Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t2_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:09 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 276 FP additions, 198 FP multiplications, | |
32 * (or, 136 additions, 58 multiplications, 140 fused multiply/add), | |
33 * 142 stack variables, 4 constants, and 80 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { | |
46 E T59, T5i, T5k, T5e, T5c, T5d, T5j, T5f; | |
47 { | |
48 E T2, Th, Tf, T6, T5, Tl, T1p, T1n, Ti, T3, Tt, Tv, T24, T1f, T1D; | |
49 E Tb, T1P, Tm, T21, T1b, T7, T1A, Tw, T1H, T13, TA, T1L, T17, T1S, Tq; | |
50 E T1o, T2g, T1t, T2c, TO, TK; | |
51 { | |
52 E T1e, Ta, Tk, Tg; | |
53 T2 = W[0]; | |
54 Th = W[3]; | |
55 Tf = W[2]; | |
56 T6 = W[5]; | |
57 T5 = W[1]; | |
58 Tk = T2 * Th; | |
59 Tg = T2 * Tf; | |
60 T1e = Tf * T6; | |
61 Ta = T2 * T6; | |
62 Tl = FMA(T5, Tf, Tk); | |
63 T1p = FNMS(T5, Tf, Tk); | |
64 T1n = FMA(T5, Th, Tg); | |
65 Ti = FNMS(T5, Th, Tg); | |
66 T3 = W[4]; | |
67 Tt = W[6]; | |
68 Tv = W[7]; | |
69 { | |
70 E Tp, Tj, TN, TJ; | |
71 Tp = Ti * T6; | |
72 T24 = FMA(Th, T3, T1e); | |
73 T1f = FNMS(Th, T3, T1e); | |
74 T1D = FNMS(T5, T3, Ta); | |
75 Tb = FMA(T5, T3, Ta); | |
76 Tj = Ti * T3; | |
77 { | |
78 E T1a, T4, Tu, T1G; | |
79 T1a = Tf * T3; | |
80 T4 = T2 * T3; | |
81 Tu = Ti * Tt; | |
82 T1G = T2 * Tt; | |
83 { | |
84 E T12, Tz, T1K, T16; | |
85 T12 = Tf * Tt; | |
86 Tz = Ti * Tv; | |
87 T1K = T2 * Tv; | |
88 T16 = Tf * Tv; | |
89 T1P = FNMS(Tl, T6, Tj); | |
90 Tm = FMA(Tl, T6, Tj); | |
91 T21 = FNMS(Th, T6, T1a); | |
92 T1b = FMA(Th, T6, T1a); | |
93 T7 = FNMS(T5, T6, T4); | |
94 T1A = FMA(T5, T6, T4); | |
95 Tw = FMA(Tl, Tv, Tu); | |
96 T1H = FMA(T5, Tv, T1G); | |
97 T13 = FMA(Th, Tv, T12); | |
98 TA = FNMS(Tl, Tt, Tz); | |
99 T1L = FNMS(T5, Tt, T1K); | |
100 T17 = FNMS(Th, Tt, T16); | |
101 T1S = FMA(Tl, T3, Tp); | |
102 Tq = FNMS(Tl, T3, Tp); | |
103 } | |
104 } | |
105 T1o = T1n * T3; | |
106 T2g = T1n * Tv; | |
107 TN = Tm * Tv; | |
108 TJ = Tm * Tt; | |
109 T1t = T1n * T6; | |
110 T2c = T1n * Tt; | |
111 TO = FNMS(Tq, Tt, TN); | |
112 TK = FMA(Tq, Tv, TJ); | |
113 } | |
114 } | |
115 { | |
116 E Te, T2C, T4L, T57, T58, TD, T2H, T4H, T3C, T3Z, T11, T2v, T2P, T3P, T4k; | |
117 E T4v, T3u, T43, T2r, T2z, T3b, T3T, T4g, T4z, T3n, T42, T20, T2y, T34, T3S; | |
118 E T4d, T4y, T1c, T19, T1d, T3E, T1w, T2U, T1g, T1j, T1l; | |
119 { | |
120 E T2d, T2h, T2k, T1q, T1u, T2n, TL, TI, TM, T3x, TZ, T2N, TP, TS, TU; | |
121 { | |
122 E T1, T4K, T8, T9, Tc; | |
123 T1 = ri[0]; | |
124 T4K = ii[0]; | |
125 T8 = ri[WS(rs, 10)]; | |
126 T2d = FMA(T1p, Tv, T2c); | |
127 T2h = FNMS(T1p, Tt, T2g); | |
128 T2k = FMA(T1p, T6, T1o); | |
129 T1q = FNMS(T1p, T6, T1o); | |
130 T1u = FMA(T1p, T3, T1t); | |
131 T2n = FNMS(T1p, T3, T1t); | |
132 T9 = T7 * T8; | |
133 Tc = ii[WS(rs, 10)]; | |
134 { | |
135 E Tx, Ts, T2F, TC, T2E; | |
136 { | |
137 E Tn, Tr, To, T2D, T4J, Ty, TB, Td, T4I; | |
138 Tn = ri[WS(rs, 5)]; | |
139 Tr = ii[WS(rs, 5)]; | |
140 Tx = ri[WS(rs, 15)]; | |
141 Td = FMA(Tb, Tc, T9); | |
142 T4I = T7 * Tc; | |
143 To = Tm * Tn; | |
144 T2D = Tm * Tr; | |
145 Te = T1 + Td; | |
146 T2C = T1 - Td; | |
147 T4J = FNMS(Tb, T8, T4I); | |
148 Ty = Tw * Tx; | |
149 TB = ii[WS(rs, 15)]; | |
150 Ts = FMA(Tq, Tr, To); | |
151 T4L = T4J + T4K; | |
152 T57 = T4K - T4J; | |
153 T2F = Tw * TB; | |
154 TC = FMA(TA, TB, Ty); | |
155 T2E = FNMS(Tq, Tn, T2D); | |
156 } | |
157 { | |
158 E TF, TG, TH, TW, TY, T2G, T3w, TX, T2M; | |
159 TF = ri[WS(rs, 4)]; | |
160 T2G = FNMS(TA, Tx, T2F); | |
161 T58 = Ts - TC; | |
162 TD = Ts + TC; | |
163 TG = Ti * TF; | |
164 T2H = T2E - T2G; | |
165 T4H = T2E + T2G; | |
166 TH = ii[WS(rs, 4)]; | |
167 TW = ri[WS(rs, 19)]; | |
