015 }
3016 {
3017 E T5l, TeL, T9k, T9n, T5P, TeH, T9a, T9f, T5u, TeM, T9l, T9q, T5G, TeG, T97;
3018 E T9e;
3019 {
3020 E T5f, T9i, T5k, T9j;
3021 {
3022 E T5d, T5e, T5h, T5j;
3023 T5d = ri[WS(rs, 5)];
3024 T5e = ii[WS(rs, 5)];
3025 T5f = FMA(Tg, T5d, Tl * T5e);
3026 T9i = FNMS(Tl, T5d, Tg * T5e);
3027 T5h = ri[WS(rs, 37)];
3028 T5j = ii[WS(rs, 37)];
3029 T5k = FMA(T5g, T5h, T5i * T5j);
3030 T9j = FNMS(T5i, T5h, T5g * T5j);
3031 }
3032 T5l = T5f + T5k;
3033 TeL = T9i + T9j;
3034 T9k = T9i - T9j;
3035 T9n = T5f - T5k;
3036 }
3037 {
3038 E T5J, T98, T5O, T99;
3039 {
3040 E T5H, T5I, T5L, T5N;
3041 T5H = ri[WS(rs, 13)];
3042 T5I = ii[WS(rs, 13)];
3043 T5J = FMA(T1h, T5H, T1j * T5I);
3044 T98 = FNMS(T1j, T5H, T1h * T5I);
3045 T5L = ri[WS(rs, 45)];
3046 T5N = ii[WS(rs, 45)];
3047 T5O = FMA(T5K, T5L, T5M * T5N);
3048 T99 = FNMS(T5M, T5L, T5K * T5N);
3049 }
3050 T5P = T5J + T5O;
3051 TeH = T98 + T99;
3052 T9a = T98 - T99;
3053 T9f = T5J - T5O;
3054 }
3055 {
3056 E T5o, T9o, T5t, T9p;
3057 {
3058 E T5m, T5n, T5q, T5s;
3059 T5m = ri[WS(rs, 21)];
3060 T5n = ii[WS(rs, 21)];
3061 T5o = FMA(T3g, T5m, T3j * T5n);
3062 T9o = FNMS(T3j, T5m, T3g * T5n);
3063 T5q = ri[WS(rs, 53)];
3064 T5s = ii[WS(rs, 53)];
3065 T5t = FMA(T5p, T5q, T5r * T5s);
3066 T9p = FNMS(T5r, T5q, T5p * T5s);
3067 }
3068 T5u = T5o + T5t;
3069 TeM = T9o + T9p;
3070 T9l = T5o - T5t;
3071 T9q = T9o - T9p;
3072 }
3073 {
3074 E T5A, T9c, T5F, T9d;
3075 {
3076 E T5x, T5z, T5C, T5E;
3077 T5x = ri[WS(rs, 61)];
3078 T5z = ii[WS(rs, 61)];
3079 T5A = FMA(T5w, T5x, T5y * T5z);
3080 T9c = FNMS(T5y, T5x, T5w * T5z);
3081 T5C = ri[WS(rs, 29)];
3082 T5E = ii[WS(rs, 29)];
3083 T5F = FMA(T5B, T5C, T5D * T5E);
3084 T9d = FNMS(T5D, T5C, T5B * T5E);
3085 }
3086 T5G = T5A + T5F;
3087 TeG = T9c + T9d;
3088 T97 = T5A - T5F;
3089 T9e = T9c - T9d;
3090 }
3091 {
3092 E T5v, T5Q, TeK, TeN;
3093 T5v = T5l + T5u;
3094 T5Q = T5G + T5P;
3095 T5R = T5v + T5Q;
3096 TgT = T5Q - T5v;
3097 TeK = T5l - T5u;
3098 TeN = TeL - TeM;
3099 TeO = TeK + TeN;
3100 TeW = TeN - TeK;
3101 }
3102 {
3103 E TgW, TgX, T9b, T9g;
3104 TgW = TeL + TeM;
3105 TgX = TeG + TeH;
3106 TgY = TgW - TgX;
3107 ThE = TgW + TgX;
3108 T9b = T97 - T9a;
3109 T9g = T9e + T9f;
3110 T9h = FNMS(KP923879532, T9g, KP382683432 * T9b);
3111 T9F = FMA(KP382683432, T9g, KP923879532 * T9b);
3112 }
3113 {
3114 E T9m, T9r, Tci, Tcj;
3115 T9m = T9k + T9l;
3116 T9r = T9n - T9q;
3117 T9s = FMA(KP923879532, T9m, KP382683432 * T9r);
3118 T9E = FNMS(KP923879532, T9r, KP382683432 * T9m);
3119 Tci = T9k - T9l;
3120 Tcj = T9n + T9q;
3121 Tck = FMA(KP382683432, Tci, KP923879532 * Tcj);
3122 Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci);
3123 }
3124 {
3125 E TeF, TeI, Tcf, Tcg;
3126 TeF = T5G - T5P;
3127 TeI = TeG - TeH;
3128 TeJ = TeF - TeI;
3129 TeX = TeF + TeI;
3130 Tcf = T97 + T9a;
3131 Tcg = T9e - T9f;
3132 Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf);
3133 Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf);
3134 }
3135 }
3136 {
3137 E T6K, Tf6, Ta2, Ta5, T7c, Tfd, Tae, Taj, T6T, Tf7, Ta3, Ta8, T73, Tfc, Tad;
3138 E Tag;
3139 {
3140 E T6E, Ta0, T6J, Ta1;
3141 {
3142 E T6C, T6D, T6G, T6I;
3143 T6C = ri[WS(rs, 3)];
3144 T6D = ii[WS(rs, 3)];
3145 T6E = FMA(T3, T6C, T6 * T6D);
3146 Ta0 = FNMS(T6, T6C, T3 * T6D);
3147 T6G = ri[WS(rs, 35)];
3148 T6I = ii[WS(rs, 35)];
3149 T6J = FMA(T6F, T6G, T6H * T6I);
3150 Ta1 = FNMS(T6H, T6G, T6F * T6I);
3151 }
3152 T6K = T6E + T6J;
