Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t2_32.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:00 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -name t2_32 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 488 FP additions, 350 FP multiplications, | |
32 * (or, 236 additions, 98 multiplications, 252 fused multiply/add), | |
33 * 181 stack variables, 7 constants, and 128 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t2_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
40 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
41 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
42 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
46 { | |
47 INT m; | |
48 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { | |
49 E T9A, T9z; | |
50 { | |
51 E T2, T8, T3, T6, Te, Tr, T18, T4, Ta, Tz, T1n, T10, Ti, T5, Tc; | |
52 T2 = W[0]; | |
53 T8 = W[4]; | |
54 T3 = W[2]; | |
55 T6 = W[3]; | |
56 Te = W[6]; | |
57 Tr = T2 * T8; | |
58 T18 = T3 * T8; | |
59 T4 = T2 * T3; | |
60 Ta = T2 * T6; | |
61 Tz = T3 * Te; | |
62 T1n = T8 * Te; | |
63 T10 = T2 * Te; | |
64 Ti = W[7]; | |
65 T5 = W[1]; | |
66 Tc = W[5]; | |
67 { | |
68 E T34, T31, T2X, T2T, Tq, T46, T8H, T97, TH, T98, T4b, T8D, TZ, T7f, T4j; | |
69 E T6t, T1g, T7g, T4q, T6u, T4z, T6x, T1J, T7m, T7l, T8d, T6y, T4G, T2k, T7o; | |
70 E T7r, T8e, T6A, T4O, T6B, T4V, T6P, T5E, T7L, T3G, T6M, T61, T8n, T7I, T6I; | |
71 E T55, T7A, T2N, T6F, T5s, T8i, T7x, T5L, T62, T43, T7J, T5S, T63, T7O, T8o; | |
72 E T2U, T2R, T2V, T57, T3a, T5h, T2Y, T32, T35; | |
73 { | |
74 E T1K, T23, T1N, T26, T2b, T1U, T3C, T3j, T3z, T3f, T1R, T29, TR, Th, T2J; | |
75 E T2F, Td, TP, T3r, T3n, T2w, T2s, T3Q, T3M, T1Z, T1V, T2g, T2c; | |
76 { | |
77 E T11, T1C, TM, Tb, TJ, T7, T1o, T19, T1w, T1F, T15, T1s, T1d, T1z, TW; | |
78 E TS, Ty, T48, TG, T4a; | |
79 { | |
80 E T1, TA, Ts, TE, Tw, Tn, Tj, T8G, Tk, To, T14; | |
81 T1 = ri[0]; | |
82 TA = FMA(T6, Ti, Tz); | |
83 T1K = FNMS(T6, Ti, Tz); | |
84 T14 = T2 * Ti; | |
85 { | |
86 E T1r, TD, T1c, Tv; | |
87 T1r = T8 * Ti; | |
88 TD = T3 * Ti; | |
89 T11 = FNMS(T5, Ti, T10); | |
90 T1C = FMA(T5, Ti, T10); | |
91 TM = FMA(T5, T3, Ta); | |
92 Tb = FNMS(T5, T3, Ta); | |
93 TJ = FNMS(T5, T6, T4); | |
94 T7 = FMA(T5, T6, T4); | |
95 T1o = FMA(Tc, Ti, T1n); | |
96 T23 = FMA(T6, Tc, T18); | |
97 T19 = FNMS(T6, Tc, T18); | |
98 T1w = FNMS(T5, Tc, Tr); | |
99 Ts = FMA(T5, Tc, Tr); | |
100 T1c = T3 * Tc; | |
101 Tv = T2 * Tc; | |
102 T1F = FNMS(T5, Te, T14); | |
103 T15 = FMA(T5, Te, T14); | |
104 T1s = FNMS(Tc, Te, T1r); | |
105 T1N = FMA(T6, Te, TD); | |
106 TE = FNMS(T6, Te, TD); | |
107 { | |
108 E T1T, T3i, T3e, T1Q; | |
109 T1T = TJ * Tc; | |
110 T3i = TJ * Ti; | |
111 T3e = TJ * Te; | |
112 T1Q = TJ * T8; | |
113 { | |
114 E Tg, T2I, T2E, T9; | |
115 Tg = T7 * Tc; | |
116 T2I = T7 * Ti; | |
117 T2E = T7 * Te; | |
118 T9 = T7 * T8; | |
119 { | |
120 E T3q, T3m, T2v, T2r; | |
121 T3q = T19 * Ti; | |
122 T3m = T19 * Te; | |
123 T2v = T1w * Ti; | |
124 T2r = T1w * Te; | |
125 { | |
126 E T2W, T2S, T3P, T3L; | |
127 T2W = T23 * Ti; | |
128 T2S = T23 * Te; | |
129 T3P = Ts * Ti; | |
130 T3L = Ts * Te; | |
131 T26 = FNMS(T6, T8, T1c); | |
132 T1d = FMA(T6, T8, T1c); | |
133 T1z = FMA(T5, T8, Tv); | |
134 Tw = FNMS(T5, T8, Tv); | |
135 T2b = FNMS(TM, T8, T1T); | |
136 T1U = FMA(TM, T8, T1T); | |
137 T3C = FNMS(TM, Te, T3i); | |
138 T3j = FMA(TM, Te, T3i); | |
139 T3z = FMA(TM, Ti, T3e); | |
140 T3f = FNMS(TM, Ti, T3e); | |
141 T1R = FNMS(TM, Tc, T1Q); | |
142 T29 = FMA(TM, Tc, T1Q); | |
143 TR = FNMS(Tb, T8, Tg); | |
144 Th = FMA(Tb, T8, Tg); | |
145 T34 = FMA(Tb, Te, T2I); | |
146 T2J = FNMS(Tb, Te, T2I); | |
147 T31 = FNMS(Tb, Ti, T2E); | |
148 T2F = FMA(Tb, Ti, T2E); | |
149 Td = FNMS(Tb, Tc, T9); | |
150 TP = FMA(Tb, Tc, T9); | |
151 T2X = FNMS(T26, Te, T2W); | |
152 T2T = FMA(T26, Ti, T2S); | |
153 T3r = FNMS(T1d, Te, T3q); | |
154 T3n = FMA(T1d, Ti, T3m); | |
155 T2w = FNMS(T1z, Te, T2v); | |
156 T2s = FMA(T1z, Ti, T2r); | |
157 T3Q = FNMS(Tw, Te, T3P); | |
158 T3M = FMA(Tw, Ti, T3L); | |
159 { | |
160 E T1Y, T1S, T2f, T2a; | |
161 T1Y = T1R * Ti; | |
162 T1S = T1R * Te; | |
163 T2f = T29 * Ti; | |
164 T2a = T29 * Te; | |
165 { | |
166 E Tm, Tf, TV, TQ; | |
167 Tm = Td * Ti; | |
168 Tf = Td * Te; | |
169 TV = TP * Ti; | |
170 TQ = TP * Te; | |
171 T1Z = FNMS(T1U, Te, T1Y); | |
172 T1V = FMA(T1U, Ti, T1S); | |
173 T2g = FNMS(T2b, Te, T2f); | |
174 T2c = FMA(T2b, Ti, T2a); | |
175 Tn = FNMS(Th, Te, Tm); | |
176 Tj = FMA(Th, Ti, Tf); | |
177 TW = FNMS(TR, Te, TV); | |
178 TS = FMA(TR, Ti, TQ); | |
179 T8G = ii[0]; | |
180 } | |
181 } | |
182 } | |
183 } | |
184 } | |
185 } | |
186 } | |
187 Tk = ri[WS(rs, 16)]; | |
188 To = ii[WS(rs, 16)]; | |
189 { | |
190 E Tt, Tx, Tu, T47, TB, TF, TC, T49; | |
191 { | |
192 E Tl, T8E, Tp, T8F; | |
193 Tt = ri[WS(rs, 8)]; | |
194 Tx = ii[WS(rs, 8)]; | |
195 Tl = Tj * Tk; | |
196 T8E = Tj * To; | |
197 Tu = Ts * Tt; | |
198 T47 = Ts * Tx; | |
199 Tp = FMA(Tn, To, Tl); | |
200 T8F = FNMS(Tn, Tk, T8E); | |
201 TB = ri[WS(rs, 24)]; | |
202 TF = ii[WS(rs, 24)]; | |
203 Tq = T1 + Tp; | |
204 T46 = T1 - Tp; | |
205 T8H = T8F + T8G; | |
206 T97 = T8G - T8F; | |
207 TC = TA * TB; | |
208 T49 = TA * TF; | |
209 } | |
210 Ty = FMA(Tw, Tx, Tu); | |
211 T48 = FNMS(Tw, Tt, T47); | |
212 TG = FMA(TE, TF, TC); | |
213 T4a = FNMS(TE, TB, T49); | |
214 } | |
215 } | |
216 { | |
217 E TT, TX, TO, T4f, TU, T4g; | |
218 { | |
219 E TK, TN, TL, T4e; | |
220 TK = ri[WS(rs, 4)]; | |
221 TN = ii[WS(rs, 4)]; | |
222 TH = Ty + TG; | |
223 T98 = Ty - TG; | |
224 T4b = T48 - T4a; | |
225 T8D = T48 + T4a; | |
226 TL = TJ * TK; | |
227 T4e = TJ * TN; | |
228 TT = ri[WS(rs, 20)]; | |
229 TX = ii[WS(rs, 20)]; | |
230 TO = FMA(TM, TN, TL); | |
231 T4f = FNMS(TM, TK, T4e); | |
232 TU = TS * TT; | |
233 T4g = TS * TX; | |
234 } | |
235 { | |
236 E T17, T4m, T1a, T1e, T4d, T4i; | |
237 { | |
238 E T12, T16, TY, T4h, T13, T4l; | |
239 T12 = ri[WS(rs, 28)]; | |
240 T16 = ii[WS(rs, 28)]; | |
241 TY = FMA(TW, TX, TU); | |
242 T4h = FNMS(TW, TT, T4g); | |
243 T13 = T11 * T12; | |
244 T4l = T11 * T16; | |
245 TZ = TO + TY; | |
246 T4d = TO - TY; | |
247 T7f = T4f + T4h; | |
248 T4i = T4f - T4h; | |
249 T17 = FMA(T15, T16, T13); | |
250 T4m = FNMS(T15, T12, T4l); | |
251 } | |
252 T4j = T4d + T4i; | |
253 T6t = T4i - T4d; | |
254 T1a = ri[WS(rs, 12)]; | |
255 T1e = ii[WS(rs, 12)]; | |
256 { | |
257 E T1m, T4u, T1H, T4E, T1x, T1A, T1u, T4w, T1y, T4B; | |
258 { | |
259 E T1D, T1G, T1E, T4D; | |
260 { | |
261 E T1f, T4o, T4k, T4p; | |
262 { | |