168 TY = ii[WS(rs, 19)]; | |
169 TL = ri[WS(rs, 14)]; | |
170 TI = FMA(Tl, TH, TG); | |
171 T3w = Ti * TH; | |
172 TX = Tt * TW; | |
173 T2M = Tt * TY; | |
174 TM = TK * TL; | |
175 T3x = FNMS(Tl, TF, T3w); | |
176 TZ = FMA(Tv, TY, TX); | |
177 T2N = FNMS(Tv, TW, T2M); | |
178 TP = ii[WS(rs, 14)]; | |
179 TS = ri[WS(rs, 9)]; | |
180 TU = ii[WS(rs, 9)]; | |
181 } | |
182 } | |
183 } | |
184 { | |
185 E T27, T26, T28, T3p, T2p, T39, T29, T2e, T2i; | |
186 { | |
187 E T22, T23, T25, T2l, T2o, T3o, T2m, T38; | |
188 { | |
189 E TR, T2J, T3z, TV, T2L, T4i, T3A; | |
190 T22 = ri[WS(rs, 12)]; | |
191 { | |
192 E TQ, T3y, TT, T2K; | |
193 TQ = FMA(TO, TP, TM); | |
194 T3y = TK * TP; | |
195 TT = T3 * TS; | |
196 T2K = T3 * TU; | |
197 TR = TI + TQ; | |
198 T2J = TI - TQ; | |
199 T3z = FNMS(TO, TL, T3y); | |
200 TV = FMA(T6, TU, TT); | |
201 T2L = FNMS(T6, TS, T2K); | |
202 T23 = T21 * T22; | |
203 } | |
204 T4i = T3x + T3z; | |
205 T3A = T3x - T3z; | |
206 { | |
207 E T10, T3B, T4j, T2O; | |
208 T10 = TV + TZ; | |
209 T3B = TV - TZ; | |
210 T4j = T2L + T2N; | |
211 T2O = T2L - T2N; | |
212 T3C = T3A + T3B; | |
213 T3Z = T3A - T3B; | |
214 T11 = TR - T10; | |
215 T2v = TR + T10; | |
216 T2P = T2J - T2O; | |
217 T3P = T2J + T2O; | |
218 T4k = T4i - T4j; | |
219 T4v = T4i + T4j; | |
220 T25 = ii[WS(rs, 12)]; | |
221 } | |
222 } | |
223 T2l = ri[WS(rs, 7)]; | |
224 T2o = ii[WS(rs, 7)]; | |
225 T27 = ri[WS(rs, 2)]; | |
226 T26 = FMA(T24, T25, T23); | |
227 T3o = T21 * T25; | |
228 T2m = T2k * T2l; | |
229 T38 = T2k * T2o; | |
230 T28 = T1n * T27; | |
231 T3p = FNMS(T24, T22, T3o); | |
232 T2p = FMA(T2n, T2o, T2m); | |
233 T39 = FNMS(T2n, T2l, T38); | |
234 T29 = ii[WS(rs, 2)]; | |
235 T2e = ri[WS(rs, 17)]; | |
236 T2i = ii[WS(rs, 17)]; | |
237 } | |
238 { | |
239 E T1I, T1F, T1J, T3i, T1Y, T32, T1M, T1Q, T1T; | |
240 { | |
241 E T1B, T1C, T1E, T1V, T1X, T3h, T1W, T31; | |
242 { | |
243 E T2b, T35, T3r, T2j, T37, T4e, T3s; | |
244 T1B = ri[WS(rs, 8)]; | |
245 { | |
246 E T2a, T3q, T2f, T36; | |
247 T2a = FMA(T1p, T29, T28); | |
248 T3q = T1n * T29; | |
249 T2f = T2d * T2e; | |
250 T36 = T2d * T2i; | |
251 T2b = T26 + T2a; | |
252 T35 = T26 - T2a; | |
253 T3r = FNMS(T1p, T27, T3q); | |
254 T2j = FMA(T2h, T2i, T2f); | |
255 T37 = FNMS(T2h, T2e, T36); | |
256 T1C = T1A * T1B; | |
257 } | |
258 T4e = T3p + T3r; | |
259 T3s = T3p - T3r; | |
260 { | |
261 E T2q, T3t, T4f, T3a; | |
262 T2q = T2j + T2p; | |
263 T3t = T2j - T2p; | |
264 T4f = T37 + T39; | |
265 T3a = T37 - T39; | |
266 T3u = T3s + T3t; | |
267 T43 = T3s - T3t; | |
268 T2r = T2b - T2q; | |
269 T2z = T2b + T2q; | |
270 T3b = T35 - T3a; | |
271 T3T = T35 + T3a; | |
272 T4g = T4e - T4f; | |
273 T4z = T4e + T4f; | |
274 T1E = ii[WS(rs, 8)]; | |
275 } | |
276 } | |
277 T1V = ri[WS(rs, 3)]; | |
278 T1X = ii[WS(rs, 3)]; | |
279 T1I = ri[WS(rs, 18)]; | |
280 T1F = FMA(T1D, T1E, T1C); | |
281 T3h = T1A * T1E; | |
282 T1W = Tf * T1V; | |
283 T31 = Tf * T1X; | |
284 T1J = T1H * T1I; | |
285 T3i = FNMS(T1D, T1B, T3h); | |
286 T1Y = FMA(Th, T1X, T1W); | |
287 T32 = FNMS(Th, T1V, T31); | |
288 T1M = ii[WS(rs, 18)]; | |
289 T1Q = ri[WS(rs, 13)]; | |
290 T1T = ii[WS(rs, 13)]; | |
291 } | |
292 { | |
293 E T14, T15, T18, T1r, T1v, T3D, T1s, T2T; | |
294 { | |
295 E T1O, T2Y, T3k, T1U, T30, T4b, T3l; | |
296 T14 = ri[WS(rs, 16)]; | |
297 { | |
298 E T1N, T3j, T1R, T2Z; | |
299 T1N = FMA(T1L, T1M, T1J); | |
300 T3j = T1H * T1M; | |
301 T1R = T1P * T1Q; | |
302 T2Z = T1P * T1T; | |
303 T1O = T1F + T1N; | |
304 T2Y = T1F - T1N; | |
305 T3k = FNMS(T1L, T1I, T3j); | |
306 T1U = FMA(T1S, T1T, T1R); | |
307 T30 = FNMS(T1S, T1Q, T2Z); | |
308 T15 = T13 * T14; | |
309 } | |
310 T4b = T3i + T3k; | |
311 T3l = T3i - T3k; | |
