comparison src/fftw-3.3.3/dft/scalar/codelets/t2_16.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:36:00 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include t.h */
29
30 /*
31 * This function contains 196 FP additions, 134 FP multiplications,
32 * (or, 104 additions, 42 multiplications, 92 fused multiply/add),
33 * 100 stack variables, 3 constants, and 64 memory accesses
34 */
35 #include "t.h"
36
37 static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
41 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
42 {
43 INT m;
44 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) {
45 E T3S, T3R;
46 {
47 E T2, Tf, TM, TO, T3, Tg, TN, TS, T4, Tp, T6, T5, Th;
48 T2 = W[0];
49 Tf = W[2];
50 TM = W[6];
51 TO = W[7];
52 T3 = W[4];
53 Tg = T2 * Tf;
54 TN = T2 * TM;
55 TS = T2 * TO;
56 T4 = T2 * T3;
57 Tp = Tf * T3;
58 T6 = W[5];
59 T5 = W[1];
60 Th = W[3];
61 {
62 E TZ, Te, T1U, T3A, T3L, T2D, T1G, T2A, T3h, T1R, T2B, T2I, T3i, Tx, T3M;
63 E T1Z, T3w, TL, T26, T25, T37, T1d, T2o, T2l, T3c, T1s, T2m, T2t, T3d, TX;
64 E T10, TV, T2a, TY, T2b;
65 {
66 E TF, TP, TT, Tq, TW, Tz, Tu, TI, TC, T1m, T1f, T1p, T1j, Tr, Ts;
67 E Tv, To, T1W;
68 {
69 E Ti, Tm, T1L, T1O, T1D, T1A, T1x, T2y, T1F, T2x;
70 {
71 E T1, T7, Tb, T3z, T8, T1z, T9, Tc;
72 {
73 E T1i, T1e, T1C, T1y, Tt, Ta, Tl;
74 T1 = ri[0];
75 Tt = Tf * T6;
76 Ta = T2 * T6;
77 T7 = FMA(T5, T6, T4);
78 TF = FNMS(T5, T6, T4);
79 TP = FMA(T5, TO, TN);
80 TT = FNMS(T5, TM, TS);
81 Tq = FNMS(Th, T6, Tp);
82 TW = FMA(Th, T6, Tp);
83 Tz = FMA(T5, Th, Tg);
84 Ti = FNMS(T5, Th, Tg);
85 Tl = T2 * Th;
86 Tu = FMA(Th, T3, Tt);
87 TZ = FNMS(Th, T3, Tt);
88 TI = FMA(T5, T3, Ta);
89 Tb = FNMS(T5, T3, Ta);
90 T1i = Ti * T6;
91 T1e = Ti * T3;
92 T1C = Tz * T6;
93 T1y = Tz * T3;
94 Tm = FMA(T5, Tf, Tl);
95 TC = FNMS(T5, Tf, Tl);
96 T3z = ii[0];
97 T8 = ri[WS(rs, 8)];
98 T1m = FNMS(Tm, T6, T1e);
99 T1f = FMA(Tm, T6, T1e);
100 T1p = FMA(Tm, T3, T1i);
101 T1j = FNMS(Tm, T3, T1i);
102 T1L = FNMS(TC, T6, T1y);
103 T1z = FMA(TC, T6, T1y);
104 T1O = FMA(TC, T3, T1C);
105 T1D = FNMS(TC, T3, T1C);
106 T9 = T7 * T8;
107 Tc = ii[WS(rs, 8)];
108 }
109 {
110 E T1u, T1w, T1v, T2w, T3y, T1B, T1E, Td, T3x;
111 T1u = ri[WS(rs, 15)];
112 T1w = ii[WS(rs, 15)];
113 T1A = ri[WS(rs, 7)];
114 Td = FMA(Tb, Tc, T9);
115 T3x = T7 * Tc;
116 T1v = TM * T1u;
117 T2w = TM * T1w;
118 Te = T1 + Td;
119 T1U = T1 - Td;