263 E T1j, T1l, T1b, T4n, T1k, T4t; | |
264 T1j = ri[WS(rs, 2)]; | |
265 T1l = ii[WS(rs, 2)]; | |
266 T1b = T19 * T1a; | |
267 T4n = T19 * T1e; | |
268 T1k = T7 * T1j; | |
269 T4t = T7 * T1l; | |
270 T1f = FMA(T1d, T1e, T1b); | |
271 T4o = FNMS(T1d, T1a, T4n); | |
272 T1m = FMA(Tb, T1l, T1k); | |
273 T4u = FNMS(Tb, T1j, T4t); | |
274 } | |
275 T1g = T17 + T1f; | |
276 T4k = T17 - T1f; | |
277 T7g = T4m + T4o; | |
278 T4p = T4m - T4o; | |
279 T1D = ri[WS(rs, 26)]; | |
280 T1G = ii[WS(rs, 26)]; | |
281 T4q = T4k - T4p; | |
282 T6u = T4k + T4p; | |
283 T1E = T1C * T1D; | |
284 T4D = T1C * T1G; | |
285 } | |
286 { | |
287 E T1p, T1t, T1q, T4v; | |
288 T1p = ri[WS(rs, 18)]; | |
289 T1t = ii[WS(rs, 18)]; | |
290 T1H = FMA(T1F, T1G, T1E); | |
291 T4E = FNMS(T1F, T1D, T4D); | |
292 T1q = T1o * T1p; | |
293 T4v = T1o * T1t; | |
294 T1x = ri[WS(rs, 10)]; | |
295 T1A = ii[WS(rs, 10)]; | |
296 T1u = FMA(T1s, T1t, T1q); | |
297 T4w = FNMS(T1s, T1p, T4v); | |
298 T1y = T1w * T1x; | |
299 T4B = T1w * T1A; | |
300 } | |
301 } | |
302 { | |
303 E T4A, T1v, T7j, T4x, T1B, T4C; | |
304 T4A = T1m - T1u; | |
305 T1v = T1m + T1u; | |
306 T7j = T4u + T4w; | |
307 T4x = T4u - T4w; | |
308 T1B = FMA(T1z, T1A, T1y); | |
309 T4C = FNMS(T1z, T1x, T4B); | |
310 { | |
311 E T1I, T4y, T4F, T7k; | |
312 T1I = T1B + T1H; | |
313 T4y = T1B - T1H; | |
314 T4F = T4C - T4E; | |
315 T7k = T4C + T4E; | |
316 T4z = T4x - T4y; | |
317 T6x = T4x + T4y; | |
318 T1J = T1v + T1I; | |
319 T7m = T1v - T1I; | |
320 T7l = T7j - T7k; | |
321 T8d = T7j + T7k; | |
322 T6y = T4A - T4F; | |
323 T4G = T4A + T4F; | |
324 } | |
325 } | |
326 } | |
327 } | |
328 } | |
329 } | |
330 { | |
331 E T5Z, T3u, T5V, T5C, T7G, T5D, T3F, T5X, T4P, T4U; | |
332 { | |
333 E T1P, T4J, T2i, T4T, T21, T4L, T28, T4R; | |
334 { | |
335 E T1L, T1O, T1W, T20; | |
336 T1L = ri[WS(rs, 30)]; | |
337 T1O = ii[WS(rs, 30)]; | |
338 { | |
339 E T2d, T2h, T1M, T4I, T2e, T4S; | |
340 T2d = ri[WS(rs, 22)]; | |
341 T2h = ii[WS(rs, 22)]; | |
342 T1M = T1K * T1L; | |
343 T4I = T1K * T1O; | |
344 T2e = T2c * T2d; | |
345 T4S = T2c * T2h; | |
346 T1P = FMA(T1N, T1O, T1M); | |
347 T4J = FNMS(T1N, T1L, T4I); | |
348 T2i = FMA(T2g, T2h, T2e); | |
349 T4T = FNMS(T2g, T2d, T4S); | |
350 } | |
351 T1W = ri[WS(rs, 14)]; | |
352 T20 = ii[WS(rs, 14)]; | |
353 { | |
354 E T24, T27, T1X, T4K, T25, T4Q; | |
355 T24 = ri[WS(rs, 6)]; | |
356 T27 = ii[WS(rs, 6)]; | |
357 T1X = T1V * T1W; | |
358 T4K = T1V * T20; | |
359 T25 = T23 * T24; | |
360 T4Q = T23 * T27; | |
361 T21 = FMA(T1Z, T20, T1X); | |
362 T4L = FNMS(T1Z, T1W, T4K); | |
363 T28 = FMA(T26, T27, T25); | |
364 T4R = FNMS(T26, T24, T4Q); | |
365 } | |
366 } | |
367 { | |
368 E T22, T7p, T4M, T4N, T2j, T7q; | |
369 T4P = T1P - T21; | |
370 T22 = T1P + T21; | |
371 T7p = T4J + T4L; | |
372 T4M = T4J - T4L; | |
373 T4N = T28 - T2i; | |
374 T2j = T28 + T2i; | |
375 T7q = T4R + T4T; | |
376 T4U = T4R - T4T; | |
377 T2k = T22 + T2j; | |
378 T7o = T22 - T2j; | |
379 T7r = T7p - T7q; | |
380 T8e = T7p + T7q; | |
381 T6A = T4M + T4N; | |
382 T4O = T4M - T4N; | |
383 } | |
384 } | |
385 { | |
386 E T3l, T5z, T3E, T3v, T3t, T3w, T3x, T5B, T3A, T3B, T3D, T3y, T5W; | |
387 { | |
388 E T3g, T3k, T3h, T5y; | |
389 T3g = ri[WS(rs, 31)]; | |
390 T3k = ii[WS(rs, 31)]; | |
391 T3A = ri[WS(rs, 23)]; | |
392 T6B = T4P - T4U; | |
393 T4V = T4P + T4U; | |
394 T3h = T3f * T3g; | |
395 T5y = T3f * T3k; | |
396 T3B = T3z * T3A; | |
397 T3D = ii[WS(rs, 23)]; | |
398 T3l = FMA(T3j, T3k, T3h); | |
399 T5z = FNMS(T3j, T3g, T5y); | |
400 } | |
401 { | |
402 E T3o, T5Y, T3s, T3p, T5A; | |
403 T3o = ri[WS(rs, 15)]; | |
404 T3E = FMA(T3C, T3D, T3B); | |
405 T5Y = T3z * T3D; | |
406 T3s = ii[WS(rs, 15)]; | |
407 T3p = T3n * T3o; | |
408 T3v = ri[WS(rs, 7)]; | |
409 T5Z = FNMS(T3C, T3A, T5Y); | |
410 T5A = T3n * T3s; | |
411 T3t = FMA(T3r, T3s, T3p); | |
412 T3w = TP * T3v; | |
413 T3x = ii[WS(rs, 7)]; | |
414 T5B = FNMS(T3r, T3o, T5A); | |
415 } | |
416 T3u = T3l + T3t; | |
417 T5V = T3l - T3t; | |
418 T3y = FMA(TR, T3x, T3w); | |
419 T5W = TP * T3x; | |
420 T5C = T5z - T5B; | |
421 T7G = T5z + T5B; | |
422 T5D = T3y - T3E; | |
423 T3F = T3y + T3E; | |
424 T5X = FNMS(TR, T3v, T5W); | |
425 } | |
426 { | |
427 E T2L, T5q, T5m, T2z, T7v, T53, T2D, T5o; | |
428 { | |
429 E T2q, T50, T2y, T2A, T2C, T52, T2B, T5n; | |
430 { | |
431 E T2G, T2K, T2n, T4Z, T2t, T51; | |
432 { | |
433 E T2o, T2p, T60, T7H; | |
434 T2n = ri[WS(rs, 1)]; | |
435 T6P = T5C + T5D; | |
436 T5E = T5C - T5D; | |
437 T7L = T3u - T3F; | |
438 T3G = T3u + T3F; | |
439 T60 = T5X - T5Z; | |
440 T7H = T5X + T5Z; | |
441 T2o = T2 * T2n; | |
442 T2p = ii[WS(rs, 1)]; | |
443 T6M = T5V - T60; | |
444 T61 = T5V + T60; | |
445 T8n = T7G + T7H; | |
446 T7I = T7G - T7H; | |
447 T4Z = T2 * T2p; | |
448 T2q = FMA(T5, T2p, T2o); | |
449 } | |
450 T2G = ri[WS(rs, 25)]; | |
451 T2K = ii[WS(rs, 25)]; | |
452 T50 = FNMS(T5, T2n, T4Z); | |
453 { | |
454 E T2x, T2u, T2H, T5p; | |
455 T2t = ri[WS(rs, 17)]; | |
456 T2H = T2F * T2G; | |
457 T5p = T2F * T2K; | |
458 T2x = ii[WS(rs, 17)]; | |
459 T2u = T2s * T2t; | |
460 T2L = FMA(T2J, T2K, T2H); | |
461 T5q = FNMS(T2J, T2G, T5p); | |
462 T51 = T2s * T2x; | |
463 T2y = FMA(T2w, T2x, T2u); | |
464 } | |
465 T2A = ri[WS(rs, 9)]; | |
466 T2C = ii[WS(rs, 9)]; | |
467 T52 = FNMS(T2w, T2t, T51); | |
468 } | |
469 T5m = T2q - T2y; | |
470 T2z = T2q + T2y; | |
471 T2B = T8 * T2A; | |
472 T5n = T8 * T2C; | |
473 T7v = T50 + T52; | |
474 T53 = T50 - T52; | |
475 T2D = FMA(Tc, T2C, T2B); | |
476 T5o = FNMS(Tc, T2A, T5n); | |
477 } | |
478 { | |
479 E T3N, T3K, T3O, T5G, T41, T5Q, T3R, T3U, T3W; | |
480 { | |
481 E T3H, T3I, T3J, T3Y, T40, T5F, T3Z, T5P; | |
482 T3H = ri[WS(rs, 3)]; | |
483 { | |
484 E T54, T2M, T5r, T7w; | |
485 T54 = T2D - T2L; | |
486 T2M = T2D + T2L; | |
487 T5r = T5o - T5q; | |
488 T7w = T5o + T5q; | |
489 T6I = T53 + T54; | |
490 T55 = T53 - T54; | |
491 T7A = T2z - T2M; | |
492 T2N = T2z + T2M; | |
493 T6F = T5m - T5r; | |
494 T5s = T5m + T5r; | |
495 T8i = T7v + T7w; | |
496 T7x = T7v - T7w; | |
497 T3I = T3 * T3H; | |
498 } | |
499 T3J = ii[WS(rs, 3)]; | |
500 T3Y = ri[WS(rs, 11)]; | |
501 T40 = ii[WS(rs, 11)]; | |
502 T3N = ri[WS(rs, 19)]; | |
503 T3K = FMA(T6, T3J, T3I); | |
504 T5F = T3 * T3J; | |
505 T3Z = Td * T3Y; | |
506 T5P = Td * T40; | |
507 T3O = T3M * T3N; | |
508 T5G = FNMS(T6, T3H, T5F); | |
509 T41 = FMA(Th, T40, T3Z); | |
510 T5Q = FNMS(Th, T3Y, T5P); | |
511 T3R = ii[WS(rs, 19)]; | |
512 T3U = ri[WS(rs, 27)]; | |
513 T3W = ii[WS(rs, 27)]; | |
514 } | |
515 { | |