312 { | |
313 E T1Z, T3m, T4c, T33; | |
314 T1Z = T1U + T1Y; | |
315 T3m = T1U - T1Y; | |
316 T4c = T30 + T32; | |
317 T33 = T30 - T32; | |
318 T3n = T3l + T3m; | |
319 T42 = T3l - T3m; | |
320 T20 = T1O - T1Z; | |
321 T2y = T1O + T1Z; | |
322 T34 = T2Y - T33; | |
323 T3S = T2Y + T33; | |
324 T4d = T4b - T4c; | |
325 T4y = T4b + T4c; | |
326 T18 = ii[WS(rs, 16)]; | |
327 } | |
328 } | |
329 T1r = ri[WS(rs, 11)]; | |
330 T1v = ii[WS(rs, 11)]; | |
331 T1c = ri[WS(rs, 6)]; | |
332 T19 = FMA(T17, T18, T15); | |
333 T3D = T13 * T18; | |
334 T1s = T1q * T1r; | |
335 T2T = T1q * T1v; | |
336 T1d = T1b * T1c; | |
337 T3E = FNMS(T17, T14, T3D); | |
338 T1w = FMA(T1u, T1v, T1s); | |
339 T2U = FNMS(T1u, T1r, T2T); | |
340 T1g = ii[WS(rs, 6)]; | |
341 T1j = ri[WS(rs, 1)]; | |
342 T1l = ii[WS(rs, 1)]; | |
343 } | |
344 } | |
345 } | |
346 } | |
347 { | |
348 E T3J, T40, T2W, T3Q, T4M, T4E, T4F, T4U, T4S; | |
349 { | |
350 E T4X, T2u, T2w, T4w, T4W, T4r, T4p, T54, T56, T4V, T4a, T4q; | |
351 { | |
352 E T4h, TE, T4n, T53, T1z, T2s, T52; | |
353 { | |
354 E T1i, T2Q, T3G, T1m, T2S, T4l, T3H; | |
355 T4h = T4d - T4g; | |
356 T4X = T4d + T4g; | |
357 { | |
358 E T1h, T3F, T1k, T2R; | |
359 T1h = FMA(T1f, T1g, T1d); | |
360 T3F = T1b * T1g; | |
361 T1k = T2 * T1j; | |
362 T2R = T2 * T1l; | |
363 T1i = T19 + T1h; | |
364 T2Q = T19 - T1h; | |
365 T3G = FNMS(T1f, T1c, T3F); | |
366 T1m = FMA(T5, T1l, T1k); | |
367 T2S = FNMS(T5, T1j, T2R); | |
368 } | |
369 TE = Te - TD; | |
370 T2u = Te + TD; | |
371 T4l = T3E + T3G; | |
372 T3H = T3E - T3G; | |
373 { | |
374 E T1x, T3I, T4m, T2V, T1y; | |
375 T1x = T1m + T1w; | |
376 T3I = T1m - T1w; | |
377 T4m = T2S + T2U; | |
378 T2V = T2S - T2U; | |
379 T3J = T3H + T3I; | |
380 T40 = T3H - T3I; | |
381 T1y = T1i - T1x; | |
382 T2w = T1i + T1x; | |
383 T2W = T2Q - T2V; | |
384 T3Q = T2Q + T2V; | |
385 T4n = T4l - T4m; | |
386 T4w = T4l + T4m; | |
387 T53 = T11 - T1y; | |
388 T1z = T11 + T1y; | |
389 T2s = T20 + T2r; | |
390 T52 = T20 - T2r; | |
391 } | |
392 } | |
393 { | |
394 E T49, T48, T4o, T2t; | |
395 T4o = T4k - T4n; | |
396 T4W = T4k + T4n; | |
397 T49 = T1z - T2s; | |
398 T2t = T1z + T2s; | |
399 T4r = FMA(KP618033988, T4h, T4o); | |
400 T4p = FNMS(KP618033988, T4o, T4h); | |
401 T54 = FNMS(KP618033988, T53, T52); | |
402 T56 = FMA(KP618033988, T52, T53); | |
403 ri[WS(rs, 10)] = TE + T2t; | |
404 T48 = FNMS(KP250000000, T2t, TE); | |
405 T4V = T4L - T4H; | |
406 T4M = T4H + T4L; | |
407 T4a = FNMS(KP559016994, T49, T48); | |
408 T4q = FMA(KP559016994, T49, T48); | |
409 } | |
410 } | |
411 { | |
412 E T2x, T4Q, T4B, T4D, T4R, T2A, T51, T55; | |
413 { | |
414 E T4x, T50, T4Y, T4A, T4Z; | |
415 T4E = T4v + T4w; | |
416 T4x = T4v - T4w; | |
417 ri[WS(rs, 18)] = FMA(KP951056516, T4p, T4a); | |
418 ri[WS(rs, 2)] = FNMS(KP951056516, T4p, T4a); | |
419 ri[WS(rs, 6)] = FMA(KP951056516, T4r, T4q); | |
420 ri[WS(rs, 14)] = FNMS(KP951056516, T4r, T4q); | |
421 T50 = T4W - T4X; | |
422 T4Y = T4W + T4X; | |
423 T4A = T4y - T4z; | |
424 T4F = T4y + T4z; | |
425 T2x = T2v + T2w; | |
426 T4Q = T2v - T2w; | |
427 ii[WS(rs, 10)] = T4Y + T4V; | |
428 T4Z = FNMS(KP250000000, T4Y, T4V); | |
429 T4B = FMA(KP618033988, T4A, T4x); | |
430 T4D = FNMS(KP618033988, T4x, T4A); | |
431 T4R = T2y - T2z; | |
432 T2A = T2y + T2z; | |
433 T51 = FNMS(KP559016994, T50, T4Z); | |
434 T55 = FMA(KP559016994, T50, T4Z); | |
435 } | |
436 { | |
437 E T4t, T4s, T2B, T4u, T4C; | |
438 T2B = T2x + T2A; | |
439 T4t = T2x - T2A; | |
440 ii[WS(rs, 18)] = FNMS(KP951056516, T54, T51); | |
441 ii[WS(rs, 2)] = FMA(KP951056516, T54, T51); | |
442 ii[WS(rs, 14)] = FMA(KP951056516, T56, T55); | |
443 ii[WS(rs, 6)] = FNMS(KP951056516, T56, T55); | |
444 ri[0] = T2u + T2B; | |