3153 Tf6 = Ta0 + Ta1;
3154 Ta2 = Ta0 - Ta1;
3155 Ta5 = T6E - T6J;
3156 }
3157 {
3158 E T76, Tah, T7b, Tai;
3159 {
3160 E T74, T75, T78, T7a;
3161 T74 = ri[WS(rs, 11)];
3162 T75 = ii[WS(rs, 11)];
3163 T76 = FMA(TA, T74, TE * T75);
3164 Tah = FNMS(TE, T74, TA * T75);
3165 T78 = ri[WS(rs, 43)];
3166 T7a = ii[WS(rs, 43)];
3167 T7b = FMA(T77, T78, T79 * T7a);
3168 Tai = FNMS(T79, T78, T77 * T7a);
3169 }
3170 T7c = T76 + T7b;
3171 Tfd = Tah + Tai;
3172 Tae = T76 - T7b;
3173 Taj = Tah - Tai;
3174 }
3175 {
3176 E T6N, Ta6, T6S, Ta7;
3177 {
3178 E T6L, T6M, T6P, T6R;
3179 T6L = ri[WS(rs, 19)];
3180 T6M = ii[WS(rs, 19)];
3181 T6N = FMA(T2z, T6L, T2C * T6M);
3182 Ta6 = FNMS(T2C, T6L, T2z * T6M);
3183 T6P = ri[WS(rs, 51)];
3184 T6R = ii[WS(rs, 51)];
3185 T6S = FMA(T6O, T6P, T6Q * T6R);
3186 Ta7 = FNMS(T6Q, T6P, T6O * T6R);
3187 }
3188 T6T = T6N + T6S;
3189 Tf7 = Ta6 + Ta7;
3190 Ta3 = T6N - T6S;
3191 Ta8 = Ta6 - Ta7;
3192 }
3193 {
3194 E T6Z, Tab, T72, Tac;
3195 {
3196 E T6W, T6Y, T70, T71;
3197 T6W = ri[WS(rs, 59)];
3198 T6Y = ii[WS(rs, 59)];
3199 T6Z = FMA(T6V, T6W, T6X * T6Y);
3200 Tab = FNMS(T6X, T6W, T6V * T6Y);
3201 T70 = ri[WS(rs, 27)];
3202 T71 = ii[WS(rs, 27)];
3203 T72 = FMA(Th, T70, Tm * T71);
3204 Tac = FNMS(Tm, T70, Th * T71);
3205 }
3206 T73 = T6Z + T72;
3207 Tfc = Tab + Tac;
3208 Tad = Tab - Tac;
3209 Tag = T6Z - T72;
3210 }
3211 {
3212 E T6U, T7d, Tfb, Tfe;
3213 T6U = T6K + T6T;
3214 T7d = T73 + T7c;
3215 T7e = T6U + T7d;
3216 Th9 = T7d - T6U;
3217 Tfb = T73 - T7c;
3218 Tfe = Tfc - Tfd;
3219 Tff = Tfb + Tfe;
3220 Tfn = Tfb - Tfe;
3221 }
3222 {
3223 E Th2, Th3, Ta4, Ta9;
3224 Th2 = Tf6 + Tf7;
3225 Th3 = Tfc + Tfd;
3226 Th4 = Th2 - Th3;
3227 ThJ = Th2 + Th3;
3228 Ta4 = Ta2 + Ta3;
3229 Ta9 = Ta5 - Ta8;
3230 Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4);
3231 Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9);
3232 }
3233 {
3234 E Taf, Tak, TcB, TcC;
3235 Taf = Tad + Tae;
3236 Tak = Tag - Taj;
3237 Tal = FMA(KP382683432, Taf, KP923879532 * Tak);
3238 Tax = FNMS(KP923879532, Taf, KP382683432 * Tak);
3239 TcB = Tad - Tae;
3240 TcC = Tag + Taj;
3241 TcD = FMA(KP923879532, TcB, KP382683432 * TcC);
3242 TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC);
3243 }
3244 {
3245 E Tf8, Tf9, Tcy, Tcz;
3246 Tf8 = Tf6 - Tf7;
3247 Tf9 = T6K - T6T;
3248 Tfa = Tf8 - Tf9;
3249 Tfo = Tf9 + Tf8;
3250 Tcy = Ta2 - Ta3;
3251 Tcz = Ta5 + Ta8;
3252 TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy);
3253 TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz);
3254 }
3255 }
3256 {
3257 E T2L, Thx, ThU, ThV, Ti5, Tib, T4s, Tia, T7g, Ti7, ThG, ThO, ThL, ThP, ThA;
3258 E ThW;
3259 {
3260 E T1L, T2K, ThS, ThT;
3261 T1L = T17 + T1K;
3262 T2K = T2e + T2J;
3263 T2L = T1L + T2K;
3264 Thx = T1L - T2K;
3265 ThS = ThD + ThE;
3266 ThT = ThI + ThJ;
3267 ThU = ThS - ThT;
3268 ThV = ThS + ThT;
3269 }
3270 {
3271 E ThX, Ti4, T3C, T4r;
3272 ThX = TgA + TgB;
3273 Ti4 = ThY + Ti3;
3274 Ti5 = ThX + Ti4;
3275 Tib = Ti4 - ThX;
3276 T3C = T36 + T3B;
3277 T4r = T45 + T4q;
3278 T4s = T3C + T4r;
3279 Tia = T4r - T3C;
3280 }
3281 {
3282 E T5S, T7f, ThC, ThF;
3283 T5S = T5c + T5R;
3284 T7f = T6B + T7e;
3285 T7g = T5S + T7f;
3286 Ti7 = T7f - T5S;
3287 ThC = T5c - T5R;
3288 ThF = ThD - ThE;
3289 ThG = ThC + ThF;
3290 ThO = ThF - ThC;
3291 }
3292 {
3293 E ThH, ThK, Thy, Thz;
3294 ThH = T6B - T7e;
3295 ThK = ThI - ThJ;
3296 ThL = ThH - ThK;
3297 ThP = ThH + ThK;
3298 Thy = TgE + TgF;