120 T3y = FNMS(Tb, T8, T3x);
121 T1B = T1z * T1A;
122 T1E = ii[WS(rs, 7)];
123 T1x = FMA(TO, T1w, T1v);
124 T3A = T3y + T3z;
125 T3L = T3z - T3y;
126 T2y = T1z * T1E;
127 T1F = FMA(T1D, T1E, T1B);
128 T2x = FNMS(TO, T1u, T2w);
129 }
130 }
131 {
132 E T1H, T1I, T1J, T1M, T1P, T2z;
133 T1H = ri[WS(rs, 3)];
134 T2z = FNMS(T1D, T1A, T2y);
135 T2D = T1x - T1F;
136 T1G = T1x + T1F;
137 T1I = Tf * T1H;
138 T2A = T2x - T2z;
139 T3h = T2x + T2z;
140 T1J = ii[WS(rs, 3)];
141 T1M = ri[WS(rs, 11)];
142 T1P = ii[WS(rs, 11)];
143 {
144 E Tj, Tk, Tn, T1V;
145 {
146 E T1K, T2F, T1Q, T2H, T2E, T1N, T2G;
147 Tj = ri[WS(rs, 4)];
148 T1K = FMA(Th, T1J, T1I);
149 T2E = Tf * T1J;
150 T1N = T1L * T1M;
151 T2G = T1L * T1P;
152 Tk = Ti * Tj;
153 T2F = FNMS(Th, T1H, T2E);
154 T1Q = FMA(T1O, T1P, T1N);
155 T2H = FNMS(T1O, T1M, T2G);
156 Tn = ii[WS(rs, 4)];
157 Tr = ri[WS(rs, 12)];
158 T1R = T1K + T1Q;
159 T2B = T1K - T1Q;
160 T2I = T2F - T2H;
161 T3i = T2F + T2H;
162 T1V = Ti * Tn;
163 Ts = Tq * Tr;
164 Tv = ii[WS(rs, 12)];
165 }
166 To = FMA(Tm, Tn, Tk);
167 T1W = FNMS(Tm, Tj, T1V);
168 }
169 }
170 }
171 {
172 E T19, T1b, T18, T2i, T1a, T2j;
173 {
174 E TE, T22, TK, T24;
175 {
176 E TA, TD, TB, T21, TG, TJ, TH, T23, T1Y, Tw, T1X;
177 TA = ri[WS(rs, 2)];
178 Tw = FMA(Tu, Tv, Ts);
179 T1X = Tq * Tv;
180 TD = ii[WS(rs, 2)];
181 TB = Tz * TA;
182 Tx = To + Tw;
183 T3M = To - Tw;
184 T1Y = FNMS(Tu, Tr, T1X);
185 T21 = Tz * TD;
186 TG = ri[WS(rs, 10)];
187 TJ = ii[WS(rs, 10)];
188 T1Z = T1W - T1Y;
189 T3w = T1W + T1Y;
190 TH = TF * TG;
191 T23 = TF * TJ;
192 TE = FMA(TC, TD, TB);
193 T22 = FNMS(TC, TA, T21);
194 TK = FMA(TI, TJ, TH);
195 T24 = FNMS(TI, TG, T23);
196 }
197 {
198 E T15, T17, T16, T2h;
199 T15 = ri[WS(rs, 1)];
200 T17 = ii[WS(rs, 1)];
201 TL = TE + TK;
202 T26 = TE - TK;
203 T25 = T22 - T24;
204 T37 = T22 + T24;
205 T16 = T2 * T15;
206 T2h = T2 * T17;
207 T19 = ri[WS(rs, 9)];
208 T1b = ii[WS(rs, 9)];
209 T18 = FMA(T5, T17, T16);
210 T2i = FNMS(T5, T15, T2h);
211 T1a = T3 * T19;
212 T2j = T3 * T1b;
213 }
214 }
215 {
216 E T1n, T1q, T1l, T2q, T1o, T2r;
217 {
218 E T1g, T1k, T1h, T2p, T1c, T2k;
219 T1g = ri[WS(rs, 5)];
220 T1k = ii[WS(rs, 5)];
221 T1c = FMA(T6, T1b, T1a);
222 T2k = FNMS(T6, T19, T2j);
223 T1h = T1f * T1g;
224 T2p = T1f * T1k;
225 T1d = T18 + T1c;
226 T2o = T18 - T1c;
227 T2l = T2i - T2k;
228 T3c = T2i + T2k;
229 T1n = ri[WS(rs, 13)];