445 T4s = FNMS(KP250000000, T2B, T2u); | |
446 T4u = FMA(KP559016994, T4t, T4s); | |
447 T4C = FNMS(KP559016994, T4t, T4s); | |
448 T4U = FNMS(KP618033988, T4Q, T4R); | |
449 T4S = FMA(KP618033988, T4R, T4Q); | |
450 ri[WS(rs, 16)] = FMA(KP951056516, T4B, T4u); | |
451 ri[WS(rs, 4)] = FNMS(KP951056516, T4B, T4u); | |
452 ri[WS(rs, 8)] = FMA(KP951056516, T4D, T4C); | |
453 ri[WS(rs, 12)] = FNMS(KP951056516, T4D, T4C); | |
454 } | |
455 } | |
456 } | |
457 { | |
458 E T3O, T5u, T5w, T5l, T5q, T5o; | |
459 { | |
460 E T5n, T5m, T2I, T4O, T3N, T3L, T2X, T5t, T4N, T5s, T3c, T3v, T3K, T4G; | |
461 T5n = T3n + T3u; | |
462 T3v = T3n - T3u; | |
463 T3K = T3C - T3J; | |
464 T5m = T3C + T3J; | |
465 T3O = T2C + T2H; | |
466 T2I = T2C - T2H; | |
467 T4O = T4E - T4F; | |
468 T4G = T4E + T4F; | |
469 T3N = FMA(KP618033988, T3v, T3K); | |
470 T3L = FNMS(KP618033988, T3K, T3v); | |
471 T2X = T2P + T2W; | |
472 T5t = T2P - T2W; | |
473 ii[0] = T4G + T4M; | |
474 T4N = FNMS(KP250000000, T4G, T4M); | |
475 T5s = T34 - T3b; | |
476 T3c = T34 + T3b; | |
477 { | |
478 E T3f, T3e, T4P, T4T, T3d, T3M, T3g; | |
479 T4P = FMA(KP559016994, T4O, T4N); | |
480 T4T = FNMS(KP559016994, T4O, T4N); | |
481 T3f = T2X - T3c; | |
482 T3d = T2X + T3c; | |
483 ii[WS(rs, 16)] = FNMS(KP951056516, T4S, T4P); | |
484 ii[WS(rs, 4)] = FMA(KP951056516, T4S, T4P); | |
485 ii[WS(rs, 12)] = FMA(KP951056516, T4U, T4T); | |
486 ii[WS(rs, 8)] = FNMS(KP951056516, T4U, T4T); | |
487 ri[WS(rs, 15)] = T2I + T3d; | |
488 T3e = FNMS(KP250000000, T3d, T2I); | |
489 T5u = FNMS(KP618033988, T5t, T5s); | |
490 T5w = FMA(KP618033988, T5s, T5t); | |
491 T5l = T58 + T57; | |
492 T59 = T57 - T58; | |
493 T3M = FMA(KP559016994, T3f, T3e); | |
494 T3g = FNMS(KP559016994, T3f, T3e); | |
495 ri[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g); | |
496 ri[WS(rs, 3)] = FMA(KP951056516, T3L, T3g); | |
497 ri[WS(rs, 19)] = FNMS(KP951056516, T3N, T3M); | |
498 ri[WS(rs, 11)] = FMA(KP951056516, T3N, T3M); | |
499 T5q = T5m - T5n; | |
500 T5o = T5m + T5n; | |
501 } | |
502 } | |
503 { | |
504 E T5a, T5b, T47, T45, T5g, T5h, T3V, T3X, T41, T44, T5p, T3W, T46, T3Y; | |
505 T5a = T3Z + T40; | |
506 T41 = T3Z - T40; | |
507 T44 = T42 - T43; | |
508 T5b = T42 + T43; | |
509 ii[WS(rs, 15)] = T5o + T5l; | |
510 T5p = FNMS(KP250000000, T5o, T5l); | |
511 T47 = FNMS(KP618033988, T41, T44); | |
512 T45 = FMA(KP618033988, T44, T41); | |
513 { | |
514 E T5r, T5v, T3R, T3U; | |
515 T5r = FNMS(KP559016994, T5q, T5p); | |
516 T5v = FMA(KP559016994, T5q, T5p); | |
517 T3R = T3P + T3Q; | |
518 T5g = T3P - T3Q; | |
519 T5h = T3S - T3T; | |
520 T3U = T3S + T3T; | |
521 ii[WS(rs, 7)] = FMA(KP951056516, T5u, T5r); | |
522 ii[WS(rs, 3)] = FNMS(KP951056516, T5u, T5r); | |
523 ii[WS(rs, 19)] = FMA(KP951056516, T5w, T5v); | |
524 ii[WS(rs, 11)] = FNMS(KP951056516, T5w, T5v); | |
525 T3V = T3R + T3U; | |
526 T3X = T3R - T3U; | |
527 } | |
528 ri[WS(rs, 5)] = T3O + T3V; | |
529 T3W = FNMS(KP250000000, T3V, T3O); | |
530 T5i = FMA(KP618033988, T5h, T5g); | |
531 T5k = FNMS(KP618033988, T5g, T5h); | |
532 T46 = FNMS(KP559016994, T3X, T3W); | |
533 T3Y = FMA(KP559016994, T3X, T3W); | |
534 ri[WS(rs, 9)] = FNMS(KP951056516, T45, T3Y); | |
535 ri[WS(rs, 1)] = FMA(KP951056516, T45, T3Y); | |
536 ri[WS(rs, 17)] = FNMS(KP951056516, T47, T46); | |
537 ri[WS(rs, 13)] = FMA(KP951056516, T47, T46); | |
538 T5e = T5a - T5b; | |
539 T5c = T5a + T5b; | |
540 } | |
541 } | |
542 } | |
543 } | |
544 } | |
545 ii[WS(rs, 5)] = T5c + T59; | |
546 T5d = FNMS(KP250000000, T5c, T59); | |
547 T5j = FNMS(KP559016994, T5e, T5d); | |
548 T5f = FMA(KP559016994, T5e, T5d); | |
549 ii[WS(rs, 9)] = FMA(KP951056516, T5i, T5f); | |
550 ii[WS(rs, 1)] = FNMS(KP951056516, T5i, T5f); | |