3299 Thz = TgK + TgL;
3300 ThA = Thy - Thz;
3301 ThW = Thy + Thz;
3302 }
3303 {
3304 E T4t, Ti6, ThR, Ti8;
3305 T4t = T2L + T4s;
3306 ri[WS(rs, 32)] = T4t - T7g;
3307 ri[0] = T4t + T7g;
3308 Ti6 = ThW + Ti5;
3309 ii[0] = ThV + Ti6;
3310 ii[WS(rs, 32)] = Ti6 - ThV;
3311 ThR = T2L - T4s;
3312 ri[WS(rs, 48)] = ThR - ThU;
3313 ri[WS(rs, 16)] = ThR + ThU;
3314 Ti8 = Ti5 - ThW;
3315 ii[WS(rs, 16)] = Ti7 + Ti8;
3316 ii[WS(rs, 48)] = Ti8 - Ti7;
3317 }
3318 {
3319 E ThB, ThM, Ti9, Tic;
3320 ThB = Thx + ThA;
3321 ThM = KP707106781 * (ThG + ThL);
3322 ri[WS(rs, 40)] = ThB - ThM;
3323 ri[WS(rs, 8)] = ThB + ThM;
3324 Ti9 = KP707106781 * (ThO + ThP);
3325 Tic = Tia + Tib;
3326 ii[WS(rs, 8)] = Ti9 + Tic;
3327 ii[WS(rs, 40)] = Tic - Ti9;
3328 }
3329 {
3330 E ThN, ThQ, Tid, Tie;
3331 ThN = Thx - ThA;
3332 ThQ = KP707106781 * (ThO - ThP);
3333 ri[WS(rs, 56)] = ThN - ThQ;
3334 ri[WS(rs, 24)] = ThN + ThQ;
3335 Tid = KP707106781 * (ThL - ThG);
3336 Tie = Tib - Tia;
3337 ii[WS(rs, 24)] = Tid + Tie;
3338 ii[WS(rs, 56)] = Tie - Tid;
3339 }
3340 }
3341 {
3342 E TgD, Thh, Thr, Thv, Tij, Tip, TgO, Tig, Th0, The, Thk, Tio, Tho, Thu, Thb;
3343 E Thf;
3344 {
3345 E Tgz, TgC, Thp, Thq;
3346 Tgz = T17 - T1K;
3347 TgC = TgA - TgB;
3348 TgD = Tgz - TgC;
3349 Thh = Tgz + TgC;
3350 Thp = Th1 + Th4;
3351 Thq = Th8 + Th9;
3352 Thr = FNMS(KP382683432, Thq, KP923879532 * Thp);
3353 Thv = FMA(KP923879532, Thq, KP382683432 * Thp);
3354 }
3355 {
3356 E Tih, Tii, TgI, TgN;
3357 Tih = T2J - T2e;
3358 Tii = Ti3 - ThY;
3359 Tij = Tih + Tii;
3360 Tip = Tii - Tih;
3361 TgI = TgG - TgH;
3362 TgN = TgJ + TgM;
3363 TgO = KP707106781 * (TgI - TgN);
3364 Tig = KP707106781 * (TgI + TgN);
3365 }
3366 {
3367 E TgU, TgZ, Thi, Thj;
3368 TgU = TgS - TgT;
3369 TgZ = TgV - TgY;
3370 Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ);
3371 The = FNMS(KP923879532, TgZ, KP382683432 * TgU);
3372 Thi = TgH + TgG;
3373 Thj = TgJ - TgM;
3374 Thk = KP707106781 * (Thi + Thj);
3375 Tio = KP707106781 * (Thj - Thi);
3376 }
3377 {
3378 E Thm, Thn, Th5, Tha;
3379 Thm = TgS + TgT;
3380 Thn = TgV + TgY;
3381 Tho = FMA(KP382683432, Thm, KP923879532 * Thn);
3382 Thu = FNMS(KP382683432, Thn, KP923879532 * Thm);
3383 Th5 = Th1 - Th4;
3384 Tha = Th8 - Th9;
3385 Thb = FNMS(KP923879532, Tha, KP382683432 * Th5);
3386 Thf = FMA(KP382683432, Tha, KP923879532 * Th5);
3387 }
3388 {
3389 E TgP, Thc, Tin, Tiq;
3390 TgP = TgD + TgO;
3391 Thc = Th0 + Thb;
3392 ri[WS(rs, 44)] = TgP - Thc;
3393 ri[WS(rs, 12)] = TgP + Thc;
3394 Tin = The + Thf;
3395 Tiq = Tio + Tip;
3396 ii[WS(rs, 12)] = Tin + Tiq;
3397 ii[WS(rs, 44)] = Tiq - Tin;
3398 }
3399 {
3400 E Thd, Thg, Tir, Tis;
3401 Thd = TgD - TgO;
3402 Thg = The - Thf;
3403 ri[WS(rs, 60)] = Thd - Thg;
3404 ri[WS(rs, 28)] = Thd + Thg;
3405 Tir = Thb - Th0;
3406 Tis = Tip - Tio;
3407 ii[WS(rs, 28)] = Tir + Tis;
3408 ii[WS(rs, 60)] = Tis - Tir;
3409 }
3410 {
3411 E Thl, Ths, Tif, Tik;
3412 Thl = Thh + Thk;
3413 Ths = Tho + Thr;
3414 ri[WS(rs, 36)] = Thl - Ths;
3415 ri[WS(rs, 4)] = Thl + Ths;
3416 Tif = Thu + Thv;
3417 Tik = Tig + Tij;
3418 ii[WS(rs, 4)] = Tif + Tik;
3419 ii[WS(rs, 36)] = Tik - Tif;
3420 }
3421 {
3422 E Tht, Thw, Til, Tim;
3423 Tht = Thh - Thk;
3424 Thw = Thu - Thv;
3425 ri[WS(rs, 52)] = Tht - Thw;
3426 ri[WS(rs, 20)] = Tht + Thw;
3427 Til = Thr - Tho;
3428 Tim = Tij - Tig;
3429 ii[WS(rs, 20)] = Til + Tim;
3430 ii[WS(rs, 52)] = Tim - Til;
3431 }
3432 }
3433 {