516 E T2O, T2P, T2Q, T37, T39, T56, T38, T5g; | |
517 { | |
518 E T3T, T5K, T5I, T3X, T5O, T7M, T5J; | |
519 T2O = ri[WS(rs, 5)]; | |
520 { | |
521 E T3S, T5H, T3V, T5N; | |
522 T3S = FMA(T3Q, T3R, T3O); | |
523 T5H = T3M * T3R; | |
524 T3V = Te * T3U; | |
525 T5N = Te * T3W; | |
526 T3T = T3K + T3S; | |
527 T5K = T3K - T3S; | |
528 T5I = FNMS(T3Q, T3N, T5H); | |
529 T3X = FMA(Ti, T3W, T3V); | |
530 T5O = FNMS(Ti, T3U, T5N); | |
531 T2P = T29 * T2O; | |
532 } | |
533 T7M = T5G + T5I; | |
534 T5J = T5G - T5I; | |
535 { | |
536 E T42, T5M, T7N, T5R; | |
537 T42 = T3X + T41; | |
538 T5M = T3X - T41; | |
539 T7N = T5O + T5Q; | |
540 T5R = T5O - T5Q; | |
541 T5L = T5J - T5K; | |
542 T62 = T5K + T5J; | |
543 T43 = T3T + T42; | |
544 T7J = T42 - T3T; | |
545 T5S = T5M + T5R; | |
546 T63 = T5M - T5R; | |
547 T7O = T7M - T7N; | |
548 T8o = T7M + T7N; | |
549 T2Q = ii[WS(rs, 5)]; | |
550 } | |
551 } | |
552 T37 = ri[WS(rs, 13)]; | |
553 T39 = ii[WS(rs, 13)]; | |
554 T2U = ri[WS(rs, 21)]; | |
555 T2R = FMA(T2b, T2Q, T2P); | |
556 T56 = T29 * T2Q; | |
557 T38 = T1R * T37; | |
558 T5g = T1R * T39; | |
559 T2V = T2T * T2U; | |
560 T57 = FNMS(T2b, T2O, T56); | |
561 T3a = FMA(T1U, T39, T38); | |
562 T5h = FNMS(T1U, T37, T5g); | |
563 T2Y = ii[WS(rs, 21)]; | |
564 T32 = ri[WS(rs, 29)]; | |
565 T35 = ii[WS(rs, 29)]; | |
566 } | |
567 } | |
568 } | |
569 } | |
570 } | |
571 { | |
572 E T5c, T5t, T5j, T5u, T88, T90, T8Z, T8b; | |
573 { | |
574 E T7e, T8T, T7y, T7D, T7h, T8U, T8S, T8R; | |
575 { | |
576 E T8c, T1i, T8A, T8z, T8O, T8J, T8N, T2l, T8L, T45, T8t, T8l, T8u, T8q, T3c; | |
577 E T8k, T8p, T8w, T2m; | |
578 { | |
579 E T8x, T8y, T8j, T8C, T8I; | |
580 { | |
581 E TI, T30, T5b, T59, T36, T5f, T1h, T7B, T5a; | |
582 TI = Tq + TH; | |
583 T7e = Tq - TH; | |
584 { | |
585 E T2Z, T58, T33, T5e; | |
586 T2Z = FMA(T2X, T2Y, T2V); | |
587 T58 = T2T * T2Y; | |
588 T33 = T31 * T32; | |
589 T5e = T31 * T35; | |
590 T30 = T2R + T2Z; | |
591 T5b = T2R - T2Z; | |
592 T59 = FNMS(T2X, T2U, T58); | |
593 T36 = FMA(T34, T35, T33); | |
594 T5f = FNMS(T34, T32, T5e); | |
595 T1h = TZ + T1g; | |
596 T8T = T1g - TZ; | |
597 } | |
598 T7B = T57 + T59; | |
599 T5a = T57 - T59; | |
600 { | |
601 E T3b, T5d, T7C, T5i; | |
602 T3b = T36 + T3a; | |
603 T5d = T36 - T3a; | |
604 T7C = T5f + T5h; | |
605 T5i = T5f - T5h; | |
606 T5c = T5a - T5b; | |
607 T5t = T5b + T5a; | |
608 T3c = T30 + T3b; | |
609 T7y = T3b - T30; | |
610 T5j = T5d + T5i; | |
611 T5u = T5d - T5i; | |
612 T7D = T7B - T7C; | |
613 T8j = T7B + T7C; | |
614 T8c = TI - T1h; | |
615 T1i = TI + T1h; | |
616 } | |
617 } | |
618 T8k = T8i - T8j; | |
619 T8x = T8i + T8j; | |
620 T8y = T8n + T8o; | |
621 T8p = T8n - T8o; | |
622 T7h = T7f - T7g; | |
623 T8C = T7f + T7g; | |
624 T8I = T8D + T8H; | |
625 T8U = T8H - T8D; | |
626 T8A = T8x + T8y; | |
627 T8z = T8x - T8y; | |
628 T8O = T8I - T8C; | |
629 T8J = T8C + T8I; | |
630 } | |
631 { | |
632 E T8h, T8m, T3d, T44; | |
633 T8h = T2N - T3c; | |
634 T3d = T2N + T3c; | |
635 T44 = T3G + T43; | |
636 T8m = T3G - T43; | |
637 T8N = T2k - T1J; | |
638 T2l = T1J + T2k; | |
639 T8L = T44 - T3d; | |
640 T45 = T3d + T44; | |
641 T8t = T8k - T8h; | |
642 T8l = T8h + T8k; | |
643 T8u = T8m + T8p; | |
644 T8q = T8m - T8p; | |
645 } | |
646 T8w = T1i - T2l; | |
647 T2m = T1i + T2l; | |
648 { | |
649 E T8s, T8P, T8Q, T8v; | |
650 { | |
651 E T8r, T8M, T8K, T8g, T8B, T8f; | |
652 T8S = T8q - T8l; | |
653 T8r = T8l + T8q; | |
654 T8B = T8d + T8e; | |
655 T8f = T8d - T8e; | |
656 ri[0] = T2m + T45; | |
657 ri[WS(rs, 16)] = T2m - T45; | |
658 ri[WS(rs, 8)] = T8w + T8z; | |
659 ri[WS(rs, 24)] = T8w - T8z; | |
660 T8M = T8J - T8B; | |
661 T8K = T8B + T8J; | |
662 T8g = T8c + T8f; | |
663 T8s = T8c - T8f; | |
664 T8R = T8O - T8N; | |
665 T8P = T8N + T8O; | |
666 ii[WS(rs, 24)] = T8M - T8L; | |
667 ii[WS(rs, 8)] = T8L + T8M; | |
668 ii[WS(rs, 16)] = T8K - T8A; | |
669 ii[0] = T8A + T8K; | |
670 ri[WS(rs, 4)] = FMA(KP707106781, T8r, T8g); | |
671 ri[WS(rs, 20)] = FNMS(KP707106781, T8r, T8g); | |
672 T8Q = T8t + T8u; | |
673 T8v = T8t - T8u; | |
674 } | |
675 ii[WS(rs, 20)] = FNMS(KP707106781, T8Q, T8P); | |
676 ii[WS(rs, 4)] = FMA(KP707106781, T8Q, T8P); | |
677 ri[WS(rs, 12)] = FMA(KP707106781, T8v, T8s); | |
678 ri[WS(rs, 28)] = FNMS(KP707106781, T8v, T8s); | |
679 } | |
680 } | |
681 { | |
682 E T7P, T7W, T7i, T7K, T8a, T86, T91, T8V, T8W, T7t, T7T, T7F, T92, T7Z, T89; | |
683 E T83; | |
684 { | |
685 E T7X, T7n, T7s, T7Y, T84, T85; | |
686 T7P = T7L - T7O; | |
687 T84 = T7L + T7O; | |
688 ii[WS(rs, 28)] = FNMS(KP707106781, T8S, T8R); | |
689 ii[WS(rs, 12)] = FMA(KP707106781, T8S, T8R); | |
690 T7W = T7e + T7h; | |
691 T7i = T7e - T7h; | |
692 T85 = T7I + T7J; | |
693 T7K = T7I - T7J; | |
694 T7X = T7m + T7l; | |
695 T7n = T7l - T7m; | |
696 T8a = FMA(KP414213562, T84, T85); | |
697 T86 = FNMS(KP414213562, T85, T84); | |
698 T91 = T8U - T8T; | |
699 T8V = T8T + T8U; | |
700 T7s = T7o + T7r; | |
701 T7Y = T7o - T7r; | |
702 { | |
703 E T82, T81, T7z, T7E; | |
704 T82 = T7x + T7y; | |
705 T7z = T7x - T7y; | |
706 T7E = T7A - T7D; | |
707 T81 = T7A + T7D; | |
708 T8W = T7n + T7s; | |
709 T7t = T7n - T7s; | |
710 T7T = FNMS(KP414213562, T7z, T7E); | |
711 T7F = FMA(KP414213562, T7E, T7z); | |
712 T92 = T7Y - T7X; | |
713 T7Z = T7X + T7Y; | |
714 T89 = FNMS(KP414213562, T81, T82); | |
715 T83 = FMA(KP414213562, T82, T81); | |
716 } | |
717 } | |
718 { | |
719 E T7S, T7u, T93, T95, T7U, T7Q; | |
720 T7S = FNMS(KP707106781, T7t, T7i); | |
721 T7u = FMA(KP707106781, T7t, T7i); | |
722 T93 = FMA(KP707106781, T92, T91); | |
723 T95 = FNMS(KP707106781, T92, T91); | |
724 T7U = FMA(KP414213562, T7K, T7P); | |
725 T7Q = FNMS(KP414213562, T7P, T7K); | |
726 { | |
727 E T80, T87, T8X, T8Y; | |
728 T88 = FNMS(KP707106781, T7Z, T7W); | |
729 T80 = FMA(KP707106781, T7Z, T7W); | |
730 { | |
731 E T7V, T94, T96, T7R; | |
732 T7V = T7T + T7U; | |
733 T94 = T7U - T7T; | |
734 T96 = T7F + T7Q; | |
735 T7R = T7F - T7Q; | |
736 ri[WS(rs, 30)] = FMA(KP923879532, T7V, T7S); | |
737 ri[WS(rs, 14)] = FNMS(KP923879532, T7V, T7S); | |
738 ii[WS(rs, 22)] = FNMS(KP923879532, T94, T93); | |
739 ii[WS(rs, 6)] = FMA(KP923879532, T94, T93); | |
740 ii[WS(rs, 30)] = FMA(KP923879532, T96, T95); | |
741 ii[WS(rs, 14)] = FNMS(KP923879532, T96, T95); | |
742 ri[WS(rs, 6)] = FMA(KP923879532, T7R, T7u); | |
743 ri[WS(rs, 22)] = FNMS(KP923879532, T7R, T7u); | |
744 T87 = T83 + T86; | |
745 T90 = T86 - T83; | |
746 } | |
747 T8Z = FNMS(KP707106781, T8W, T8V); | |
748 T8X = FMA(KP707106781, T8W, T8V); | |
749 T8Y = T89 + T8a; | |