551 ii[WS(rs, 17)] = FMA(KP951056516, T5k, T5j); | |
552 ii[WS(rs, 13)] = FNMS(KP951056516, T5k, T5j); | |
553 } | |
554 } | |
555 } | |
556 | |
557 static const tw_instr twinstr[] = { | |
558 {TW_CEXP, 0, 1}, | |
559 {TW_CEXP, 0, 3}, | |
560 {TW_CEXP, 0, 9}, | |
561 {TW_CEXP, 0, 19}, | |
562 {TW_NEXT, 1, 0} | |
563 }; | |
564 | |
565 static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {136, 58, 140, 0}, 0, 0, 0 }; | |
566 | |
567 void X(codelet_t2_20) (planner *p) { | |
568 X(kdft_dit_register) (p, t2_20, &desc); | |
569 } | |
570 #else /* HAVE_FMA */ | |
571 | |
572 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include t.h */ | |
573 | |
574 /* | |
575 * This function contains 276 FP additions, 164 FP multiplications, | |
576 * (or, 204 additions, 92 multiplications, 72 fused multiply/add), | |
577 * 123 stack variables, 4 constants, and 80 memory accesses | |
578 */ | |
579 #include "t.h" | |
580 | |
581 static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
582 { | |
583 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
584 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
585 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
586 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
587 { | |
588 INT m; | |
589 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { | |
590 E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O; | |
591 E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ; | |
592 E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX; | |
593 { | |
594 E T7, T16, Ta, T13, T4, T17, Tb, T12; | |
595 { | |
596 E Th, Tn, Tj, Tm; | |
597 T2 = W[0]; | |
598 T5 = W[1]; | |
599 Tg = W[2]; | |
600 Ti = W[3]; | |
601 Th = T2 * Tg; | |
602 Tn = T5 * Tg; | |
603 Tj = T5 * Ti; | |
604 Tm = T2 * Ti; | |
605 Tk = Th - Tj; | |
606 To = Tm + Tn; | |
607 T1h = Tm - Tn; | |
608 T1f = Th + Tj; | |
609 T6 = W[5]; | |
610 T7 = T5 * T6; | |
611 T16 = Tg * T6; | |
612 Ta = T2 * T6; | |
613 T13 = Ti * T6; | |
614 T3 = W[4]; | |
615 T4 = T2 * T3; | |
616 T17 = Ti * T3; | |
617 Tb = T5 * T3; | |
618 T12 = Tg * T3; | |
619 } | |
620 T8 = T4 - T7; | |
621 T14 = T12 + T13; | |
622 T1Q = T16 + T17; | |
623 Tc = Ta + Tb; | |
624 T1O = T12 - T13; | |
625 T1v = Ta - Tb; | |
626 T18 = T16 - T17; | |
627 T1t = T4 + T7; | |
628 { | |
629 E T1l, T1m, T1g, T1i; | |
630 T1l = T1f * T6; | |
631 T1m = T1h * T3; | |
632 T1n = T1l + T1m; | |
633 T24 = T1l - T1m; | |
634 T1g = T1f * T3; | |
635 T1i = T1h * T6; | |
636 T1j = T1g - T1i; | |
637 T22 = T1g + T1i; | |
638 { | |
639 E Tl, Tp, Ts, Tt; | |
640 Tl = Tk * T3; | |
641 Tp = To * T6; | |
642 Tq = Tl + Tp; | |
643 Ts = Tk * T6; | |
644 Tt = To * T3; | |
645 Tu = Ts - Tt; | |
646 T1E = Tl - Tp; | |
647 T1G = Ts + Tt; | |
648 Tx = W[6]; | |
649 Ty = W[7]; | |
650 Tz = FMA(Tk, Tx, To * Ty); | |
651 TJ = FMA(Tq, Tx, Tu * Ty); | |
652 T1Z = FNMS(T1h, Tx, T1f * Ty); | |
653 TB = FNMS(To, Tx, Tk * Ty); | |
654 T1X = FMA(T1f, Tx, T1h * Ty); | |
655 T1A = FNMS(T5, Tx, T2 * Ty); | |
656 TZ = FNMS(Ti, Tx, Tg * Ty); | |
657 TL = FNMS(Tu, Tx, Tq * Ty); | |
658 T1y = FMA(T2, Tx, T5 * Ty); | |
659 TX = FMA(Tg, Tx, Ti * Ty); | |
660 } | |
661 } | |
662 } | |
663 { | |
664 E TF, T2b, T4A, T4J, T2K, T3r, T4a, T4m, T1N, T28, T29, T3C, T3F, T4o, T3X; | |
665 E T3Y, T44, T2f, T2g, T2h, T2n, T2s, T4L, T3g, T3h, T4w, T3n, T3o, T3p, T30; | |
666 E T35, T36, TW, T1r, T1s, T3J, T3M, T4n, T3U, T3V, T43, T2c, T2d, T2e, T2y; | |
667 E T2D, T4K, T3d, T3e, T4v, T3k, T3l, T3m, T2P, T2U, T2V; | |
668 { | |
669 E T1, T48, Te, T47, Tw, T2H, TD, T2I, T9, Td; | |
670 T1 = ri[0]; | |
671 T48 = ii[0]; | |
672 T9 = ri[WS(rs, 10)]; | |
673 Td = ii[WS(rs, 10)]; | |
674 Te = FMA(T8, T9, Tc * Td); | |