3434 E Teb, Tfx, Tey, TiK, TiN, TiT, TfA, TiS, Tfr, TfL, Tfv, TfH, Tf0, TfK, Tfu;
3435 E TfE;
3436 {
3437 E TdZ, Tea, Tfy, Tfz;
3438 TdZ = TdV - TdY;
3439 Tea = KP707106781 * (Te4 - Te9);
3440 Teb = TdZ - Tea;
3441 Tfx = TdZ + Tea;
3442 {
3443 E Tem, Tex, TiL, TiM;
3444 Tem = FNMS(KP923879532, Tel, KP382683432 * Teg);
3445 Tex = FMA(KP382683432, Ter, KP923879532 * Tew);
3446 Tey = Tem - Tex;
3447 TiK = Tem + Tex;
3448 TiL = KP707106781 * (TfP - TfO);
3449 TiM = Tix - Tiw;
3450 TiN = TiL + TiM;
3451 TiT = TiM - TiL;
3452 }
3453 Tfy = FMA(KP923879532, Teg, KP382683432 * Tel);
3454 Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew);
3455 TfA = Tfy + Tfz;
3456 TiS = Tfz - Tfy;
3457 {
3458 E Tfh, TfF, Tfq, TfG, Tfg, Tfp;
3459 Tfg = KP707106781 * (Tfa - Tff);
3460 Tfh = Tf5 - Tfg;
3461 TfF = Tf5 + Tfg;
3462 Tfp = KP707106781 * (Tfn - Tfo);
3463 Tfq = Tfm - Tfp;
3464 TfG = Tfm + Tfp;
3465 Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh);
3466 TfL = FMA(KP831469612, TfG, KP555570233 * TfF);
3467 Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh);
3468 TfH = FNMS(KP555570233, TfG, KP831469612 * TfF);
3469 }
3470 {
3471 E TeQ, TfC, TeZ, TfD, TeP, TeY;
3472 TeP = KP707106781 * (TeJ - TeO);
3473 TeQ = TeE - TeP;
3474 TfC = TeE + TeP;
3475 TeY = KP707106781 * (TeW - TeX);
3476 TeZ = TeV - TeY;
3477 TfD = TeV + TeY;
3478 Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ);
3479 TfK = FNMS(KP555570233, TfD, KP831469612 * TfC);
3480 Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ);
3481 TfE = FMA(KP555570233, TfC, KP831469612 * TfD);
3482 }
3483 }
3484 {
3485 E Tez, Tfs, TiR, TiU;
3486 Tez = Teb + Tey;
3487 Tfs = Tf0 + Tfr;
3488 ri[WS(rs, 46)] = Tez - Tfs;
3489 ri[WS(rs, 14)] = Tez + Tfs;
3490 TiR = Tfu + Tfv;
3491 TiU = TiS + TiT;
3492 ii[WS(rs, 14)] = TiR + TiU;
3493 ii[WS(rs, 46)] = TiU - TiR;
3494 }
3495 {
3496 E Tft, Tfw, TiV, TiW;
3497 Tft = Teb - Tey;
3498 Tfw = Tfu - Tfv;
3499 ri[WS(rs, 62)] = Tft - Tfw;
3500 ri[WS(rs, 30)] = Tft + Tfw;
3501 TiV = Tfr - Tf0;
3502 TiW = TiT - TiS;
3503 ii[WS(rs, 30)] = TiV + TiW;
3504 ii[WS(rs, 62)] = TiW - TiV;
3505 }
3506 {
3507 E TfB, TfI, TiJ, TiO;
3508 TfB = Tfx + TfA;
3509 TfI = TfE + TfH;
3510 ri[WS(rs, 38)] = TfB - TfI;
3511 ri[WS(rs, 6)] = TfB + TfI;
3512 TiJ = TfK + TfL;
3513 TiO = TiK + TiN;
3514 ii[WS(rs, 6)] = TiJ + TiO;
3515 ii[WS(rs, 38)] = TiO - TiJ;
3516 }
3517 {
3518 E TfJ, TfM, TiP, TiQ;
3519 TfJ = Tfx - TfA;
3520 TfM = TfK - TfL;
3521 ri[WS(rs, 54)] = TfJ - TfM;
3522 ri[WS(rs, 22)] = TfJ + TfM;
3523 TiP = TfH - TfE;
3524 TiQ = TiN - TiK;
3525 ii[WS(rs, 22)] = TiP + TiQ;
3526 ii[WS(rs, 54)] = TiQ - TiP;
3527 }
3528 }
3529 {
3530 E TfR, Tgj, TfY, Tiu, Tiz, TiF, Tgm, TiE, Tgd, Tgx, Tgh, Tgt, Tg6, Tgw, Tgg;
3531 E Tgq;
3532 {
3533 E TfN, TfQ, Tgk, Tgl;
3534 TfN = TdV + TdY;
3535 TfQ = KP707106781 * (TfO + TfP);
3536 TfR = TfN - TfQ;
3537 Tgj = TfN + TfQ;
3538 {
3539 E TfU, TfX, Tiv, Tiy;
3540 TfU = FNMS(KP382683432, TfT, KP923879532 * TfS);
3541 TfX = FMA(KP923879532, TfV, KP382683432 * TfW);
3542 TfY = TfU - TfX;
3543 Tiu = TfU + TfX;
3544 Tiv = KP707106781 * (Te4 + Te9);
3545 Tiy = Tiw + Tix;
3546 Tiz = Tiv + Tiy;
3547 TiF = Tiy - Tiv;
3548 }
3549 Tgk = FMA(KP382683432, TfS, KP923879532 * TfT);
3550 Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW);
3551 Tgm = Tgk + Tgl;
3552 TiE = Tgl - Tgk;
3553 {
3554 E Tg9, Tgr, Tgc, Tgs, Tg8, Tgb;
3555 Tg8 = KP707106781 * (Tfo + Tfn);
3556 Tg9 = Tg7 - Tg8;