750 T8b = T89 - T8a; | |
751 ri[WS(rs, 2)] = FMA(KP923879532, T87, T80); | |
752 ri[WS(rs, 18)] = FNMS(KP923879532, T87, T80); | |
753 ii[WS(rs, 18)] = FNMS(KP923879532, T8Y, T8X); | |
754 ii[WS(rs, 2)] = FMA(KP923879532, T8Y, T8X); | |
755 } | |
756 } | |
757 } | |
758 } | |
759 { | |
760 E T6s, T9o, T9n, T6v, T6N, T6Q, T6G, T6J, T9g, T9f; | |
761 { | |
762 E T6c, T4s, T9c, T4X, T9h, T9b, T9i, T6f, T5U, T6l, T64, T5k, T5v; | |
763 { | |
764 E T6d, T6e, T99, T9a, T5T; | |
765 { | |
766 E T4c, T4r, T4H, T4W; | |
767 T6s = T46 - T4b; | |
768 T4c = T46 + T4b; | |
769 ri[WS(rs, 10)] = FMA(KP923879532, T8b, T88); | |
770 ri[WS(rs, 26)] = FNMS(KP923879532, T8b, T88); | |
771 ii[WS(rs, 26)] = FNMS(KP923879532, T90, T8Z); | |
772 ii[WS(rs, 10)] = FMA(KP923879532, T90, T8Z); | |
773 T4r = T4j + T4q; | |
774 T9o = T4q - T4j; | |
775 T6d = FMA(KP414213562, T4z, T4G); | |
776 T4H = FNMS(KP414213562, T4G, T4z); | |
777 T4W = FMA(KP414213562, T4V, T4O); | |
778 T6e = FNMS(KP414213562, T4O, T4V); | |
779 T9n = T98 + T97; | |
780 T99 = T97 - T98; | |
781 T6c = FMA(KP707106781, T4r, T4c); | |
782 T4s = FNMS(KP707106781, T4r, T4c); | |
783 T9c = T4H + T4W; | |
784 T4X = T4H - T4W; | |
785 T9a = T6t + T6u; | |
786 T6v = T6t - T6u; | |
787 } | |
788 T6N = T5S - T5L; | |
789 T5T = T5L + T5S; | |
790 T9h = FNMS(KP707106781, T9a, T99); | |
791 T9b = FMA(KP707106781, T9a, T99); | |
792 T9i = T6e - T6d; | |
793 T6f = T6d + T6e; | |
794 T5U = FNMS(KP707106781, T5T, T5E); | |
795 T6l = FMA(KP707106781, T5T, T5E); | |
796 T64 = T62 + T63; | |
797 T6Q = T62 - T63; | |
798 T6G = T5j - T5c; | |
799 T5k = T5c + T5j; | |
800 T5v = T5t + T5u; | |
801 T6J = T5t - T5u; | |
802 } | |
803 { | |
804 E T6m, T6q, T6j, T6p, T9l, T9m; | |
805 { | |
806 E T68, T4Y, T6a, T66, T69, T5x, T9j, T6k, T65, T9k, T6b, T67; | |
807 T68 = FNMS(KP923879532, T4X, T4s); | |
808 T4Y = FMA(KP923879532, T4X, T4s); | |
809 T6k = FMA(KP707106781, T64, T61); | |
810 T65 = FNMS(KP707106781, T64, T61); | |
811 { | |
812 E T6i, T5l, T6h, T5w; | |
813 T6i = FMA(KP707106781, T5k, T55); | |
814 T5l = FNMS(KP707106781, T5k, T55); | |
815 T6h = FMA(KP707106781, T5v, T5s); | |
816 T5w = FNMS(KP707106781, T5v, T5s); | |
817 T6m = FNMS(KP198912367, T6l, T6k); | |
818 T6q = FMA(KP198912367, T6k, T6l); | |
819 T6a = FMA(KP668178637, T5U, T65); | |
820 T66 = FNMS(KP668178637, T65, T5U); | |
821 T6j = FMA(KP198912367, T6i, T6h); | |
822 T6p = FNMS(KP198912367, T6h, T6i); | |
823 T69 = FNMS(KP668178637, T5l, T5w); | |
824 T5x = FMA(KP668178637, T5w, T5l); | |
825 } | |
826 T9j = FMA(KP923879532, T9i, T9h); | |
827 T9l = FNMS(KP923879532, T9i, T9h); | |
828 T9k = T6a - T69; | |
829 T6b = T69 + T6a; | |
830 T9m = T5x + T66; | |
831 T67 = T5x - T66; | |
832 ii[WS(rs, 21)] = FNMS(KP831469612, T9k, T9j); | |
833 ii[WS(rs, 5)] = FMA(KP831469612, T9k, T9j); | |
834 ri[WS(rs, 5)] = FMA(KP831469612, T67, T4Y); | |
835 ri[WS(rs, 21)] = FNMS(KP831469612, T67, T4Y); | |
836 ri[WS(rs, 29)] = FMA(KP831469612, T6b, T68); | |
837 ri[WS(rs, 13)] = FNMS(KP831469612, T6b, T68); | |
838 } | |
839 { | |
840 E T6o, T9d, T9e, T6r, T6g, T6n; | |
841 T6o = FNMS(KP923879532, T6f, T6c); | |
842 T6g = FMA(KP923879532, T6f, T6c); | |
843 T6n = T6j + T6m; | |
844 T9g = T6m - T6j; | |
845 T9f = FNMS(KP923879532, T9c, T9b); | |
846 T9d = FMA(KP923879532, T9c, T9b); | |
847 ii[WS(rs, 29)] = FMA(KP831469612, T9m, T9l); | |
848 ii[WS(rs, 13)] = FNMS(KP831469612, T9m, T9l); | |
849 ri[WS(rs, 1)] = FMA(KP980785280, T6n, T6g); | |
850 ri[WS(rs, 17)] = FNMS(KP980785280, T6n, T6g); | |
851 T9e = T6p + T6q; | |
852 T6r = T6p - T6q; | |
853 ii[WS(rs, 17)] = FNMS(KP980785280, T9e, T9d); | |
854 ii[WS(rs, 1)] = FMA(KP980785280, T9e, T9d); | |
855 ri[WS(rs, 9)] = FMA(KP980785280, T6r, T6o); | |
856 ri[WS(rs, 25)] = FNMS(KP980785280, T6r, T6o); | |
857 } | |
858 } | |
859 } | |
860 { | |
861 E T6Y, T6w, T9w, T6D, T9v, T9p, T9q, T71, T6H, T74, T78, T7c, T6W, T6S; | |
862 { | |
863 E T6Z, T6z, T6C, T70; | |
864 T6Z = FNMS(KP414213562, T6x, T6y); | |
865 T6z = FMA(KP414213562, T6y, T6x); | |
866 ii[WS(rs, 25)] = FNMS(KP980785280, T9g, T9f); | |
867 ii[WS(rs, 9)] = FMA(KP980785280, T9g, T9f); | |
868 T6Y = FNMS(KP707106781, T6v, T6s); | |
869 T6w = FMA(KP707106781, T6v, T6s); | |
870 T6C = FNMS(KP414213562, T6B, T6A); | |
871 T70 = FMA(KP414213562, T6A, T6B); | |
872 T9w = T6z + T6C; | |
873 T6D = T6z - T6C; | |
874 T9v = FNMS(KP707106781, T9o, T9n); | |
875 T9p = FMA(KP707106781, T9o, T9n); | |
876 { | |
877 E T77, T6O, T76, T6R; | |
878 T9q = T70 - T6Z; | |
879 T71 = T6Z + T70; | |
880 T77 = FMA(KP707106781, T6N, T6M); | |
881 T6O = FNMS(KP707106781, T6N, T6M); | |
882 T76 = FMA(KP707106781, T6Q, T6P); | |
883 T6R = FNMS(KP707106781, T6Q, T6P); | |
884 T6H = FNMS(KP707106781, T6G, T6F); | |
885 T74 = FMA(KP707106781, T6G, T6F); | |
886 T78 = FNMS(KP198912367, T77, T76); | |
887 T7c = FMA(KP198912367, T76, T77); | |
888 T6W = FMA(KP668178637, T6O, T6R); | |
889 T6S = FNMS(KP668178637, T6R, T6O); | |
890 } | |
891 } | |
892 { | |
893 E T6U, T6E, T9r, T9t, T73, T6K; | |
894 T6U = FNMS(KP923879532, T6D, T6w); | |
895 T6E = FMA(KP923879532, T6D, T6w); | |
896 T9r = FMA(KP923879532, T9q, T9p); | |
897 T9t = FNMS(KP923879532, T9q, T9p); | |
898 T73 = FMA(KP707106781, T6J, T6I); | |
899 T6K = FNMS(KP707106781, T6J, T6I); | |
900 { | |
901 E T7a, T9x, T9y, T7d; | |
902 { | |
903 E T72, T7b, T6V, T6L, T79, T75; | |
904 T7a = FMA(KP923879532, T71, T6Y); | |
905 T72 = FNMS(KP923879532, T71, T6Y); | |
906 T75 = FMA(KP198912367, T74, T73); | |
907 T7b = FNMS(KP198912367, T73, T74); | |
908 T6V = FNMS(KP668178637, T6H, T6K); | |
909 T6L = FMA(KP668178637, T6K, T6H); | |
910 T79 = T75 - T78; | |
911 T9A = T75 + T78; | |
912 T9z = FMA(KP923879532, T9w, T9v); | |
913 T9x = FNMS(KP923879532, T9w, T9v); | |
914 { | |
915 E T6X, T9s, T9u, T6T; | |
916 T6X = T6V - T6W; | |
917 T9s = T6V + T6W; | |
918 T9u = T6S - T6L; | |
919 T6T = T6L + T6S; | |
920 ri[WS(rs, 7)] = FMA(KP980785280, T79, T72); | |
921 ri[WS(rs, 23)] = FNMS(KP980785280, T79, T72); | |
922 ri[WS(rs, 11)] = FMA(KP831469612, T6X, T6U); | |
923 ri[WS(rs, 27)] = FNMS(KP831469612, T6X, T6U); | |
924 ii[WS(rs, 19)] = FNMS(KP831469612, T9s, T9r); | |
925 ii[WS(rs, 3)] = FMA(KP831469612, T9s, T9r); | |
926 ii[WS(rs, 27)] = FNMS(KP831469612, T9u, T9t); | |
927 ii[WS(rs, 11)] = FMA(KP831469612, T9u, T9t); | |
928 ri[WS(rs, 3)] = FMA(KP831469612, T6T, T6E); | |
929 ri[WS(rs, 19)] = FNMS(KP831469612, T6T, T6E); | |
930 T9y = T7c - T7b; | |
931 T7d = T7b + T7c; | |
932 } | |
933 } | |
934 ii[WS(rs, 23)] = FNMS(KP980785280, T9y, T9x); | |