675 T47 = FNMS(Tc, T9, T8 * Td); | |
676 { | |
677 E Tr, Tv, TA, TC; | |
678 Tr = ri[WS(rs, 5)]; | |
679 Tv = ii[WS(rs, 5)]; | |
680 Tw = FMA(Tq, Tr, Tu * Tv); | |
681 T2H = FNMS(Tu, Tr, Tq * Tv); | |
682 TA = ri[WS(rs, 15)]; | |
683 TC = ii[WS(rs, 15)]; | |
684 TD = FMA(Tz, TA, TB * TC); | |
685 T2I = FNMS(TB, TA, Tz * TC); | |
686 } | |
687 { | |
688 E Tf, TE, T4y, T4z; | |
689 Tf = T1 + Te; | |
690 TE = Tw + TD; | |
691 TF = Tf - TE; | |
692 T2b = Tf + TE; | |
693 T4y = T48 - T47; | |
694 T4z = Tw - TD; | |
695 T4A = T4y - T4z; | |
696 T4J = T4z + T4y; | |
697 } | |
698 { | |
699 E T2G, T2J, T46, T49; | |
700 T2G = T1 - Te; | |
701 T2J = T2H - T2I; | |
702 T2K = T2G - T2J; | |
703 T3r = T2G + T2J; | |
704 T46 = T2H + T2I; | |
705 T49 = T47 + T48; | |
706 T4a = T46 + T49; | |
707 T4m = T49 - T46; | |
708 } | |
709 } | |
710 { | |
711 E T1D, T3A, T2l, T2W, T27, T3E, T2r, T34, T1M, T3B, T2m, T2Z, T1W, T3D, T2q; | |
712 E T31; | |
713 { | |
714 E T1x, T2j, T1C, T2k; | |
715 { | |
716 E T1u, T1w, T1z, T1B; | |
717 T1u = ri[WS(rs, 8)]; | |
718 T1w = ii[WS(rs, 8)]; | |
719 T1x = FMA(T1t, T1u, T1v * T1w); | |
720 T2j = FNMS(T1v, T1u, T1t * T1w); | |
721 T1z = ri[WS(rs, 18)]; | |
722 T1B = ii[WS(rs, 18)]; | |
723 T1C = FMA(T1y, T1z, T1A * T1B); | |
724 T2k = FNMS(T1A, T1z, T1y * T1B); | |
725 } | |
726 T1D = T1x + T1C; | |
727 T3A = T2j + T2k; | |
728 T2l = T2j - T2k; | |
729 T2W = T1x - T1C; | |
730 } | |
731 { | |
732 E T21, T32, T26, T33; | |
733 { | |
734 E T1Y, T20, T23, T25; | |
735 T1Y = ri[WS(rs, 17)]; | |
736 T20 = ii[WS(rs, 17)]; | |
737 T21 = FMA(T1X, T1Y, T1Z * T20); | |
738 T32 = FNMS(T1Z, T1Y, T1X * T20); | |
739 T23 = ri[WS(rs, 7)]; | |
740 T25 = ii[WS(rs, 7)]; | |
741 T26 = FMA(T22, T23, T24 * T25); | |
742 T33 = FNMS(T24, T23, T22 * T25); | |
743 } | |
744 T27 = T21 + T26; | |
745 T3E = T32 + T33; | |
746 T2r = T21 - T26; | |
747 T34 = T32 - T33; | |
748 } | |
749 { | |
750 E T1I, T2X, T1L, T2Y; | |
751 { | |
752 E T1F, T1H, T1J, T1K; | |
753 T1F = ri[WS(rs, 13)]; | |
754 T1H = ii[WS(rs, 13)]; | |
755 T1I = FMA(T1E, T1F, T1G * T1H); | |
756 T2X = FNMS(T1G, T1F, T1E * T1H); | |
757 T1J = ri[WS(rs, 3)]; | |
758 T1K = ii[WS(rs, 3)]; | |
759 T1L = FMA(Tg, T1J, Ti * T1K); | |
760 T2Y = FNMS(Ti, T1J, Tg * T1K); | |
761 } | |
762 T1M = T1I + T1L; | |
763 T3B = T2X + T2Y; | |
764 T2m = T1I - T1L; | |
765 T2Z = T2X - T2Y; | |
766 } | |
767 { | |
768 E T1S, T2o, T1V, T2p; | |
769 { | |
770 E T1P, T1R, T1T, T1U; | |
771 T1P = ri[WS(rs, 12)]; | |
772 T1R = ii[WS(rs, 12)]; | |
773 T1S = FMA(T1O, T1P, T1Q * T1R); | |
774 T2o = FNMS(T1Q, T1P, T1O * T1R); | |
775 T1T = ri[WS(rs, 2)]; | |
776 T1U = ii[WS(rs, 2)]; | |
777 T1V = FMA(T1f, T1T, T1h * T1U); | |
778 T2p = FNMS(T1h, T1T, T1f * T1U); | |
779 } | |
780 T1W = T1S + T1V; | |
781 T3D = T2o + T2p; | |
782 T2q = T2o - T2p; | |
783 T31 = T1S - T1V; | |
784 } | |
785 T1N = T1D - T1M; | |
786 T28 = T1W - T27; | |
787 T29 = T1N + T28; | |
788 T3C = T3A - T3B; | |
789 T3F = T3D - T3E; | |
790 T4o = T3C + T3F; | |
791 T3X = T3A + T3B; | |
792 T3Y = T3D + T3E; | |
793 T44 = T3X + T3Y; | |
794 T2f = T1D + T1M; | |
795 T2g = T1W + T27; | |
796 T2h = T2f + T2g; | |
797 T2n = T2l + T2m; | |
798 T2s = T2q + T2r; | |
799 T4L = T2n + T2s; | |
800 T3g = T2l - T2m; | |
801 T3h = T2q - T2r; | |
802 T4w = T3g + T3h; | |
803 T3n = T2W + T2Z; | |
804 T3o = T31 + T34; | |
805 T3p = T3n + T3o; | |
806 T30 = T2W - T2Z; | |
807 T35 = T31 - T34; | |
808 T36 = T30 + T35; | |
809 } | |
810 { | |
811 E TO, T3H, T2w, T2L, T1q, T3L, T2C, T2T, TV, T3I, T2x, T2O, T1b, T3K, T2B; | |
812 E T2Q; | |
813 { | |
814 E TI, T2u, TN, T2v; | |
815 { | |
816 E TG, TH, TK, TM; | |
817 TG = ri[WS(rs, 4)]; | |
818 TH = ii[WS(rs, 4)]; | |