3557 Tgr = Tg7 + Tg8;
3558 Tgb = KP707106781 * (Tfa + Tff);
3559 Tgc = Tga - Tgb;
3560 Tgs = Tga + Tgb;
3561 Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9);
3562 Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs);
3563 Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc);
3564 Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr);
3565 }
3566 {
3567 E Tg2, Tgo, Tg5, Tgp, Tg1, Tg4;
3568 Tg1 = KP707106781 * (TeO + TeJ);
3569 Tg2 = Tg0 - Tg1;
3570 Tgo = Tg0 + Tg1;
3571 Tg4 = KP707106781 * (TeW + TeX);
3572 Tg5 = Tg3 - Tg4;
3573 Tgp = Tg3 + Tg4;
3574 Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5);
3575 Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp);
3576 Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5);
3577 Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp);
3578 }
3579 }
3580 {
3581 E TfZ, Tge, TiD, TiG;
3582 TfZ = TfR + TfY;
3583 Tge = Tg6 + Tgd;
3584 ri[WS(rs, 42)] = TfZ - Tge;
3585 ri[WS(rs, 10)] = TfZ + Tge;
3586 TiD = Tgg + Tgh;
3587 TiG = TiE + TiF;
3588 ii[WS(rs, 10)] = TiD + TiG;
3589 ii[WS(rs, 42)] = TiG - TiD;
3590 }
3591 {
3592 E Tgf, Tgi, TiH, TiI;
3593 Tgf = TfR - TfY;
3594 Tgi = Tgg - Tgh;
3595 ri[WS(rs, 58)] = Tgf - Tgi;
3596 ri[WS(rs, 26)] = Tgf + Tgi;
3597 TiH = Tgd - Tg6;
3598 TiI = TiF - TiE;
3599 ii[WS(rs, 26)] = TiH + TiI;
3600 ii[WS(rs, 58)] = TiI - TiH;
3601 }
3602 {
3603 E Tgn, Tgu, Tit, TiA;
3604 Tgn = Tgj + Tgm;
3605 Tgu = Tgq + Tgt;
3606 ri[WS(rs, 34)] = Tgn - Tgu;
3607 ri[WS(rs, 2)] = Tgn + Tgu;
3608 Tit = Tgw + Tgx;
3609 TiA = Tiu + Tiz;
3610 ii[WS(rs, 2)] = Tit + TiA;
3611 ii[WS(rs, 34)] = TiA - Tit;
3612 }
3613 {
3614 E Tgv, Tgy, TiB, TiC;
3615 Tgv = Tgj - Tgm;
3616 Tgy = Tgw - Tgx;
3617 ri[WS(rs, 50)] = Tgv - Tgy;
3618 ri[WS(rs, 18)] = Tgv + Tgy;
3619 TiB = Tgt - Tgq;
3620 TiC = Tiz - Tiu;
3621 ii[WS(rs, 18)] = TiB + TiC;
3622 ii[WS(rs, 50)] = TiC - TiB;
3623 }
3624 }
3625 {
3626 E T7V, TaH, TjN, TjT, T8O, TjS, TaK, TjK, T9I, TaU, TaE, TaO, TaB, TaV, TaF;
3627 E TaR;
3628 {
3629 E T7x, T7U, TjL, TjM;
3630 T7x = T7l - T7w;
3631 T7U = T7I - T7T;
3632 T7V = T7x - T7U;
3633 TaH = T7x + T7U;
3634 TjL = TaZ - TaY;
3635 TjM = Tjx - Tjw;
3636 TjN = TjL + TjM;
3637 TjT = TjM - TjL;
3638 }
3639 {
3640 E T8m, TaI, T8N, TaJ;
3641 {
3642 E T8c, T8l, T8D, T8M;
3643 T8c = T80 - T8b;
3644 T8l = T8h - T8k;
3645 T8m = FNMS(KP980785280, T8l, KP195090322 * T8c);
3646 TaI = FMA(KP980785280, T8c, KP195090322 * T8l);
3647 T8D = T8r - T8C;
3648 T8M = T8I - T8L;
3649 T8N = FMA(KP195090322, T8D, KP980785280 * T8M);
3650 TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M);
3651 }
3652 T8O = T8m - T8N;
3653 TjS = TaJ - TaI;
3654 TaK = TaI + TaJ;
3655 TjK = T8m + T8N;
3656 }
3657 {
3658 E T9u, TaM, T9H, TaN;
3659 {
3660 E T96, T9t, T9D, T9G;
3661 T96 = T8U - T95;
3662 T9t = T9h - T9s;
3663 T9u = T96 - T9t;
3664 TaM = T96 + T9t;
3665 T9D = T9z - T9C;
3666 T9G = T9E - T9F;
3667 T9H = T9D - T9G;
3668 TaN = T9D + T9G;
3669 }
3670 T9I = FMA(KP995184726, T9u, KP098017140 * T9H);
3671 TaU = FNMS(KP634393284, TaN, KP773010453 * TaM);
3672 TaE = FNMS(KP995184726, T9H, KP098017140 * T9u);
3673 TaO = FMA(KP634393284, TaM, KP773010453 * TaN);
3674 }
3675 {
3676 E Tan, TaP, TaA, TaQ;
3677 {
3678 E T9Z, Tam, Taw, Taz;
3679 T9Z = T9N - T9Y;
3680 Tam = Taa - Tal;
3681 Tan = T9Z - Tam;
3682 TaP = T9Z + Tam;
3683 Taw = Tas - Tav;
3684 Taz = Tax - Tay;
3685 TaA = Taw - Taz;
3686 TaQ = Taw + Taz;
3687 }