230 T1q = ii[WS(rs, 13)];
231 T1l = FMA(T1j, T1k, T1h);
232 T2q = FNMS(T1j, T1g, T2p);
233 T1o = T1m * T1n;
234 T2r = T1m * T1q;
235 }
236 {
237 E TQ, TU, TR, T29, T1r, T2s;
238 TQ = ri[WS(rs, 14)];
239 TU = ii[WS(rs, 14)];
240 T1r = FMA(T1p, T1q, T1o);
241 T2s = FNMS(T1p, T1n, T2r);
242 TR = TP * TQ;
243 T29 = TP * TU;
244 T1s = T1l + T1r;
245 T2m = T1l - T1r;
246 T2t = T2q - T2s;
247 T3d = T2q + T2s;
248 TX = ri[WS(rs, 6)];
249 T10 = ii[WS(rs, 6)];
250 TV = FMA(TT, TU, TR);
251 T2a = FNMS(TT, TQ, T29);
252 TY = TW * TX;
253 T2b = TW * T10;
254 }
255 }
256 }
257 }
258 {
259 E T36, T3G, T3b, T3g, T28, T2d, T3F, T39, T3e, T3q, T3C, T3j, T3u, T3t;
260 {
261 E T3D, T1T, T3r, T14, T3E, T3s;
262 {
263 E Ty, T3B, T11, T2c, T13, T3v;
264 T36 = Te - Tx;
265 Ty = Te + Tx;
266 T3B = T3w + T3A;
267 T3G = T3A - T3w;
268 T11 = FMA(TZ, T10, TY);
269 T2c = FNMS(TZ, TX, T2b);
270 {
271 E T1t, T1S, T12, T38;
272 T3b = T1d - T1s;
273 T1t = T1d + T1s;
274 T1S = T1G + T1R;
275 T3g = T1G - T1R;
276 T12 = TV + T11;
277 T28 = TV - T11;
278 T2d = T2a - T2c;
279 T38 = T2a + T2c;
280 T3D = T1S - T1t;
281 T1T = T1t + T1S;
282 T13 = TL + T12;
283 T3F = T12 - TL;
284 T39 = T37 - T38;
285 T3v = T37 + T38;
286 }
287 T3e = T3c - T3d;
288 T3r = T3c + T3d;
289 T3q = Ty - T13;
290 T14 = Ty + T13;
291 T3E = T3B - T3v;
292 T3C = T3v + T3B;
293 T3s = T3h + T3i;
294 T3j = T3h - T3i;
295 }
296 ri[WS(rs, 8)] = T14 - T1T;
297 ri[0] = T14 + T1T;
298 ii[WS(rs, 12)] = T3E - T3D;
299 T3u = T3r + T3s;
300 T3t = T3r - T3s;
301 ii[WS(rs, 4)] = T3D + T3E;
302 }
303 {
304 E T3m, T3a, T3J, T3H;
305 ii[0] = T3u + T3C;
306 ii[WS(rs, 8)] = T3C - T3u;
307 ri[WS(rs, 4)] = T3q + T3t;
308 ri[WS(rs, 12)] = T3q - T3t;
309 T3m = T36 - T39;
310 T3a = T36 + T39;
311 T3J = T3G - T3F;
312 T3H = T3F + T3G;
313 {
314 E T2Q, T20, T3N, T3T, T2J, T2C, T3O, T2f, T34, T30, T2W, T2V, T3U, T2T, T2N;
315 E T2v;
316 {
317 E T2R, T27, T2e, T2S;
318 {
319 E T3n, T3f, T3o, T3k;
320 T2Q = T1U + T1Z;
321 T20 = T1U - T1Z;
322 T3n = T3e - T3b;
323 T3f = T3b + T3e;
324 T3o = T3g + T3j;
325 T3k = T3g - T3j;
326 T3N = T3L - T3M;
327 T3T = T3M + T3L;
328 {
329 E T3p, T3I, T3K, T3l;
330 T3p = T3n - T3o;
331 T3I = T3n + T3o;
332 T3K = T3k - T3f;
333 T3l = T3f + T3k;
334 ri[WS(rs, 6)] = FMA(KP707106781, T3p, T3m);
335 ri[WS(rs, 14)] = FNMS(KP707106781, T3p, T3m);
336 ii[WS(rs, 10)] = FNMS(KP707106781, T3I, T3H);