819 TI = FMA(Tk, TG, To * TH); | |
820 T2u = FNMS(To, TG, Tk * TH); | |
821 TK = ri[WS(rs, 14)]; | |
822 TM = ii[WS(rs, 14)]; | |
823 TN = FMA(TJ, TK, TL * TM); | |
824 T2v = FNMS(TL, TK, TJ * TM); | |
825 } | |
826 TO = TI + TN; | |
827 T3H = T2u + T2v; | |
828 T2w = T2u - T2v; | |
829 T2L = TI - TN; | |
830 } | |
831 { | |
832 E T1e, T2R, T1p, T2S; | |
833 { | |
834 E T1c, T1d, T1k, T1o; | |
835 T1c = ri[WS(rs, 1)]; | |
836 T1d = ii[WS(rs, 1)]; | |
837 T1e = FMA(T2, T1c, T5 * T1d); | |
838 T2R = FNMS(T5, T1c, T2 * T1d); | |
839 T1k = ri[WS(rs, 11)]; | |
840 T1o = ii[WS(rs, 11)]; | |
841 T1p = FMA(T1j, T1k, T1n * T1o); | |
842 T2S = FNMS(T1n, T1k, T1j * T1o); | |
843 } | |
844 T1q = T1e + T1p; | |
845 T3L = T2R + T2S; | |
846 T2C = T1e - T1p; | |
847 T2T = T2R - T2S; | |
848 } | |
849 { | |
850 E TR, T2M, TU, T2N; | |
851 { | |
852 E TP, TQ, TS, TT; | |
853 TP = ri[WS(rs, 9)]; | |
854 TQ = ii[WS(rs, 9)]; | |
855 TR = FMA(T3, TP, T6 * TQ); | |
856 T2M = FNMS(T6, TP, T3 * TQ); | |
857 TS = ri[WS(rs, 19)]; | |
858 TT = ii[WS(rs, 19)]; | |
859 TU = FMA(Tx, TS, Ty * TT); | |
860 T2N = FNMS(Ty, TS, Tx * TT); | |
861 } | |
862 TV = TR + TU; | |
863 T3I = T2M + T2N; | |
864 T2x = TR - TU; | |
865 T2O = T2M - T2N; | |
866 } | |
867 { | |
868 E T11, T2z, T1a, T2A; | |
869 { | |
870 E TY, T10, T15, T19; | |
871 TY = ri[WS(rs, 16)]; | |
872 T10 = ii[WS(rs, 16)]; | |
873 T11 = FMA(TX, TY, TZ * T10); | |
874 T2z = FNMS(TZ, TY, TX * T10); | |
875 T15 = ri[WS(rs, 6)]; | |
876 T19 = ii[WS(rs, 6)]; | |
877 T1a = FMA(T14, T15, T18 * T19); | |
878 T2A = FNMS(T18, T15, T14 * T19); | |
879 } | |
880 T1b = T11 + T1a; | |
881 T3K = T2z + T2A; | |
882 T2B = T2z - T2A; | |
883 T2Q = T11 - T1a; | |
884 } | |
885 TW = TO - TV; | |
886 T1r = T1b - T1q; | |
887 T1s = TW + T1r; | |
888 T3J = T3H - T3I; | |
889 T3M = T3K - T3L; | |
890 T4n = T3J + T3M; | |
891 T3U = T3H + T3I; | |
892 T3V = T3K + T3L; | |
893 T43 = T3U + T3V; | |
894 T2c = TO + TV; | |
895 T2d = T1b + T1q; | |
896 T2e = T2c + T2d; | |
897 T2y = T2w + T2x; | |
898 T2D = T2B + T2C; | |
899 T4K = T2y + T2D; | |
900 T3d = T2w - T2x; | |
901 T3e = T2B - T2C; | |
902 T4v = T3d + T3e; | |
903 T3k = T2L + T2O; | |
904 T3l = T2Q + T2T; | |
905 T3m = T3k + T3l; | |
906 T2P = T2L - T2O; | |
907 T2U = T2Q - T2T; | |
908 T2V = T2P + T2U; | |
909 } | |
910 { | |
911 E T3y, T2a, T3x, T3O, T3Q, T3G, T3N, T3P, T3z; | |
912 T3y = KP559016994 * (T1s - T29); | |
913 T2a = T1s + T29; | |
914 T3x = FNMS(KP250000000, T2a, TF); | |
915 T3G = T3C - T3F; | |
916 T3N = T3J - T3M; | |
917 T3O = FNMS(KP587785252, T3N, KP951056516 * T3G); | |
918 T3Q = FMA(KP951056516, T3N, KP587785252 * T3G); | |
919 ri[WS(rs, 10)] = TF + T2a; | |
920 T3P = T3y + T3x; | |
921 ri[WS(rs, 14)] = T3P - T3Q; | |
922 ri[WS(rs, 6)] = T3P + T3Q; | |
923 T3z = T3x - T3y; | |
924 ri[WS(rs, 2)] = T3z - T3O; | |
925 ri[WS(rs, 18)] = T3z + T3O; | |
926 } | |
927 { | |
928 E T4r, T4p, T4q, T4l, T4u, T4j, T4k, T4t, T4s; | |
929 T4r = KP559016994 * (T4n - T4o); | |
930 T4p = T4n + T4o; | |
931 T4q = FNMS(KP250000000, T4p, T4m); | |
932 T4j = T1N - T28; | |
933 T4k = TW - T1r; | |
934 T4l = FNMS(KP587785252, T4k, KP951056516 * T4j); | |
935 T4u = FMA(KP951056516, T4k, KP587785252 * T4j); | |
936 ii[WS(rs, 10)] = T4p + T4m; | |
937 T4t = T4r + T4q; | |
938 ii[WS(rs, 6)] = T4t - T4u; | |
939 ii[WS(rs, 14)] = T4u + T4t; | |
940 T4s = T4q - T4r; | |
941 ii[WS(rs, 2)] = T4l + T4s; | |
942 ii[WS(rs, 18)] = T4s - T4l; | |
943 } | |
944 { | |
945 E T3R, T2i, T3S, T40, T42, T3W, T3Z, T41, T3T; | |
946 T3R = KP559016994 * (T2e - T2h); | |
947 T2i = T2e + T2h; | |
948 T3S = FNMS(KP250000000, T2i, T2b); | |
949 T3W = T3U - T3V; | |
950 T3Z = T3X - T3Y; | |
951 T40 = FMA(KP951056516, T3W, KP587785252 * T3Z); | |