935 ii[WS(rs, 7)] = FMA(KP980785280, T9y, T9x); | |
936 ri[WS(rs, 31)] = FMA(KP980785280, T7d, T7a); | |
937 ri[WS(rs, 15)] = FNMS(KP980785280, T7d, T7a); | |
938 } | |
939 } | |
940 } | |
941 } | |
942 } | |
943 } | |
944 } | |
945 ii[WS(rs, 31)] = FMA(KP980785280, T9A, T9z); | |
946 ii[WS(rs, 15)] = FNMS(KP980785280, T9A, T9z); | |
947 } | |
948 } | |
949 } | |
950 | |
951 static const tw_instr twinstr[] = { | |
952 {TW_CEXP, 0, 1}, | |
953 {TW_CEXP, 0, 3}, | |
954 {TW_CEXP, 0, 9}, | |
955 {TW_CEXP, 0, 27}, | |
956 {TW_NEXT, 1, 0} | |
957 }; | |
958 | |
959 static const ct_desc desc = { 32, "t2_32", twinstr, &GENUS, {236, 98, 252, 0}, 0, 0, 0 }; | |
960 | |
961 void X(codelet_t2_32) (planner *p) { | |
962 X(kdft_dit_register) (p, t2_32, &desc); | |
963 } | |
964 #else /* HAVE_FMA */ | |
965 | |
966 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -name t2_32 -include t.h */ | |
967 | |
968 /* | |
969 * This function contains 488 FP additions, 280 FP multiplications, | |
970 * (or, 376 additions, 168 multiplications, 112 fused multiply/add), | |
971 * 158 stack variables, 7 constants, and 128 memory accesses | |
972 */ | |
973 #include "t.h" | |
974 | |
975 static void t2_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
976 { | |
977 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
978 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
979 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
980 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
981 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
982 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
983 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
984 { | |
985 INT m; | |
986 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { | |
987 E T2, T5, T3, T6, T8, TM, TO, Td, T9, Te, Th, Tl, TD, TH, T1y; | |
988 E T1H, T15, T1A, T11, T1F, T1n, T1p, T2q, T2I, T2u, T2K, T2V, T3b, T2Z, T3d; | |
989 E Tu, Ty, T3l, T3n, T1t, T1v, T2f, T2h, T1a, T1e, T32, T34, T1W, T1Y, T2C; | |
990 E T2E, Tg, TR, Tk, TS, Tm, TV, To, TT, T1M, T21, T1P, T22, T1Q, T25; | |
991 E T1S, T23; | |
992 { | |
993 E Ts, T1d, Tx, T18, Tt, T1c, Tw, T19, TB, T14, TG, TZ, TC, T13, TF; | |
994 E T10; | |
995 { | |
996 E T4, Tc, T7, Tb; | |
997 T2 = W[0]; | |
998 T5 = W[1]; | |
999 T3 = W[2]; | |
1000 T6 = W[3]; | |
1001 T4 = T2 * T3; | |
1002 Tc = T5 * T3; | |
1003 T7 = T5 * T6; | |
1004 Tb = T2 * T6; | |
1005 T8 = T4 + T7; | |
1006 TM = T4 - T7; | |
1007 TO = Tb + Tc; | |
1008 Td = Tb - Tc; | |
1009 T9 = W[4]; | |
1010 Ts = T2 * T9; | |
1011 T1d = T6 * T9; | |
1012 Tx = T5 * T9; | |
1013 T18 = T3 * T9; | |
1014 Te = W[5]; | |
1015 Tt = T5 * Te; | |
1016 T1c = T3 * Te; | |
1017 Tw = T2 * Te; | |
1018 T19 = T6 * Te; | |
1019 Th = W[6]; | |
1020 TB = T3 * Th; | |
1021 T14 = T5 * Th; | |
1022 TG = T6 * Th; | |
1023 TZ = T2 * Th; | |
1024 Tl = W[7]; | |
1025 TC = T6 * Tl; | |
1026 T13 = T2 * Tl; | |
1027 TF = T3 * Tl; | |
1028 T10 = T5 * Tl; | |
1029 } | |
1030 TD = TB + TC; | |
1031 TH = TF - TG; | |
1032 T1y = TZ + T10; | |
1033 T1H = TF + TG; | |
1034 T15 = T13 + T14; | |
1035 T1A = T13 - T14; | |
1036 T11 = TZ - T10; | |
1037 T1F = TB - TC; | |
1038 T1n = FMA(T9, Th, Te * Tl); | |
1039 T1p = FNMS(Te, Th, T9 * Tl); | |
1040 { | |
1041 E T2o, T2p, T2s, T2t; | |
1042 T2o = T8 * Th; | |
1043 T2p = Td * Tl; | |
1044 T2q = T2o + T2p; | |
1045 T2I = T2o - T2p; | |
1046 T2s = T8 * Tl; | |
1047 T2t = Td * Th; | |
1048 T2u = T2s - T2t; | |
1049 T2K = T2s + T2t; | |
1050 } | |
1051 { | |
1052 E T2T, T2U, T2X, T2Y; | |
1053 T2T = TM * Th; | |
1054 T2U = TO * Tl; | |
1055 T2V = T2T - T2U; | |
1056 T3b = T2T + T2U; | |
1057 T2X = TM * Tl; | |
1058 T2Y = TO * Th; | |
1059 T2Z = T2X + T2Y; | |
1060 T3d = T2X - T2Y; | |
1061 Tu = Ts + Tt; | |
1062 Ty = Tw - Tx; | |
1063 T3l = FMA(Tu, Th, Ty * Tl); | |
1064 T3n = FNMS(Ty, Th, Tu * Tl); | |
1065 } | |
1066 T1t = Ts - Tt; | |
1067 T1v = Tw + Tx; | |
1068 T2f = FMA(T1t, Th, T1v * Tl); | |
1069 T2h = FNMS(T1v, Th, T1t * Tl); | |
1070 T1a = T18 - T19; | |
1071 T1e = T1c + T1d; | |
1072 T32 = FMA(T1a, Th, T1e * Tl); | |
1073 T34 = FNMS(T1e, Th, T1a * Tl); | |
1074 T1W = T18 + T19; | |
1075 T1Y = T1c - T1d; | |
1076 T2C = FMA(T1W, Th, T1Y * Tl); | |
1077 T2E = FNMS(T1Y, Th, T1W * Tl); | |
1078 { | |
1079 E Ta, Tf, Ti, Tj; | |
1080 Ta = T8 * T9; | |
1081 Tf = Td * Te; | |
1082 Tg = Ta - Tf; | |
1083 TR = Ta + Tf; | |
1084 Ti = T8 * Te; | |
1085 Tj = Td * T9; | |
1086 Tk = Ti + Tj; | |
1087 TS = Ti - Tj; | |
1088 } | |
1089 Tm = FMA(Tg, Th, Tk * Tl); | |
1090 TV = FNMS(TS, Th, TR * Tl); | |
1091 To = FNMS(Tk, Th, Tg * Tl); | |
1092 TT = FMA(TR, Th, TS * Tl); | |
1093 { | |
1094 E T1K, T1L, T1N, T1O; | |
1095 T1K = TM * T9; | |
1096 T1L = TO * Te; | |
1097 T1M = T1K - T1L; | |
1098 T21 = T1K + T1L; | |
1099 T1N = TM * Te; | |
1100 T1O = TO * T9; | |
1101 T1P = T1N + T1O; | |
1102 T22 = T1N - T1O; | |
1103 } | |
1104 T1Q = FMA(T1M, Th, T1P * Tl); | |
1105 T25 = FNMS(T22, Th, T21 * Tl); | |
1106 T1S = FNMS(T1P, Th, T1M * Tl); | |
1107 T23 = FMA(T21, Th, T22 * Tl); | |
1108 } | |
1109 { | |
1110 E TL, T6f, T8c, T8q, T3F, T5t, T7I, T7W, T2y, T6B, T6y, T7j, T4k, T5J, T4B; | |
1111 E T5G, T3h, T6H, T6O, T7o, T4L, T5N, T52, T5Q, T1i, T7V, T6i, T7D, T3K, T5u; | |
1112 E T3P, T5v, T1E, T6n, T6m, T7e, T3W, T5y, T41, T5z, T29, T6p, T6s, T7f, T47; | |
1113 E T5B, T4c, T5C, T2R, T6z, T6E, T7k, T4v, T5H, T4E, T5K, T3y, T6P, T6K, T7p; | |
1114 E T4W, T5R, T55, T5O; | |
1115 { | |
1116 E T1, T7G, Tq, T7F, TA, T3C, TJ, T3D, Tn, Tp; | |
1117 T1 = ri[0]; | |
1118 T7G = ii[0]; | |
1119 Tn = ri[WS(rs, 16)]; | |
1120 Tp = ii[WS(rs, 16)]; | |
1121 Tq = FMA(Tm, Tn, To * Tp); | |
1122 T7F = FNMS(To, Tn, Tm * Tp); | |
1123 { | |
1124 E Tv, Tz, TE, TI; | |
1125 Tv = ri[WS(rs, 8)]; | |
1126 Tz = ii[WS(rs, 8)]; | |
1127 TA = FMA(Tu, Tv, Ty * Tz); | |
1128 T3C = FNMS(Ty, Tv, Tu * Tz); | |
1129 TE = ri[WS(rs, 24)]; | |
1130 TI = ii[WS(rs, 24)]; | |
1131 TJ = FMA(TD, TE, TH * TI); | |
1132 T3D = FNMS(TH, TE, TD * TI); | |
1133 } | |
1134 { | |
1135 E Tr, TK, T8a, T8b; | |
1136 Tr = T1 + Tq; | |
1137 TK = TA + TJ; | |
1138 TL = Tr + TK; | |
1139 T6f = Tr - TK; | |
1140 T8a = T7G - T7F; | |
1141 T8b = TA - TJ; | |
1142 T8c = T8a - T8b; | |
1143 T8q = T8b + T8a; | |
1144 } | |
1145 { | |
1146 E T3B, T3E, T7E, T7H; | |
1147 T3B = T1 - Tq; | |
1148 T3E = T3C - T3D; | |
1149 T3F = T3B - T3E; | |
1150 T5t = T3B + T3E; | |
1151 T7E = T3C + T3D; | |
1152 T7H = T7F + T7G; | |
1153 T7I = T7E + T7H; | |
1154 T7W = T7H - T7E; | |
1155 } | |
1156 } | |
1157 { | |