337 ii[WS(rs, 2)] = FMA(KP707106781, T3I, T3H);
338 ii[WS(rs, 14)] = FNMS(KP707106781, T3K, T3J);
339 ii[WS(rs, 6)] = FMA(KP707106781, T3K, T3J);
340 ri[WS(rs, 2)] = FMA(KP707106781, T3l, T3a);
341 ri[WS(rs, 10)] = FNMS(KP707106781, T3l, T3a);
342 T2R = T26 + T25;
343 T27 = T25 - T26;
344 T2e = T28 + T2d;
345 T2S = T28 - T2d;
346 }
347 }
348 {
349 E T2Y, T2Z, T2n, T2u;
350 T2J = T2D - T2I;
351 T2Y = T2D + T2I;
352 T2Z = T2A - T2B;
353 T2C = T2A + T2B;
354 T3O = T27 + T2e;
355 T2f = T27 - T2e;
356 T34 = FMA(KP414213562, T2Y, T2Z);
357 T30 = FNMS(KP414213562, T2Z, T2Y);
358 T2W = T2l - T2m;
359 T2n = T2l + T2m;
360 T2u = T2o - T2t;
361 T2V = T2o + T2t;
362 T3U = T2S - T2R;
363 T2T = T2R + T2S;
364 T2N = FNMS(KP414213562, T2n, T2u);
365 T2v = FMA(KP414213562, T2u, T2n);
366 }
367 }
368 {
369 E T33, T2X, T3X, T3Y;
370 {
371 E T2M, T2g, T2O, T2K, T3V, T3W, T2P, T2L;
372 T2M = FNMS(KP707106781, T2f, T20);
373 T2g = FMA(KP707106781, T2f, T20);
374 T33 = FNMS(KP414213562, T2V, T2W);
375 T2X = FMA(KP414213562, T2W, T2V);
376 T2O = FMA(KP414213562, T2C, T2J);
377 T2K = FNMS(KP414213562, T2J, T2C);
378 T3V = FMA(KP707106781, T3U, T3T);
379 T3X = FNMS(KP707106781, T3U, T3T);
380 T3W = T2O - T2N;
381 T2P = T2N + T2O;
382 T3Y = T2v + T2K;
383 T2L = T2v - T2K;
384 ii[WS(rs, 11)] = FNMS(KP923879532, T3W, T3V);
385 ii[WS(rs, 3)] = FMA(KP923879532, T3W, T3V);
386 ri[WS(rs, 3)] = FMA(KP923879532, T2L, T2g);
387 ri[WS(rs, 11)] = FNMS(KP923879532, T2L, T2g);
388 ri[WS(rs, 15)] = FMA(KP923879532, T2P, T2M);
389 ri[WS(rs, 7)] = FNMS(KP923879532, T2P, T2M);
390 }
391 {
392 E T32, T3P, T3Q, T35, T2U, T31;
393 T32 = FNMS(KP707106781, T2T, T2Q);
394 T2U = FMA(KP707106781, T2T, T2Q);
395 T31 = T2X + T30;
396 T3S = T30 - T2X;
397 T3R = FNMS(KP707106781, T3O, T3N);
398 T3P = FMA(KP707106781, T3O, T3N);
399 ii[WS(rs, 15)] = FMA(KP923879532, T3Y, T3X);
400 ii[WS(rs, 7)] = FNMS(KP923879532, T3Y, T3X);
401 ri[WS(rs, 1)] = FMA(KP923879532, T31, T2U);
402 ri[WS(rs, 9)] = FNMS(KP923879532, T31, T2U);
403 T3Q = T33 + T34;
404 T35 = T33 - T34;
405 ii[WS(rs, 9)] = FNMS(KP923879532, T3Q, T3P);
406 ii[WS(rs, 1)] = FMA(KP923879532, T3Q, T3P);
407 ri[WS(rs, 5)] = FMA(KP923879532, T35, T32);
408 ri[WS(rs, 13)] = FNMS(KP923879532, T35, T32);
409 }
410 }
411 }
412 }
413 }
414 }
415 }
416 ii[WS(rs, 13)] = FNMS(KP923879532, T3S, T3R);
417 ii[WS(rs, 5)] = FMA(KP923879532, T3S, T3R);
418 }