952 T42 = FNMS(KP587785252, T3W, KP951056516 * T3Z); | |
953 ri[0] = T2b + T2i; | |
954 T41 = T3S - T3R; | |
955 ri[WS(rs, 12)] = T41 - T42; | |
956 ri[WS(rs, 8)] = T41 + T42; | |
957 T3T = T3R + T3S; | |
958 ri[WS(rs, 4)] = T3T - T40; | |
959 ri[WS(rs, 16)] = T3T + T40; | |
960 } | |
961 { | |
962 E T4e, T45, T4f, T4d, T4i, T4b, T4c, T4h, T4g; | |
963 T4e = KP559016994 * (T43 - T44); | |
964 T45 = T43 + T44; | |
965 T4f = FNMS(KP250000000, T45, T4a); | |
966 T4b = T2c - T2d; | |
967 T4c = T2f - T2g; | |
968 T4d = FMA(KP951056516, T4b, KP587785252 * T4c); | |
969 T4i = FNMS(KP587785252, T4b, KP951056516 * T4c); | |
970 ii[0] = T45 + T4a; | |
971 T4h = T4f - T4e; | |
972 ii[WS(rs, 8)] = T4h - T4i; | |
973 ii[WS(rs, 12)] = T4i + T4h; | |
974 T4g = T4e + T4f; | |
975 ii[WS(rs, 4)] = T4d + T4g; | |
976 ii[WS(rs, 16)] = T4g - T4d; | |
977 } | |
978 { | |
979 E T39, T37, T38, T2F, T3b, T2t, T2E, T3c, T3a; | |
980 T39 = KP559016994 * (T2V - T36); | |
981 T37 = T2V + T36; | |
982 T38 = FNMS(KP250000000, T37, T2K); | |
983 T2t = T2n - T2s; | |
984 T2E = T2y - T2D; | |
985 T2F = FNMS(KP587785252, T2E, KP951056516 * T2t); | |
986 T3b = FMA(KP951056516, T2E, KP587785252 * T2t); | |
987 ri[WS(rs, 15)] = T2K + T37; | |
988 T3c = T39 + T38; | |
989 ri[WS(rs, 11)] = T3b + T3c; | |
990 ri[WS(rs, 19)] = T3c - T3b; | |
991 T3a = T38 - T39; | |
992 ri[WS(rs, 3)] = T2F + T3a; | |
993 ri[WS(rs, 7)] = T3a - T2F; | |
994 } | |
995 { | |
996 E T4O, T4M, T4N, T4S, T4U, T4Q, T4R, T4T, T4P; | |
997 T4O = KP559016994 * (T4K - T4L); | |
998 T4M = T4K + T4L; | |
999 T4N = FNMS(KP250000000, T4M, T4J); | |
1000 T4Q = T30 - T35; | |
1001 T4R = T2P - T2U; | |
1002 T4S = FNMS(KP587785252, T4R, KP951056516 * T4Q); | |
1003 T4U = FMA(KP951056516, T4R, KP587785252 * T4Q); | |
1004 ii[WS(rs, 15)] = T4M + T4J; | |
1005 T4T = T4O + T4N; | |
1006 ii[WS(rs, 11)] = T4T - T4U; | |
1007 ii[WS(rs, 19)] = T4U + T4T; | |
1008 T4P = T4N - T4O; | |
1009 ii[WS(rs, 3)] = T4P - T4S; | |
1010 ii[WS(rs, 7)] = T4S + T4P; | |
1011 } | |
1012 { | |
1013 E T3q, T3s, T3t, T3j, T3v, T3f, T3i, T3w, T3u; | |
1014 T3q = KP559016994 * (T3m - T3p); | |
1015 T3s = T3m + T3p; | |
1016 T3t = FNMS(KP250000000, T3s, T3r); | |
1017 T3f = T3d - T3e; | |
1018 T3i = T3g - T3h; | |
1019 T3j = FMA(KP951056516, T3f, KP587785252 * T3i); | |
1020 T3v = FNMS(KP587785252, T3f, KP951056516 * T3i); | |
1021 ri[WS(rs, 5)] = T3r + T3s; | |
1022 T3w = T3t - T3q; | |
1023 ri[WS(rs, 13)] = T3v + T3w; | |
1024 ri[WS(rs, 17)] = T3w - T3v; | |
1025 T3u = T3q + T3t; | |
1026 ri[WS(rs, 1)] = T3j + T3u; | |
1027 ri[WS(rs, 9)] = T3u - T3j; | |
1028 } | |
1029 { | |
1030 E T4x, T4B, T4C, T4G, T4I, T4E, T4F, T4H, T4D; | |
1031 T4x = KP559016994 * (T4v - T4w); | |
1032 T4B = T4v + T4w; | |
1033 T4C = FNMS(KP250000000, T4B, T4A); | |
1034 T4E = T3k - T3l; | |
1035 T4F = T3n - T3o; | |
1036 T4G = FMA(KP951056516, T4E, KP587785252 * T4F); | |
1037 T4I = FNMS(KP587785252, T4E, KP951056516 * T4F); | |
1038 ii[WS(rs, 5)] = T4B + T4A; | |
1039 T4H = T4C - T4x; | |
1040 ii[WS(rs, 13)] = T4H - T4I; | |
1041 ii[WS(rs, 17)] = T4I + T4H; | |
1042 T4D = T4x + T4C; | |
1043 ii[WS(rs, 1)] = T4D - T4G; | |
1044 ii[WS(rs, 9)] = T4G + T4D; | |
1045 } | |
1046 } | |
1047 } | |
1048 } | |
1049 } | |
1050 | |
1051 static const tw_instr twinstr[] = { | |
1052 {TW_CEXP, 0, 1}, | |
1053 {TW_CEXP, 0, 3}, | |
1054 {TW_CEXP, 0, 9}, | |
1055 {TW_CEXP, 0, 19}, | |
1056 {TW_NEXT, 1, 0} | |
1057 }; | |
1058 | |
1059 static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {204, 92, 72, 0}, 0, 0, 0 }; | |
1060 | |
1061 void X(codelet_t2_20) (planner *p) { | |
1062 X(kdft_dit_register) (p, t2_20, &desc); | |
1063 } | |
1064 #endif /* HAVE_FMA */ |