1158 E T2e, T4g, T2w, T4z, T2j, T4h, T2n, T4y; | |
1159 { | |
1160 E T2c, T2d, T2r, T2v; | |
1161 T2c = ri[WS(rs, 1)]; | |
1162 T2d = ii[WS(rs, 1)]; | |
1163 T2e = FMA(T2, T2c, T5 * T2d); | |
1164 T4g = FNMS(T5, T2c, T2 * T2d); | |
1165 T2r = ri[WS(rs, 25)]; | |
1166 T2v = ii[WS(rs, 25)]; | |
1167 T2w = FMA(T2q, T2r, T2u * T2v); | |
1168 T4z = FNMS(T2u, T2r, T2q * T2v); | |
1169 } | |
1170 { | |
1171 E T2g, T2i, T2l, T2m; | |
1172 T2g = ri[WS(rs, 17)]; | |
1173 T2i = ii[WS(rs, 17)]; | |
1174 T2j = FMA(T2f, T2g, T2h * T2i); | |
1175 T4h = FNMS(T2h, T2g, T2f * T2i); | |
1176 T2l = ri[WS(rs, 9)]; | |
1177 T2m = ii[WS(rs, 9)]; | |
1178 T2n = FMA(T9, T2l, Te * T2m); | |
1179 T4y = FNMS(Te, T2l, T9 * T2m); | |
1180 } | |
1181 { | |
1182 E T2k, T2x, T6w, T6x; | |
1183 T2k = T2e + T2j; | |
1184 T2x = T2n + T2w; | |
1185 T2y = T2k + T2x; | |
1186 T6B = T2k - T2x; | |
1187 T6w = T4g + T4h; | |
1188 T6x = T4y + T4z; | |
1189 T6y = T6w - T6x; | |
1190 T7j = T6w + T6x; | |
1191 } | |
1192 { | |
1193 E T4i, T4j, T4x, T4A; | |
1194 T4i = T4g - T4h; | |
1195 T4j = T2n - T2w; | |
1196 T4k = T4i + T4j; | |
1197 T5J = T4i - T4j; | |
1198 T4x = T2e - T2j; | |
1199 T4A = T4y - T4z; | |
1200 T4B = T4x - T4A; | |
1201 T5G = T4x + T4A; | |
1202 } | |
1203 } | |
1204 { | |
1205 E T31, T4Y, T3f, T4J, T36, T4Z, T3a, T4I; | |
1206 { | |
1207 E T2W, T30, T3c, T3e; | |
1208 T2W = ri[WS(rs, 31)]; | |
1209 T30 = ii[WS(rs, 31)]; | |
1210 T31 = FMA(T2V, T2W, T2Z * T30); | |
1211 T4Y = FNMS(T2Z, T2W, T2V * T30); | |
1212 T3c = ri[WS(rs, 23)]; | |
1213 T3e = ii[WS(rs, 23)]; | |
1214 T3f = FMA(T3b, T3c, T3d * T3e); | |
1215 T4J = FNMS(T3d, T3c, T3b * T3e); | |
1216 } | |
1217 { | |
1218 E T33, T35, T38, T39; | |
1219 T33 = ri[WS(rs, 15)]; | |
1220 T35 = ii[WS(rs, 15)]; | |
1221 T36 = FMA(T32, T33, T34 * T35); | |
1222 T4Z = FNMS(T34, T33, T32 * T35); | |
1223 T38 = ri[WS(rs, 7)]; | |
1224 T39 = ii[WS(rs, 7)]; | |
1225 T3a = FMA(TR, T38, TS * T39); | |
1226 T4I = FNMS(TS, T38, TR * T39); | |
1227 } | |
1228 { | |
1229 E T37, T3g, T6M, T6N; | |
1230 T37 = T31 + T36; | |
1231 T3g = T3a + T3f; | |
1232 T3h = T37 + T3g; | |
1233 T6H = T37 - T3g; | |
1234 T6M = T4Y + T4Z; | |
1235 T6N = T4I + T4J; | |
1236 T6O = T6M - T6N; | |
1237 T7o = T6M + T6N; | |
1238 } | |
1239 { | |
1240 E T4H, T4K, T50, T51; | |
1241 T4H = T31 - T36; | |
1242 T4K = T4I - T4J; | |
1243 T4L = T4H - T4K; | |
1244 T5N = T4H + T4K; | |
1245 T50 = T4Y - T4Z; | |
1246 T51 = T3a - T3f; | |
1247 T52 = T50 + T51; | |
1248 T5Q = T50 - T51; | |
1249 } | |
1250 } | |
1251 { | |
1252 E TQ, T3G, T1g, T3N, TX, T3H, T17, T3M; | |
1253 { | |
1254 E TN, TP, T1b, T1f; | |
1255 TN = ri[WS(rs, 4)]; | |
1256 TP = ii[WS(rs, 4)]; | |
1257 TQ = FMA(TM, TN, TO * TP); | |
1258 T3G = FNMS(TO, TN, TM * TP); | |
1259 T1b = ri[WS(rs, 12)]; | |
1260 T1f = ii[WS(rs, 12)]; | |
1261 T1g = FMA(T1a, T1b, T1e * T1f); | |
1262 T3N = FNMS(T1e, T1b, T1a * T1f); | |
1263 } | |
1264 { | |
1265 E TU, TW, T12, T16; | |
1266 TU = ri[WS(rs, 20)]; | |
1267 TW = ii[WS(rs, 20)]; | |
1268 TX = FMA(TT, TU, TV * TW); | |
1269 T3H = FNMS(TV, TU, TT * TW); | |
1270 T12 = ri[WS(rs, 28)]; | |
1271 T16 = ii[WS(rs, 28)]; | |
1272 T17 = FMA(T11, T12, T15 * T16); | |
1273 T3M = FNMS(T15, T12, T11 * T16); | |
1274 } | |
1275 { | |
1276 E TY, T1h, T6g, T6h; | |
1277 TY = TQ + TX; | |
1278 T1h = T17 + T1g; | |
1279 T1i = TY + T1h; | |
1280 T7V = T1h - TY; | |
1281 T6g = T3G + T3H; | |
1282 T6h = T3M + T3N; | |
1283 T6i = T6g - T6h; | |
1284 T7D = T6g + T6h; | |
1285 } | |
1286 { | |
1287 E T3I, T3J, T3L, T3O; | |
1288 T3I = T3G - T3H; | |
1289 T3J = TQ - TX; | |
1290 T3K = T3I - T3J; | |
1291 T5u = T3J + T3I; | |
1292 T3L = T17 - T1g; | |
1293 T3O = T3M - T3N; | |
1294 T3P = T3L + T3O; | |
1295 T5v = T3L - T3O; | |
1296 } | |
1297 } | |
1298 { | |
1299 E T1m, T3S, T1C, T3Z, T1r, T3T, T1x, T3Y; | |
1300 { | |
1301 E T1k, T1l, T1z, T1B; | |
1302 T1k = ri[WS(rs, 2)]; | |
1303 T1l = ii[WS(rs, 2)]; | |
1304 T1m = FMA(T8, T1k, Td * T1l); | |
1305 T3S = FNMS(Td, T1k, T8 * T1l); | |
1306 T1z = ri[WS(rs, 26)]; | |
1307 T1B = ii[WS(rs, 26)]; | |
1308 T1C = FMA(T1y, T1z, T1A * T1B); | |
1309 T3Z = FNMS(T1A, T1z, T1y * T1B); | |
1310 } | |
1311 { | |
1312 E T1o, T1q, T1u, T1w; | |
1313 T1o = ri[WS(rs, 18)]; | |
1314 T1q = ii[WS(rs, 18)]; | |
1315 T1r = FMA(T1n, T1o, T1p * T1q); | |
1316 T3T = FNMS(T1p, T1o, T1n * T1q); | |
1317 T1u = ri[WS(rs, 10)]; | |
1318 T1w = ii[WS(rs, 10)]; | |
1319 T1x = FMA(T1t, T1u, T1v * T1w); | |
1320 T3Y = FNMS(T1v, T1u, T1t * T1w); | |
1321 } | |
1322 { | |
1323 E T1s, T1D, T6k, T6l; | |
1324 T1s = T1m + T1r; | |
1325 T1D = T1x + T1C; | |
1326 T1E = T1s + T1D; | |
1327 T6n = T1s - T1D; | |
1328 T6k = T3S + T3T; | |
1329 T6l = T3Y + T3Z; | |
1330 T6m = T6k - T6l; | |
1331 T7e = T6k + T6l; | |
1332 } | |
1333 { | |
1334 E T3U, T3V, T3X, T40; | |
1335 T3U = T3S - T3T; | |
1336 T3V = T1x - T1C; | |
1337 T3W = T3U + T3V; | |
1338 T5y = T3U - T3V; | |
1339 T3X = T1m - T1r; | |
1340 T40 = T3Y - T3Z; | |
1341 T41 = T3X - T40; | |
1342 T5z = T3X + T40; | |
1343 } | |
1344 } | |
1345 { | |
1346 E T1J, T43, T27, T4a, T1U, T44, T20, T49; | |
1347 { | |
1348 E T1G, T1I, T24, T26; | |
1349 T1G = ri[WS(rs, 30)]; | |
1350 T1I = ii[WS(rs, 30)]; | |
1351 T1J = FMA(T1F, T1G, T1H * T1I); | |
1352 T43 = FNMS(T1H, T1G, T1F * T1I); | |
1353 T24 = ri[WS(rs, 22)]; | |
1354 T26 = ii[WS(rs, 22)]; | |
1355 T27 = FMA(T23, T24, T25 * T26); | |
1356 T4a = FNMS(T25, T24, T23 * T26); | |
1357 } | |
1358 { | |
1359 E T1R, T1T, T1X, T1Z; | |
1360 T1R = ri[WS(rs, 14)]; | |
1361 T1T = ii[WS(rs, 14)]; | |
1362 T1U = FMA(T1Q, T1R, T1S * T1T); | |
1363 T44 = FNMS(T1S, T1R, T1Q * T1T); | |
1364 T1X = ri[WS(rs, 6)]; | |
1365 T1Z = ii[WS(rs, 6)]; | |
1366 T20 = FMA(T1W, T1X, T1Y * T1Z); | |
1367 T49 = FNMS(T1Y, T1X, T1W * T1Z); | |
1368 } | |
1369 { | |
1370 E T1V, T28, T6q, T6r; | |
1371 T1V = T1J + T1U; | |
1372 T28 = T20 + T27; | |
1373 T29 = T1V + T28; | |
1374 T6p = T1V - T28; | |
1375 T6q = T43 + T44; | |
1376 T6r = T49 + T4a; | |
1377 T6s = T6q - T6r; | |
1378 T7f = T6q + T6r; | |
1379 } | |
1380 { | |
1381 E T45, T46, T48, T4b; | |
1382 T45 = T43 - T44; | |
1383 T46 = T20 - T27; | |
1384 T47 = T45 + T46; | |
1385 T5B = T45 - T46; | |
1386 T48 = T1J - T1U; | |
1387 T4b = T49 - T4a; | |
1388 T4c = T48 - T4b; | |
1389 T5C = T48 + T4b; | |
1390 } | |
1391 } | |
1392 { | |
1393 E T2B, T4r, T2G, T4s, T4q, T4t, T2M, T4m, T2P, T4n, T4l, T4o; | |
1394 { | |
1395 E T2z, T2A, T2D, T2F; | |
1396 T2z = ri[WS(rs, 5)]; | |
1397 T2A = ii[WS(rs, 5)]; | |
1398 T2B = FMA(T21, T2z, T22 * T2A); | |