419 }
420 }
421
422 static const tw_instr twinstr[] = {
423 {TW_CEXP, 0, 1},
424 {TW_CEXP, 0, 3},
425 {TW_CEXP, 0, 9},
426 {TW_CEXP, 0, 15},
427 {TW_NEXT, 1, 0}
428 };
429
430 static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {104, 42, 92, 0}, 0, 0, 0 };
431
432 void X(codelet_t2_16) (planner *p) {
433 X(kdft_dit_register) (p, t2_16, &desc);
434 }
435 #else /* HAVE_FMA */
436
437 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include t.h */
438
439 /*
440 * This function contains 196 FP additions, 108 FP multiplications,
441 * (or, 156 additions, 68 multiplications, 40 fused multiply/add),
442 * 82 stack variables, 3 constants, and 64 memory accesses
443 */
444 #include "t.h"
445
446 static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
447 {
448 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
449 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
450 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
451 {
452 INT m;
453 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) {
454 E T2, T5, Tg, Ti, Tk, To, TE, TC, T6, T3, T8, TW, TJ, Tt, TU;
455 E Tc, Tx, TH, TN, TO, TP, TR, T1f, T1k, T1b, T1i, T1y, T1H, T1u, T1F;
456 {
457 E T7, Tv, Ta, Ts, T4, Tw, Tb, Tr;
458 {
459 E Th, Tn, Tj, Tm;
460 T2 = W[0];
461 T5 = W[1];
462 Tg = W[2];
463 Ti = W[3];
464 Th = T2 * Tg;
465 Tn = T5 * Tg;
466 Tj = T5 * Ti;
467 Tm = T2 * Ti;
468 Tk = Th - Tj;
469 To = Tm + Tn;
470 TE = Tm - Tn;
471 TC = Th + Tj;
472 T6 = W[5];
473 T7 = T5 * T6;
474 Tv = Tg * T6;
475 Ta = T2 * T6;
476 Ts = Ti * T6;
477 T3 = W[4];
478 T4 = T2 * T3;
479 Tw = Ti * T3;
480 Tb = T5 * T3;
481 Tr = Tg * T3;
482 }
483 T8 = T4 + T7;
484 TW = Tv - Tw;
485 TJ = Ta + Tb;
486 Tt = Tr - Ts;
487 TU = Tr + Ts;
488 Tc = Ta - Tb;
489 Tx = Tv + Tw;
490 TH = T4 - T7;
491 TN = W[6];
492 TO = W[7];
493 TP = FMA(T2, TN, T5 * TO);
494 TR = FNMS(T5, TN, T2 * TO);
495 {
496 E T1d, T1e, T19, T1a;
497 T1d = Tk * T6;
498 T1e = To * T3;
499 T1f = T1d - T1e;
500 T1k = T1d + T1e;
501 T19 = Tk * T3;
502 T1a = To * T6;
503 T1b = T19 + T1a;
504 T1i = T19 - T1a;
505 }
506 {
507 E T1w, T1x, T1s, T1t;
508 T1w = TC * T6;
509 T1x = TE * T3;
510 T1y = T1w - T1x;
511 T1H = T1w + T1x;
512 T1s = TC * T3;
513 T1t = TE * T6;
514 T1u = T1s + T1t;
515 T1F = T1s - T1t;
516 }
517 }
518 {
519 E Tf, T3r, T1N, T3e, TA, T3s, T1Q, T3b, TM, T2M, T1W, T2w, TZ, T2N, T21;