3688 TaB = FNMS(KP995184726, TaA, KP098017140 * Tan);
3689 TaV = FMA(KP773010453, TaQ, KP634393284 * TaP);
3690 TaF = FMA(KP098017140, TaA, KP995184726 * Tan);
3691 TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP);
3692 }
3693 {
3694 E T8P, TaC, TjR, TjU;
3695 T8P = T7V + T8O;
3696 TaC = T9I + TaB;
3697 ri[WS(rs, 47)] = T8P - TaC;
3698 ri[WS(rs, 15)] = T8P + TaC;
3699 TjR = TaE + TaF;
3700 TjU = TjS + TjT;
3701 ii[WS(rs, 15)] = TjR + TjU;
3702 ii[WS(rs, 47)] = TjU - TjR;
3703 }
3704 {
3705 E TaD, TaG, TjV, TjW;
3706 TaD = T7V - T8O;
3707 TaG = TaE - TaF;
3708 ri[WS(rs, 63)] = TaD - TaG;
3709 ri[WS(rs, 31)] = TaD + TaG;
3710 TjV = TaB - T9I;
3711 TjW = TjT - TjS;
3712 ii[WS(rs, 31)] = TjV + TjW;
3713 ii[WS(rs, 63)] = TjW - TjV;
3714 }
3715 {
3716 E TaL, TaS, TjJ, TjO;
3717 TaL = TaH + TaK;
3718 TaS = TaO + TaR;
3719 ri[WS(rs, 39)] = TaL - TaS;
3720 ri[WS(rs, 7)] = TaL + TaS;
3721 TjJ = TaU + TaV;
3722 TjO = TjK + TjN;
3723 ii[WS(rs, 7)] = TjJ + TjO;
3724 ii[WS(rs, 39)] = TjO - TjJ;
3725 }
3726 {
3727 E TaT, TaW, TjP, TjQ;
3728 TaT = TaH - TaK;
3729 TaW = TaU - TaV;
3730 ri[WS(rs, 55)] = TaT - TaW;
3731 ri[WS(rs, 23)] = TaT + TaW;
3732 TjP = TaR - TaO;
3733 TjQ = TjN - TjK;
3734 ii[WS(rs, 23)] = TjP + TjQ;
3735 ii[WS(rs, 55)] = TjQ - TjP;
3736 }
3737 }
3738 {
3739 E TbV, TcT, Tjj, Tjp, Tca, Tjo, TcW, Tjg, Tcu, Td6, TcQ, Td0, TcN, Td7, TcR;
3740 E Td3;
3741 {
3742 E TbN, TbU, Tjh, Tji;
3743 TbN = TbJ - TbM;
3744 TbU = TbQ - TbT;
3745 TbV = TbN - TbU;
3746 TcT = TbN + TbU;
3747 Tjh = Tdb - Tda;
3748 Tji = Tj3 - Tj0;
3749 Tjj = Tjh + Tji;
3750 Tjp = Tji - Tjh;
3751 }
3752 {
3753 E Tc2, TcU, Tc9, TcV;
3754 {
3755 E TbY, Tc1, Tc5, Tc8;
3756 TbY = TbW - TbX;
3757 Tc1 = TbZ - Tc0;
3758 Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY);
3759 TcU = FMA(KP555570233, Tc1, KP831469612 * TbY);
3760 Tc5 = Tc3 - Tc4;
3761 Tc8 = Tc6 - Tc7;
3762 Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8);
3763 TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5);
3764 }
3765 Tca = Tc2 - Tc9;
3766 Tjo = TcV - TcU;
3767 TcW = TcU + TcV;
3768 Tjg = Tc2 + Tc9;
3769 }
3770 {
3771 E Tcm, TcY, Tct, TcZ;
3772 {
3773 E Tce, Tcl, Tcp, Tcs;
3774 Tce = Tcc - Tcd;
3775 Tcl = Tch - Tck;
3776 Tcm = Tce - Tcl;
3777 TcY = Tce + Tcl;
3778 Tcp = Tcn - Tco;
3779 Tcs = Tcq - Tcr;
3780 Tct = Tcp - Tcs;
3781 TcZ = Tcp + Tcs;
3782 }
3783 Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct);
3784 Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY);
3785 TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm);
3786 Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ);
3787 }
3788 {
3789 E TcF, Td1, TcM, Td2;
3790 {
3791 E Tcx, TcE, TcI, TcL;
3792 Tcx = Tcv - Tcw;
3793 TcE = TcA - TcD;
3794 TcF = Tcx - TcE;
3795 Td1 = Tcx + TcE;
3796 TcI = TcG - TcH;
3797 TcL = TcJ - TcK;
3798 TcM = TcI - TcL;
3799 Td2 = TcI + TcL;
3800 }
3801 TcN = FNMS(KP956940335, TcM, KP290284677 * TcF);
3802 Td7 = FMA(KP881921264, Td2, KP471396736 * Td1);
3803 TcR = FMA(KP290284677, TcM, KP956940335 * TcF);
3804 Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1);
3805 }
3806 {
3807 E Tcb, TcO, Tjn, Tjq;
3808 Tcb = TbV + Tca;
3809 TcO = Tcu + TcN;
3810 ri[WS(rs, 45)] = Tcb - TcO;
3811 ri[WS(rs, 13)] = Tcb + TcO;
3812 Tjn = TcQ + TcR;
3813 Tjq = Tjo + Tjp;
3814 ii[WS(rs, 13)] = Tjn + Tjq;
3815 ii[WS(rs, 45)] = Tjq - Tjn;
3816 }
3817 {
3818 E TcP, TcS, Tjr, Tjs;
3819 TcP = TbV - Tca;
3820 TcS = TcQ - TcR;
3821 ri[WS(rs, 61)] = TcP - TcS;