1399 T4r = FNMS(T22, T2z, T21 * T2A); | |
1400 T2D = ri[WS(rs, 21)]; | |
1401 T2F = ii[WS(rs, 21)]; | |
1402 T2G = FMA(T2C, T2D, T2E * T2F); | |
1403 T4s = FNMS(T2E, T2D, T2C * T2F); | |
1404 } | |
1405 T4q = T2B - T2G; | |
1406 T4t = T4r - T4s; | |
1407 { | |
1408 E T2J, T2L, T2N, T2O; | |
1409 T2J = ri[WS(rs, 29)]; | |
1410 T2L = ii[WS(rs, 29)]; | |
1411 T2M = FMA(T2I, T2J, T2K * T2L); | |
1412 T4m = FNMS(T2K, T2J, T2I * T2L); | |
1413 T2N = ri[WS(rs, 13)]; | |
1414 T2O = ii[WS(rs, 13)]; | |
1415 T2P = FMA(T1M, T2N, T1P * T2O); | |
1416 T4n = FNMS(T1P, T2N, T1M * T2O); | |
1417 } | |
1418 T4l = T2M - T2P; | |
1419 T4o = T4m - T4n; | |
1420 { | |
1421 E T2H, T2Q, T6C, T6D; | |
1422 T2H = T2B + T2G; | |
1423 T2Q = T2M + T2P; | |
1424 T2R = T2H + T2Q; | |
1425 T6z = T2Q - T2H; | |
1426 T6C = T4r + T4s; | |
1427 T6D = T4m + T4n; | |
1428 T6E = T6C - T6D; | |
1429 T7k = T6C + T6D; | |
1430 } | |
1431 { | |
1432 E T4p, T4u, T4C, T4D; | |
1433 T4p = T4l - T4o; | |
1434 T4u = T4q + T4t; | |
1435 T4v = KP707106781 * (T4p - T4u); | |
1436 T5H = KP707106781 * (T4u + T4p); | |
1437 T4C = T4t - T4q; | |
1438 T4D = T4l + T4o; | |
1439 T4E = KP707106781 * (T4C - T4D); | |
1440 T5K = KP707106781 * (T4C + T4D); | |
1441 } | |
1442 } | |
1443 { | |
1444 E T3k, T4M, T3p, T4N, T4O, T4P, T3t, T4S, T3w, T4T, T4R, T4U; | |
1445 { | |
1446 E T3i, T3j, T3m, T3o; | |
1447 T3i = ri[WS(rs, 3)]; | |
1448 T3j = ii[WS(rs, 3)]; | |
1449 T3k = FMA(T3, T3i, T6 * T3j); | |
1450 T4M = FNMS(T6, T3i, T3 * T3j); | |
1451 T3m = ri[WS(rs, 19)]; | |
1452 T3o = ii[WS(rs, 19)]; | |
1453 T3p = FMA(T3l, T3m, T3n * T3o); | |
1454 T4N = FNMS(T3n, T3m, T3l * T3o); | |
1455 } | |
1456 T4O = T4M - T4N; | |
1457 T4P = T3k - T3p; | |
1458 { | |
1459 E T3r, T3s, T3u, T3v; | |
1460 T3r = ri[WS(rs, 27)]; | |
1461 T3s = ii[WS(rs, 27)]; | |
1462 T3t = FMA(Th, T3r, Tl * T3s); | |
1463 T4S = FNMS(Tl, T3r, Th * T3s); | |
1464 T3u = ri[WS(rs, 11)]; | |
1465 T3v = ii[WS(rs, 11)]; | |
1466 T3w = FMA(Tg, T3u, Tk * T3v); | |
1467 T4T = FNMS(Tk, T3u, Tg * T3v); | |
1468 } | |
1469 T4R = T3t - T3w; | |
1470 T4U = T4S - T4T; | |
1471 { | |
1472 E T3q, T3x, T6I, T6J; | |
1473 T3q = T3k + T3p; | |
1474 T3x = T3t + T3w; | |
1475 T3y = T3q + T3x; | |
1476 T6P = T3x - T3q; | |
1477 T6I = T4M + T4N; | |
1478 T6J = T4S + T4T; | |
1479 T6K = T6I - T6J; | |
1480 T7p = T6I + T6J; | |
1481 } | |
1482 { | |
1483 E T4Q, T4V, T53, T54; | |
1484 T4Q = T4O - T4P; | |
1485 T4V = T4R + T4U; | |
1486 T4W = KP707106781 * (T4Q - T4V); | |
1487 T5R = KP707106781 * (T4Q + T4V); | |
1488 T53 = T4R - T4U; | |
1489 T54 = T4P + T4O; | |
1490 T55 = KP707106781 * (T53 - T54); | |
1491 T5O = KP707106781 * (T54 + T53); | |
1492 } | |
1493 } | |
1494 { | |
1495 E T2b, T7x, T7K, T7M, T3A, T7L, T7A, T7B; | |
1496 { | |
1497 E T1j, T2a, T7C, T7J; | |
1498 T1j = TL + T1i; | |
1499 T2a = T1E + T29; | |
1500 T2b = T1j + T2a; | |
1501 T7x = T1j - T2a; | |
1502 T7C = T7e + T7f; | |
1503 T7J = T7D + T7I; | |
1504 T7K = T7C + T7J; | |
1505 T7M = T7J - T7C; | |
1506 } | |
1507 { | |
1508 E T2S, T3z, T7y, T7z; | |
1509 T2S = T2y + T2R; | |
1510 T3z = T3h + T3y; | |
1511 T3A = T2S + T3z; | |
1512 T7L = T3z - T2S; | |
1513 T7y = T7j + T7k; | |
1514 T7z = T7o + T7p; | |
1515 T7A = T7y - T7z; | |
1516 T7B = T7y + T7z; | |
1517 } | |
1518 ri[WS(rs, 16)] = T2b - T3A; | |
1519 ii[WS(rs, 16)] = T7K - T7B; | |
1520 ri[0] = T2b + T3A; | |
1521 ii[0] = T7B + T7K; | |
1522 ri[WS(rs, 24)] = T7x - T7A; | |
1523 ii[WS(rs, 24)] = T7M - T7L; | |
1524 ri[WS(rs, 8)] = T7x + T7A; | |
1525 ii[WS(rs, 8)] = T7L + T7M; | |
1526 } | |
1527 { | |
1528 E T7h, T7t, T7Q, T7S, T7m, T7u, T7r, T7v; | |
1529 { | |
1530 E T7d, T7g, T7O, T7P; | |
1531 T7d = TL - T1i; | |
1532 T7g = T7e - T7f; | |
1533 T7h = T7d + T7g; | |
1534 T7t = T7d - T7g; | |
1535 T7O = T29 - T1E; | |
1536 T7P = T7I - T7D; | |
1537 T7Q = T7O + T7P; | |
1538 T7S = T7P - T7O; | |
1539 } | |
1540 { | |
1541 E T7i, T7l, T7n, T7q; | |
1542 T7i = T2y - T2R; | |
1543 T7l = T7j - T7k; | |
1544 T7m = T7i + T7l; | |
1545 T7u = T7l - T7i; | |
1546 T7n = T3h - T3y; | |
1547 T7q = T7o - T7p; | |
1548 T7r = T7n - T7q; | |
1549 T7v = T7n + T7q; | |
1550 } | |
1551 { | |
1552 E T7s, T7N, T7w, T7R; | |
1553 T7s = KP707106781 * (T7m + T7r); | |
1554 ri[WS(rs, 20)] = T7h - T7s; | |
1555 ri[WS(rs, 4)] = T7h + T7s; | |
1556 T7N = KP707106781 * (T7u + T7v); | |
1557 ii[WS(rs, 4)] = T7N + T7Q; | |
1558 ii[WS(rs, 20)] = T7Q - T7N; | |
1559 T7w = KP707106781 * (T7u - T7v); | |
1560 ri[WS(rs, 28)] = T7t - T7w; | |
1561 ri[WS(rs, 12)] = T7t + T7w; | |
1562 T7R = KP707106781 * (T7r - T7m); | |
1563 ii[WS(rs, 12)] = T7R + T7S; | |
1564 ii[WS(rs, 28)] = T7S - T7R; | |
1565 } | |
1566 } | |
1567 { | |
1568 E T6j, T7X, T83, T6X, T6u, T7U, T77, T7b, T70, T82, T6G, T6U, T74, T7a, T6R; | |
1569 E T6V; | |
1570 { | |
1571 E T6o, T6t, T6A, T6F; | |
1572 T6j = T6f - T6i; | |
1573 T7X = T7V + T7W; | |
1574 T83 = T7W - T7V; | |
1575 T6X = T6f + T6i; | |
1576 T6o = T6m - T6n; | |
1577 T6t = T6p + T6s; | |
1578 T6u = KP707106781 * (T6o - T6t); | |
1579 T7U = KP707106781 * (T6o + T6t); | |
1580 { | |
1581 E T75, T76, T6Y, T6Z; | |
1582 T75 = T6H + T6K; | |
1583 T76 = T6O + T6P; | |
1584 T77 = FNMS(KP382683432, T76, KP923879532 * T75); | |
1585 T7b = FMA(KP923879532, T76, KP382683432 * T75); | |
1586 T6Y = T6n + T6m; | |
1587 T6Z = T6p - T6s; | |
1588 T70 = KP707106781 * (T6Y + T6Z); | |
1589 T82 = KP707106781 * (T6Z - T6Y); | |
1590 } | |
1591 T6A = T6y - T6z; | |
1592 T6F = T6B - T6E; | |
1593 T6G = FMA(KP923879532, T6A, KP382683432 * T6F); | |
1594 T6U = FNMS(KP923879532, T6F, KP382683432 * T6A); | |
1595 { | |
1596 E T72, T73, T6L, T6Q; | |
1597 T72 = T6y + T6z; | |
1598 T73 = T6B + T6E; | |
1599 T74 = FMA(KP382683432, T72, KP923879532 * T73); | |
1600 T7a = FNMS(KP382683432, T73, KP923879532 * T72); | |
1601 T6L = T6H - T6K; | |
1602 T6Q = T6O - T6P; | |
1603 T6R = FNMS(KP923879532, T6Q, KP382683432 * T6L); | |
1604 T6V = FMA(KP382683432, T6Q, KP923879532 * T6L); | |
1605 } | |
1606 } | |
1607 { | |
1608 E T6v, T6S, T81, T84; | |
1609 T6v = T6j + T6u; | |
1610 T6S = T6G + T6R; | |
1611 ri[WS(rs, 22)] = T6v - T6S; | |
1612 ri[WS(rs, 6)] = T6v + T6S; | |
1613 T81 = T6U + T6V; | |
1614 T84 = T82 + T83; | |
1615 ii[WS(rs, 6)] = T81 + T84; | |
1616 ii[WS(rs, 22)] = T84 - T81; | |
1617 } | |
1618 { | |
1619 E T6T, T6W, T85, T86; | |
1620 T6T = T6j - T6u; | |
1621 T6W = T6U - T6V; | |
1622 ri[WS(rs, 30)] = T6T - T6W; | |
1623 ri[WS(rs, 14)] = T6T + T6W; | |
1624 T85 = T6R - T6G; | |
1625 T86 = T83 - T82; | |
1626 ii[WS(rs, 14)] = T85 + T86; | |