520 E T2x, T1B, T1K, T2V, T2W, T2X, T2Y, T2j, T2D, T2o, T2E, T18, T1n, T2Q, T2R;
521 E T2S, T2T, T28, T2A, T2d, T2B;
522 {
523 E T1, T3d, Te, T3c, T9, Td;
524 T1 = ri[0];
525 T3d = ii[0];
526 T9 = ri[WS(rs, 8)];
527 Td = ii[WS(rs, 8)];
528 Te = FMA(T8, T9, Tc * Td);
529 T3c = FNMS(Tc, T9, T8 * Td);
530 Tf = T1 + Te;
531 T3r = T3d - T3c;
532 T1N = T1 - Te;
533 T3e = T3c + T3d;
534 }
535 {
536 E Tq, T1O, Tz, T1P;
537 {
538 E Tl, Tp, Tu, Ty;
539 Tl = ri[WS(rs, 4)];
540 Tp = ii[WS(rs, 4)];
541 Tq = FMA(Tk, Tl, To * Tp);
542 T1O = FNMS(To, Tl, Tk * Tp);
543 Tu = ri[WS(rs, 12)];
544 Ty = ii[WS(rs, 12)];
545 Tz = FMA(Tt, Tu, Tx * Ty);
546 T1P = FNMS(Tx, Tu, Tt * Ty);
547 }
548 TA = Tq + Tz;
549 T3s = Tq - Tz;
550 T1Q = T1O - T1P;
551 T3b = T1O + T1P;
552 }
553 {
554 E TG, T1S, TL, T1T, T1U, T1V;
555 {
556 E TD, TF, TI, TK;
557 TD = ri[WS(rs, 2)];
558 TF = ii[WS(rs, 2)];
559 TG = FMA(TC, TD, TE * TF);
560 T1S = FNMS(TE, TD, TC * TF);
561 TI = ri[WS(rs, 10)];
562 TK = ii[WS(rs, 10)];
563 TL = FMA(TH, TI, TJ * TK);
564 T1T = FNMS(TJ, TI, TH * TK);
565 }
566 TM = TG + TL;
567 T2M = T1S + T1T;
568 T1U = T1S - T1T;
569 T1V = TG - TL;
570 T1W = T1U - T1V;
571 T2w = T1V + T1U;
572 }
573 {
574 E TT, T1Y, TY, T1Z, T1X, T20;
575 {
576 E TQ, TS, TV, TX;
577 TQ = ri[WS(rs, 14)];
578 TS = ii[WS(rs, 14)];
579 TT = FMA(TP, TQ, TR * TS);
580 T1Y = FNMS(TR, TQ, TP * TS);
581 TV = ri[WS(rs, 6)];
582 TX = ii[WS(rs, 6)];
583 TY = FMA(TU, TV, TW * TX);
584 T1Z = FNMS(TW, TV, TU * TX);
585 }
586 TZ = TT + TY;
587 T2N = T1Y + T1Z;
588 T1X = TT - TY;
589 T20 = T1Y - T1Z;
590 T21 = T1X + T20;
591 T2x = T1X - T20;
592 }
593 {
594 E T1r, T2k, T1J, T2h, T1A, T2l, T1E, T2g;
595 {
596 E T1p, T1q, T1G, T1I;
597 T1p = ri[WS(rs, 15)];
598 T1q = ii[WS(rs, 15)];
599 T1r = FMA(TN, T1p, TO * T1q);
600 T2k = FNMS(TO, T1p, TN * T1q);
601 T1G = ri[WS(rs, 11)];
602 T1I = ii[WS(rs, 11)];
603 T1J = FMA(T1F, T1G, T1H * T1I);
604 T2h = FNMS(T1H, T1G, T1F * T1I);
605 }
606 {
607 E T1v, T1z, T1C, T1D;
608 T1v = ri[WS(rs, 7)];
609 T1z = ii[WS(rs, 7)];
610 T1A = FMA(T1u, T1v, T1y * T1z);
611 T2l = FNMS(T1y, T1v, T1u * T1z);
612 T1C = ri[WS(rs, 3)];
613 T1D = ii[WS(rs, 3)];
614 T1E = FMA(Tg, T1C, Ti * T1D);
615 T2g = FNMS(Ti, T1C, Tg * T1D);
616 }
617 T1B = T1r + T1A;
618 T1K = T1E + T1J;
619 T2V = T1B - T1K;
620 T2W = T2k + T2l;
621 T2X = T2g + T2h;
622 T2Y = T2W - T2X;
623 {
624 E T2f, T2i, T2m, T2n;
625 T2f = T1r - T1A;