3822 ri[WS(rs, 29)] = TcP + TcS;
3823 Tjr = TcN - Tcu;
3824 Tjs = Tjp - Tjo;
3825 ii[WS(rs, 29)] = Tjr + Tjs;
3826 ii[WS(rs, 61)] = Tjs - Tjr;
3827 }
3828 {
3829 E TcX, Td4, Tjf, Tjk;
3830 TcX = TcT + TcW;
3831 Td4 = Td0 + Td3;
3832 ri[WS(rs, 37)] = TcX - Td4;
3833 ri[WS(rs, 5)] = TcX + Td4;
3834 Tjf = Td6 + Td7;
3835 Tjk = Tjg + Tjj;
3836 ii[WS(rs, 5)] = Tjf + Tjk;
3837 ii[WS(rs, 37)] = Tjk - Tjf;
3838 }
3839 {
3840 E Td5, Td8, Tjl, Tjm;
3841 Td5 = TcT - TcW;
3842 Td8 = Td6 - Td7;
3843 ri[WS(rs, 53)] = Td5 - Td8;
3844 ri[WS(rs, 21)] = Td5 + Td8;
3845 Tjl = Td3 - Td0;
3846 Tjm = Tjj - Tjg;
3847 ii[WS(rs, 21)] = Tjl + Tjm;
3848 ii[WS(rs, 53)] = Tjm - Tjl;
3849 }
3850 }
3851 {
3852 E Tdd, TdF, Tj5, Tjb, Tdk, Tja, TdI, TiY, Tds, TdS, TdC, TdM, Tdz, TdT, TdD;
3853 E TdP;
3854 {
3855 E Td9, Tdc, TiZ, Tj4;
3856 Td9 = TbJ + TbM;
3857 Tdc = Tda + Tdb;
3858 Tdd = Td9 - Tdc;
3859 TdF = Td9 + Tdc;
3860 TiZ = TbQ + TbT;
3861 Tj4 = Tj0 + Tj3;
3862 Tj5 = TiZ + Tj4;
3863 Tjb = Tj4 - TiZ;
3864 }
3865 {
3866 E Tdg, TdG, Tdj, TdH;
3867 {
3868 E Tde, Tdf, Tdh, Tdi;
3869 Tde = TbW + TbX;
3870 Tdf = TbZ + Tc0;
3871 Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde);
3872 TdG = FMA(KP980785280, Tdf, KP195090322 * Tde);
3873 Tdh = Tc3 + Tc4;
3874 Tdi = Tc6 + Tc7;
3875 Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi);
3876 TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh);
3877 }
3878 Tdk = Tdg - Tdj;
3879 Tja = TdH - TdG;
3880 TdI = TdG + TdH;
3881 TiY = Tdg + Tdj;
3882 }
3883 {
3884 E Tdo, TdK, Tdr, TdL;
3885 {
3886 E Tdm, Tdn, Tdp, Tdq;
3887 Tdm = Tcn + Tco;
3888 Tdn = Tck + Tch;
3889 Tdo = Tdm - Tdn;
3890 TdK = Tdm + Tdn;
3891 Tdp = Tcc + Tcd;
3892 Tdq = Tcq + Tcr;
3893 Tdr = Tdp - Tdq;
3894 TdL = Tdp + Tdq;
3895 }
3896 Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr);
3897 TdS = FNMS(KP098017140, TdK, KP995184726 * TdL);
3898 TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr);
3899 TdM = FMA(KP995184726, TdK, KP098017140 * TdL);
3900 }
3901 {
3902 E Tdv, TdN, Tdy, TdO;
3903 {
3904 E Tdt, Tdu, Tdw, Tdx;
3905 Tdt = Tcv + Tcw;
3906 Tdu = TcK + TcJ;
3907 Tdv = Tdt - Tdu;
3908 TdN = Tdt + Tdu;
3909 Tdw = TcG + TcH;
3910 Tdx = TcA + TcD;
3911 Tdy = Tdw - Tdx;
3912 TdO = Tdw + Tdx;
3913 }
3914 Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv);
3915 TdT = FMA(KP098017140, TdN, KP995184726 * TdO);
3916 TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy);
3917 TdP = FNMS(KP098017140, TdO, KP995184726 * TdN);
3918 }
3919 {
3920 E Tdl, TdA, Tj9, Tjc;
3921 Tdl = Tdd + Tdk;
3922 TdA = Tds + Tdz;
3923 ri[WS(rs, 41)] = Tdl - TdA;
3924 ri[WS(rs, 9)] = Tdl + TdA;
3925 Tj9 = TdC + TdD;
3926 Tjc = Tja + Tjb;
3927 ii[WS(rs, 9)] = Tj9 + Tjc;
3928 ii[WS(rs, 41)] = Tjc - Tj9;
3929 }
3930 {
3931 E TdB, TdE, Tjd, Tje;
3932 TdB = Tdd - Tdk;
3933 TdE = TdC - TdD;
3934 ri[WS(rs, 57)] = TdB - TdE;
3935 ri[WS(rs, 25)] = TdB + TdE;
3936 Tjd = Tdz - Tds;
3937 Tje = Tjb - Tja;
3938 ii[WS(rs, 25)] = Tjd + Tje;
3939 ii[WS(rs, 57)] = Tje - Tjd;
3940 }
3941 {
3942 E TdJ, TdQ, TiX, Tj6;
3943 TdJ = TdF + TdI;
3944 TdQ = TdM + TdP;
3945 ri[WS(rs, 33)] = TdJ - TdQ;
3946 ri[WS(rs, 1)] = TdJ + TdQ;
3947 TiX = TdS + TdT;
3948 Tj6 = TiY + Tj5;
3949 ii[WS(rs, 1)] = TiX + Tj6;
3950 ii[WS(rs, 33)] = Tj6 - TiX;
3951 }
3952 {
3953 E TdR, TdU, Tj7, Tj8;
3954 TdR = TdF - TdI;
3955 TdU = TdS - TdT;
3956 ri[WS(rs, 49)] = TdR - TdU;
3957 ri[WS(rs, 17)] = TdR + TdU;