1627 ii[WS(rs, 30)] = T86 - T85; | |
1628 } | |
1629 { | |
1630 E T71, T78, T7T, T7Y; | |
1631 T71 = T6X + T70; | |
1632 T78 = T74 + T77; | |
1633 ri[WS(rs, 18)] = T71 - T78; | |
1634 ri[WS(rs, 2)] = T71 + T78; | |
1635 T7T = T7a + T7b; | |
1636 T7Y = T7U + T7X; | |
1637 ii[WS(rs, 2)] = T7T + T7Y; | |
1638 ii[WS(rs, 18)] = T7Y - T7T; | |
1639 } | |
1640 { | |
1641 E T79, T7c, T7Z, T80; | |
1642 T79 = T6X - T70; | |
1643 T7c = T7a - T7b; | |
1644 ri[WS(rs, 26)] = T79 - T7c; | |
1645 ri[WS(rs, 10)] = T79 + T7c; | |
1646 T7Z = T77 - T74; | |
1647 T80 = T7X - T7U; | |
1648 ii[WS(rs, 10)] = T7Z + T80; | |
1649 ii[WS(rs, 26)] = T80 - T7Z; | |
1650 } | |
1651 } | |
1652 { | |
1653 E T3R, T5d, T8r, T8x, T4e, T8o, T5n, T5r, T4G, T5a, T5g, T8w, T5k, T5q, T57; | |
1654 E T5b, T3Q, T8p; | |
1655 T3Q = KP707106781 * (T3K - T3P); | |
1656 T3R = T3F - T3Q; | |
1657 T5d = T3F + T3Q; | |
1658 T8p = KP707106781 * (T5v - T5u); | |
1659 T8r = T8p + T8q; | |
1660 T8x = T8q - T8p; | |
1661 { | |
1662 E T42, T4d, T5l, T5m; | |
1663 T42 = FNMS(KP923879532, T41, KP382683432 * T3W); | |
1664 T4d = FMA(KP382683432, T47, KP923879532 * T4c); | |
1665 T4e = T42 - T4d; | |
1666 T8o = T42 + T4d; | |
1667 T5l = T4L + T4W; | |
1668 T5m = T52 + T55; | |
1669 T5n = FNMS(KP555570233, T5m, KP831469612 * T5l); | |
1670 T5r = FMA(KP831469612, T5m, KP555570233 * T5l); | |
1671 } | |
1672 { | |
1673 E T4w, T4F, T5e, T5f; | |
1674 T4w = T4k - T4v; | |
1675 T4F = T4B - T4E; | |
1676 T4G = FMA(KP980785280, T4w, KP195090322 * T4F); | |
1677 T5a = FNMS(KP980785280, T4F, KP195090322 * T4w); | |
1678 T5e = FMA(KP923879532, T3W, KP382683432 * T41); | |
1679 T5f = FNMS(KP923879532, T47, KP382683432 * T4c); | |
1680 T5g = T5e + T5f; | |
1681 T8w = T5f - T5e; | |
1682 } | |
1683 { | |
1684 E T5i, T5j, T4X, T56; | |
1685 T5i = T4k + T4v; | |
1686 T5j = T4B + T4E; | |
1687 T5k = FMA(KP555570233, T5i, KP831469612 * T5j); | |
1688 T5q = FNMS(KP555570233, T5j, KP831469612 * T5i); | |
1689 T4X = T4L - T4W; | |
1690 T56 = T52 - T55; | |
1691 T57 = FNMS(KP980785280, T56, KP195090322 * T4X); | |
1692 T5b = FMA(KP195090322, T56, KP980785280 * T4X); | |
1693 } | |
1694 { | |
1695 E T4f, T58, T8v, T8y; | |
1696 T4f = T3R + T4e; | |
1697 T58 = T4G + T57; | |
1698 ri[WS(rs, 23)] = T4f - T58; | |
1699 ri[WS(rs, 7)] = T4f + T58; | |
1700 T8v = T5a + T5b; | |
1701 T8y = T8w + T8x; | |
1702 ii[WS(rs, 7)] = T8v + T8y; | |
1703 ii[WS(rs, 23)] = T8y - T8v; | |
1704 } | |
1705 { | |
1706 E T59, T5c, T8z, T8A; | |
1707 T59 = T3R - T4e; | |
1708 T5c = T5a - T5b; | |
1709 ri[WS(rs, 31)] = T59 - T5c; | |
1710 ri[WS(rs, 15)] = T59 + T5c; | |
1711 T8z = T57 - T4G; | |
1712 T8A = T8x - T8w; | |
1713 ii[WS(rs, 15)] = T8z + T8A; | |
1714 ii[WS(rs, 31)] = T8A - T8z; | |
1715 } | |
1716 { | |
1717 E T5h, T5o, T8n, T8s; | |
1718 T5h = T5d + T5g; | |
1719 T5o = T5k + T5n; | |
1720 ri[WS(rs, 19)] = T5h - T5o; | |
1721 ri[WS(rs, 3)] = T5h + T5o; | |
1722 T8n = T5q + T5r; | |
1723 T8s = T8o + T8r; | |
1724 ii[WS(rs, 3)] = T8n + T8s; | |
1725 ii[WS(rs, 19)] = T8s - T8n; | |
1726 } | |
1727 { | |
1728 E T5p, T5s, T8t, T8u; | |
1729 T5p = T5d - T5g; | |
1730 T5s = T5q - T5r; | |
1731 ri[WS(rs, 27)] = T5p - T5s; | |
1732 ri[WS(rs, 11)] = T5p + T5s; | |
1733 T8t = T5n - T5k; | |
1734 T8u = T8r - T8o; | |
1735 ii[WS(rs, 11)] = T8t + T8u; | |
1736 ii[WS(rs, 27)] = T8u - T8t; | |
1737 } | |
1738 } | |
1739 { | |
1740 E T5x, T5Z, T8d, T8j, T5E, T88, T69, T6d, T5M, T5W, T62, T8i, T66, T6c, T5T; | |
1741 E T5X, T5w, T89; | |
1742 T5w = KP707106781 * (T5u + T5v); | |
1743 T5x = T5t - T5w; | |
1744 T5Z = T5t + T5w; | |
1745 T89 = KP707106781 * (T3K + T3P); | |
1746 T8d = T89 + T8c; | |
1747 T8j = T8c - T89; | |
1748 { | |
1749 E T5A, T5D, T67, T68; | |
1750 T5A = FNMS(KP382683432, T5z, KP923879532 * T5y); | |
1751 T5D = FMA(KP923879532, T5B, KP382683432 * T5C); | |
1752 T5E = T5A - T5D; | |
1753 T88 = T5A + T5D; | |
1754 T67 = T5N + T5O; | |
1755 T68 = T5Q + T5R; | |
1756 T69 = FNMS(KP195090322, T68, KP980785280 * T67); | |
1757 T6d = FMA(KP195090322, T67, KP980785280 * T68); | |
1758 } | |
1759 { | |
1760 E T5I, T5L, T60, T61; | |
1761 T5I = T5G - T5H; | |
1762 T5L = T5J - T5K; | |
1763 T5M = FMA(KP555570233, T5I, KP831469612 * T5L); | |
1764 T5W = FNMS(KP831469612, T5I, KP555570233 * T5L); | |
1765 T60 = FMA(KP382683432, T5y, KP923879532 * T5z); | |
1766 T61 = FNMS(KP382683432, T5B, KP923879532 * T5C); | |
1767 T62 = T60 + T61; | |
1768 T8i = T61 - T60; | |
1769 } | |
1770 { | |
1771 E T64, T65, T5P, T5S; | |
1772 T64 = T5G + T5H; | |
1773 T65 = T5J + T5K; | |
1774 T66 = FMA(KP980785280, T64, KP195090322 * T65); | |
1775 T6c = FNMS(KP195090322, T64, KP980785280 * T65); | |
1776 T5P = T5N - T5O; | |
1777 T5S = T5Q - T5R; | |
1778 T5T = FNMS(KP831469612, T5S, KP555570233 * T5P); | |
1779 T5X = FMA(KP831469612, T5P, KP555570233 * T5S); | |
1780 } | |
1781 { | |
1782 E T5F, T5U, T8h, T8k; | |
1783 T5F = T5x + T5E; | |
1784 T5U = T5M + T5T; | |
1785 ri[WS(rs, 21)] = T5F - T5U; | |
1786 ri[WS(rs, 5)] = T5F + T5U; | |
1787 T8h = T5W + T5X; | |
1788 T8k = T8i + T8j; | |
1789 ii[WS(rs, 5)] = T8h + T8k; | |
1790 ii[WS(rs, 21)] = T8k - T8h; | |
1791 } | |
1792 { | |
1793 E T5V, T5Y, T8l, T8m; | |
1794 T5V = T5x - T5E; | |
1795 T5Y = T5W - T5X; | |
1796 ri[WS(rs, 29)] = T5V - T5Y; | |
1797 ri[WS(rs, 13)] = T5V + T5Y; | |
1798 T8l = T5T - T5M; | |
1799 T8m = T8j - T8i; | |
1800 ii[WS(rs, 13)] = T8l + T8m; | |
1801 ii[WS(rs, 29)] = T8m - T8l; | |
1802 } | |
1803 { | |
1804 E T63, T6a, T87, T8e; | |
1805 T63 = T5Z + T62; | |
1806 T6a = T66 + T69; | |
1807 ri[WS(rs, 17)] = T63 - T6a; | |
1808 ri[WS(rs, 1)] = T63 + T6a; | |
1809 T87 = T6c + T6d; | |
1810 T8e = T88 + T8d; | |
1811 ii[WS(rs, 1)] = T87 + T8e; | |
1812 ii[WS(rs, 17)] = T8e - T87; | |
1813 } | |
1814 { | |
1815 E T6b, T6e, T8f, T8g; | |
1816 T6b = T5Z - T62; | |
1817 T6e = T6c - T6d; | |
1818 ri[WS(rs, 25)] = T6b - T6e; | |
1819 ri[WS(rs, 9)] = T6b + T6e; | |
1820 T8f = T69 - T66; | |
1821 T8g = T8d - T88; | |
1822 ii[WS(rs, 9)] = T8f + T8g; | |
1823 ii[WS(rs, 25)] = T8g - T8f; | |
1824 } | |
1825 } | |
1826 } | |
1827 } | |
1828 } | |
1829 } | |
1830 | |
1831 static const tw_instr twinstr[] = { | |
1832 {TW_CEXP, 0, 1}, | |
1833 {TW_CEXP, 0, 3}, | |
1834 {TW_CEXP, 0, 9}, | |
1835 {TW_CEXP, 0, 27}, | |
1836 {TW_NEXT, 1, 0} | |
1837 }; | |
1838 | |
1839 static const ct_desc desc = { 32, "t2_32", twinstr, &GENUS, {376, 168, 112, 0}, 0, 0, 0 }; | |
1840 | |
1841 void X(codelet_t2_32) (planner *p) { | |
1842 X(kdft_dit_register) (p, t2_32, &desc); | |
1843 } | |
1844 #endif /* HAVE_FMA */ |