626 T2i = T2g - T2h;
627 T2j = T2f - T2i;
628 T2D = T2f + T2i;
629 T2m = T2k - T2l;
630 T2n = T1E - T1J;
631 T2o = T2m + T2n;
632 T2E = T2m - T2n;
633 }
634 }
635 {
636 E T14, T24, T1m, T2b, T17, T25, T1h, T2a;
637 {
638 E T12, T13, T1j, T1l;
639 T12 = ri[WS(rs, 1)];
640 T13 = ii[WS(rs, 1)];
641 T14 = FMA(T2, T12, T5 * T13);
642 T24 = FNMS(T5, T12, T2 * T13);
643 T1j = ri[WS(rs, 13)];
644 T1l = ii[WS(rs, 13)];
645 T1m = FMA(T1i, T1j, T1k * T1l);
646 T2b = FNMS(T1k, T1j, T1i * T1l);
647 }
648 {
649 E T15, T16, T1c, T1g;
650 T15 = ri[WS(rs, 9)];
651 T16 = ii[WS(rs, 9)];
652 T17 = FMA(T3, T15, T6 * T16);
653 T25 = FNMS(T6, T15, T3 * T16);
654 T1c = ri[WS(rs, 5)];
655 T1g = ii[WS(rs, 5)];
656 T1h = FMA(T1b, T1c, T1f * T1g);
657 T2a = FNMS(T1f, T1c, T1b * T1g);
658 }
659 T18 = T14 + T17;
660 T1n = T1h + T1m;
661 T2Q = T18 - T1n;
662 T2R = T24 + T25;
663 T2S = T2a + T2b;
664 T2T = T2R - T2S;
665 {
666 E T26, T27, T29, T2c;
667 T26 = T24 - T25;
668 T27 = T1h - T1m;
669 T28 = T26 + T27;
670 T2A = T26 - T27;
671 T29 = T14 - T17;
672 T2c = T2a - T2b;
673 T2d = T29 - T2c;
674 T2B = T29 + T2c;
675 }
676 }
677 {
678 E T23, T2r, T3A, T3C, T2q, T3B, T2u, T3x;
679 {
680 E T1R, T22, T3y, T3z;
681 T1R = T1N - T1Q;
682 T22 = KP707106781 * (T1W - T21);
683 T23 = T1R + T22;
684 T2r = T1R - T22;
685 T3y = KP707106781 * (T2x - T2w);
686 T3z = T3s + T3r;
687 T3A = T3y + T3z;
688 T3C = T3z - T3y;
689 }
690 {
691 E T2e, T2p, T2s, T2t;
692 T2e = FMA(KP923879532, T28, KP382683432 * T2d);
693 T2p = FNMS(KP923879532, T2o, KP382683432 * T2j);
694 T2q = T2e + T2p;
695 T3B = T2p - T2e;
696 T2s = FNMS(KP923879532, T2d, KP382683432 * T28);
697 T2t = FMA(KP382683432, T2o, KP923879532 * T2j);
698 T2u = T2s - T2t;
699 T3x = T2s + T2t;
700 }
701 ri[WS(rs, 11)] = T23 - T2q;
702 ii[WS(rs, 11)] = T3A - T3x;
703 ri[WS(rs, 3)] = T23 + T2q;
704 ii[WS(rs, 3)] = T3x + T3A;
705 ri[WS(rs, 15)] = T2r - T2u;
706 ii[WS(rs, 15)] = T3C - T3B;
707 ri[WS(rs, 7)] = T2r + T2u;
708 ii[WS(rs, 7)] = T3B + T3C;
709 }
710 {
711 E T2P, T31, T3m, T3o, T30, T3n, T34, T3j;
712 {
713 E T2L, T2O, T3k, T3l;
714 T2L = Tf - TA;
715 T2O = T2M - T2N;
716 T2P = T2L + T2O;
717 T31 = T2L - T2O;
718 T3k = TZ - TM;
719 T3l = T3e - T3b;
720 T3m = T3k + T3l;
721 T3o = T3l - T3k;
722 }
723 {
724 E T2U, T2Z, T32, T33;
725 T2U = T2Q + T2T;
726 T2Z = T2V - T2Y;
727 T30 = KP707106781 * (T2U + T2Z);