3958 Tj7 = TdP - TdM;
3959 Tj8 = Tj5 - TiY;
3960 ii[WS(rs, 17)] = Tj7 + Tj8;
3961 ii[WS(rs, 49)] = Tj8 - Tj7;
3962 }
3963 }
3964 {
3965 E Tb1, Tbt, Tjz, TjF, Tb8, TjE, Tbw, Tju, Tbg, TbG, Tbq, TbA, Tbn, TbH, Tbr;
3966 E TbD;
3967 {
3968 E TaX, Tb0, Tjv, Tjy;
3969 TaX = T7l + T7w;
3970 Tb0 = TaY + TaZ;
3971 Tb1 = TaX - Tb0;
3972 Tbt = TaX + Tb0;
3973 Tjv = T7I + T7T;
3974 Tjy = Tjw + Tjx;
3975 Tjz = Tjv + Tjy;
3976 TjF = Tjy - Tjv;
3977 }
3978 {
3979 E Tb4, Tbu, Tb7, Tbv;
3980 {
3981 E Tb2, Tb3, Tb5, Tb6;
3982 Tb2 = T80 + T8b;
3983 Tb3 = T8h + T8k;
3984 Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2);
3985 Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3);
3986 Tb5 = T8r + T8C;
3987 Tb6 = T8I + T8L;
3988 Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6);
3989 Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6);
3990 }
3991 Tb8 = Tb4 - Tb7;
3992 TjE = Tbv - Tbu;
3993 Tbw = Tbu + Tbv;
3994 Tju = Tb4 + Tb7;
3995 }
3996 {
3997 E Tbc, Tby, Tbf, Tbz;
3998 {
3999 E Tba, Tbb, Tbd, Tbe;
4000 Tba = T9z + T9C;
4001 Tbb = T9s + T9h;
4002 Tbc = Tba - Tbb;
4003 Tby = Tba + Tbb;
4004 Tbd = T8U + T95;
4005 Tbe = T9E + T9F;
4006 Tbf = Tbd - Tbe;
4007 Tbz = Tbd + Tbe;
4008 }
4009 Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf);
4010 TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz);
4011 Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf);
4012 TbA = FMA(KP956940335, Tby, KP290284677 * Tbz);
4013 }
4014 {
4015 E Tbj, TbB, Tbm, TbC;
4016 {
4017 E Tbh, Tbi, Tbk, Tbl;
4018 Tbh = T9N + T9Y;
4019 Tbi = Tay + Tax;
4020 Tbj = Tbh - Tbi;
4021 TbB = Tbh + Tbi;
4022 Tbk = Tas + Tav;
4023 Tbl = Taa + Tal;
4024 Tbm = Tbk - Tbl;
4025 TbC = Tbk + Tbl;
4026 }
4027 Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj);
4028 TbH = FMA(KP290284677, TbB, KP956940335 * TbC);
4029 Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm);
4030 TbD = FNMS(KP290284677, TbC, KP956940335 * TbB);
4031 }
4032 {
4033 E Tb9, Tbo, TjD, TjG;
4034 Tb9 = Tb1 + Tb8;
4035 Tbo = Tbg + Tbn;
4036 ri[WS(rs, 43)] = Tb9 - Tbo;
4037 ri[WS(rs, 11)] = Tb9 + Tbo;
4038 TjD = Tbq + Tbr;
4039 TjG = TjE + TjF;
4040 ii[WS(rs, 11)] = TjD + TjG;
4041 ii[WS(rs, 43)] = TjG - TjD;
4042 }
4043 {
4044 E Tbp, Tbs, TjH, TjI;
4045 Tbp = Tb1 - Tb8;
4046 Tbs = Tbq - Tbr;
4047 ri[WS(rs, 59)] = Tbp - Tbs;
4048 ri[WS(rs, 27)] = Tbp + Tbs;
4049 TjH = Tbn - Tbg;
4050 TjI = TjF - TjE;
4051 ii[WS(rs, 27)] = TjH + TjI;
4052 ii[WS(rs, 59)] = TjI - TjH;
4053 }
4054 {
4055 E Tbx, TbE, Tjt, TjA;
4056 Tbx = Tbt + Tbw;
4057 TbE = TbA + TbD;
4058 ri[WS(rs, 35)] = Tbx - TbE;
4059 ri[WS(rs, 3)] = Tbx + TbE;
4060 Tjt = TbG + TbH;
4061 TjA = Tju + Tjz;
4062 ii[WS(rs, 3)] = Tjt + TjA;
4063 ii[WS(rs, 35)] = TjA - Tjt;
4064 }
4065 {
4066 E TbF, TbI, TjB, TjC;
4067 TbF = Tbt - Tbw;
4068 TbI = TbG - TbH;
4069 ri[WS(rs, 51)] = TbF - TbI;
4070 ri[WS(rs, 19)] = TbF + TbI;
4071 TjB = TbD - TbA;
4072 TjC = Tjz - Tju;
4073 ii[WS(rs, 19)] = TjB + TjC;
4074 ii[WS(rs, 51)] = TjC - TjB;
4075 }
4076 }
4077 }
4078 }
4079 }
4080 }
4081
4082 static const tw_instr twinstr[] = {
4083 {TW_CEXP, 0, 1},
4084 {TW_CEXP, 0, 3},
4085 {TW_CEXP, 0, 9},
4086 {TW_CEXP, 0, 27},
4087 {TW_CEXP, 0, 63},
4088 {TW_NEXT, 1, 0}
4089 };
4090
4091 static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {880, 386, 274, 0}, 0, 0, 0 };
4092
4093 void X(codelet_t2_64) (planner *p) {
4094 X(kdft_dit_register) (p, t2_64, &desc);
4095 }
4096 #endif /* HAVE_FMA */