728 T3n = KP707106781 * (T2Z - T2U);
729 T32 = T2T - T2Q;
730 T33 = T2V + T2Y;
731 T34 = KP707106781 * (T32 - T33);
732 T3j = KP707106781 * (T32 + T33);
733 }
734 ri[WS(rs, 10)] = T2P - T30;
735 ii[WS(rs, 10)] = T3m - T3j;
736 ri[WS(rs, 2)] = T2P + T30;
737 ii[WS(rs, 2)] = T3j + T3m;
738 ri[WS(rs, 14)] = T31 - T34;
739 ii[WS(rs, 14)] = T3o - T3n;
740 ri[WS(rs, 6)] = T31 + T34;
741 ii[WS(rs, 6)] = T3n + T3o;
742 }
743 {
744 E T2z, T2H, T3u, T3w, T2G, T3v, T2K, T3p;
745 {
746 E T2v, T2y, T3q, T3t;
747 T2v = T1N + T1Q;
748 T2y = KP707106781 * (T2w + T2x);
749 T2z = T2v + T2y;
750 T2H = T2v - T2y;
751 T3q = KP707106781 * (T1W + T21);
752 T3t = T3r - T3s;
753 T3u = T3q + T3t;
754 T3w = T3t - T3q;
755 }
756 {
757 E T2C, T2F, T2I, T2J;
758 T2C = FMA(KP382683432, T2A, KP923879532 * T2B);
759 T2F = FNMS(KP382683432, T2E, KP923879532 * T2D);
760 T2G = T2C + T2F;
761 T3v = T2F - T2C;
762 T2I = FNMS(KP382683432, T2B, KP923879532 * T2A);
763 T2J = FMA(KP923879532, T2E, KP382683432 * T2D);
764 T2K = T2I - T2J;
765 T3p = T2I + T2J;
766 }
767 ri[WS(rs, 9)] = T2z - T2G;
768 ii[WS(rs, 9)] = T3u - T3p;
769 ri[WS(rs, 1)] = T2z + T2G;
770 ii[WS(rs, 1)] = T3p + T3u;
771 ri[WS(rs, 13)] = T2H - T2K;
772 ii[WS(rs, 13)] = T3w - T3v;
773 ri[WS(rs, 5)] = T2H + T2K;
774 ii[WS(rs, 5)] = T3v + T3w;
775 }
776 {
777 E T11, T35, T3g, T3i, T1M, T3h, T38, T39;
778 {
779 E TB, T10, T3a, T3f;
780 TB = Tf + TA;
781 T10 = TM + TZ;
782 T11 = TB + T10;
783 T35 = TB - T10;
784 T3a = T2M + T2N;
785 T3f = T3b + T3e;
786 T3g = T3a + T3f;
787 T3i = T3f - T3a;
788 }
789 {
790 E T1o, T1L, T36, T37;
791 T1o = T18 + T1n;
792 T1L = T1B + T1K;
793 T1M = T1o + T1L;
794 T3h = T1L - T1o;
795 T36 = T2R + T2S;
796 T37 = T2W + T2X;
797 T38 = T36 - T37;
798 T39 = T36 + T37;
799 }
800 ri[WS(rs, 8)] = T11 - T1M;
801 ii[WS(rs, 8)] = T3g - T39;
802 ri[0] = T11 + T1M;
803 ii[0] = T39 + T3g;
804 ri[WS(rs, 12)] = T35 - T38;
805 ii[WS(rs, 12)] = T3i - T3h;
806 ri[WS(rs, 4)] = T35 + T38;
807 ii[WS(rs, 4)] = T3h + T3i;
808 }
809 }
810 }
811 }
812 }
813
814 static const tw_instr twinstr[] = {
815 {TW_CEXP, 0, 1},
816 {TW_CEXP, 0, 3},
817 {TW_CEXP, 0, 9},
818 {TW_CEXP, 0, 15},
819 {TW_NEXT, 1, 0}
820 };
821
822 static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {156, 68, 40, 0}, 0, 0, 0 };
823
824 void X(codelet_t2_16) (planner *p) {
825 X(kdft_dit_register) (p, t2_16, &desc);
826 }
827 #endif /* HAVE_FMA */