Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t1_64.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:52 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 1038 FP additions, 644 FP multiplications, | |
32 * (or, 520 additions, 126 multiplications, 518 fused multiply/add), | |
33 * 228 stack variables, 15 constants, and 256 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
40 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
41 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
42 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
43 DK(KP820678790, +0.820678790828660330972281985331011598767386482); | |
44 DK(KP098491403, +0.098491403357164253077197521291327432293052451); | |
45 DK(KP534511135, +0.534511135950791641089685961295362908582039528); | |
46 DK(KP303346683, +0.303346683607342391675883946941299872384187453); | |
47 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
48 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
49 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
50 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
51 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
54 { | |
55 INT m; | |
56 for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | |
57 E TeI, Tkk, Tkj, TeL; | |
58 { | |
59 E TiV, Tjm, T7e, TcA, TjR, Tkl, Tm, TeM, TeZ, Ths, T7Q, TcJ, T1G, TeW, TcI; | |
60 E T7X, Tf5, Thv, T87, TcN, T29, Tf8, TcQ, T8u, TfU, ThS, Taq, Tdm, T5K, Tg9; | |
61 E Tdx, Tbj, TcB, T7l, TiP, TeP, Tjl, TN, TcC, T7s, T7I, TcF, TeU, Thr, T7B; | |
62 E TcG, T1f, TeR, Tfg, ThB, T8G, TcU, T32, Tfj, TcX, T93, Tft, ThH, T9h, Td3; | |
63 E T3X, TfI, Tde, Taa, Thw, Tfb, Tf6, T2A, T8x, TcO, T8m, TcR, Tfm, ThC, T3t; | |
64 E Tfh, T96, TcV, T8V, TcY, ThI, TfL, Tfu, T4o, Tad, Td4, T9w, Tdf, Tgc, ThT; | |
65 E T6b, TfV, Tbm, Tdn, TaF, Tdy, ThN, T4Q, TfN, TfA, Taf, Ta1, Td8, Tdh, ThO; | |
66 E T5h, TfO, TfF, Tag, T9M, Tdb, Tdi, ThY, T6D, Tge, Tg1, Tbo, Tba, Tdr, TdA; | |
67 E TaN, Tdt, Tg5, ThZ, Tg2, T74, Tds, TaU; | |
68 { | |
69 E T7a, Te, T78, T8, TjP, TiU, T7c, Tk; | |
70 { | |
71 E T1, TiT, TiS, T7, Tg, Tj, Tf, Ti, T7b, Th; | |
72 T1 = ri[0]; | |
73 TiT = ii[0]; | |
74 { | |
75 E T3, T6, T2, T5; | |
76 T3 = ri[WS(rs, 32)]; | |
77 T6 = ii[WS(rs, 32)]; | |
78 T2 = W[62]; | |
79 T5 = W[63]; | |
80 { | |
81 E Ta, Td, Tc, T79, Tb, TiR, T4, T9; | |
82 Ta = ri[WS(rs, 16)]; | |
83 Td = ii[WS(rs, 16)]; | |
84 TiR = T2 * T6; | |
85 T4 = T2 * T3; | |
86 T9 = W[30]; | |
87 Tc = W[31]; | |
88 TiS = FNMS(T5, T3, TiR); | |
89 T7 = FMA(T5, T6, T4); | |
90 T79 = T9 * Td; | |
91 Tb = T9 * Ta; | |
92 Tg = ri[WS(rs, 48)]; | |
93 Tj = ii[WS(rs, 48)]; | |
94 T7a = FNMS(Tc, Ta, T79); | |
95 Te = FMA(Tc, Td, Tb); | |
96 Tf = W[94]; | |
97 Ti = W[95]; | |
98 } | |
99 } | |
100 T78 = T1 - T7; | |
101 T8 = T1 + T7; | |
102 TjP = TiT - TiS; | |
103 TiU = TiS + TiT; | |
104 T7b = Tf * Tj; | |
105 Th = Tf * Tg; | |
106 T7c = FNMS(Ti, Tg, T7b); | |
107 Tk = FMA(Ti, Tj, Th); | |
108 } | |
109 { | |
110 E T7L, T1l, T7V, T1E, T1u, T1x, T1w, T7N, T1r, T7S, T1v; | |
111 { | |
112 E T1A, T1D, T1C, T7U, T1B; | |
113 { | |
114 E T1h, T1k, T1g, T1j, T7K, T1i, T1z; | |
115 T1h = ri[WS(rs, 60)]; | |
116 T1k = ii[WS(rs, 60)]; | |
117 { | |
118 E T7d, TiQ, Tl, TjQ; | |
119 T7d = T7a - T7c; | |
120 TiQ = T7a + T7c; | |
121 Tl = Te + Tk; | |
122 TjQ = Te - Tk; | |
123 TiV = TiQ + TiU; | |
124 Tjm = TiU - TiQ; | |
125 T7e = T78 - T7d; | |
126 TcA = T78 + T7d; | |
127 TjR = TjP - TjQ; | |
128 Tkl = TjQ + TjP; | |
129 Tm = T8 + Tl; | |
130 TeM = T8 - Tl; | |
131 T1g = W[118]; | |
132 } | |
133 T1j = W[119]; | |
134 T1A = ri[WS(rs, 44)]; | |
135 T1D = ii[WS(rs, 44)]; | |
136 T7K = T1g * T1k; | |
137 T1i = T1g * T1h; | |
138 T1z = W[86]; | |
139 T1C = W[87]; | |
140 T7L = FNMS(T1j, T1h, T7K); | |
141 T1l = FMA(T1j, T1k, T1i); | |
142 T7U = T1z * T1D; | |
143 T1B = T1z * T1A; | |
144 } | |
145 { | |
146 E T1n, T1q, T1m, T1p, T7M, T1o, T1t; | |
147 T1n = ri[WS(rs, 28)]; | |
148 T1q = ii[WS(rs, 28)]; | |
149 T7V = FNMS(T1C, T1A, T7U); | |
150 T1E = FMA(T1C, T1D, T1B); | |
151 T1m = W[54]; | |
152 T1p = W[55]; | |
153 T1u = ri[WS(rs, 12)]; | |
154 T1x = ii[WS(rs, 12)]; | |
155 T7M = T1m * T1q; | |
156 T1o = T1m * T1n; | |
157 T1t = W[22]; | |
158 T1w = W[23]; | |
159 T7N = FNMS(T1p, T1n, T7M); | |
160 T1r = FMA(T1p, T1q, T1o); | |
161 T7S = T1t * T1x; | |
162 T1v = T1t * T1u; | |
163 } | |
164 } | |
165 { | |
166 E T7O, TeX, T1s, T7R, T7T, T1y; | |
167 T7O = T7L - T7N; | |
168 TeX = T7L + T7N; | |
169 T1s = T1l + T1r; | |
170 T7R = T1l - T1r; | |
171 T7T = FNMS(T1w, T1u, T7S); | |
172 T1y = FMA(T1w, T1x, T1v); | |
173 { | |
174 E T7W, TeY, T7P, T1F; | |
175 T7W = T7T - T7V; | |
176 TeY = T7T + T7V; | |
177 T7P = T1y - T1E; | |
178 T1F = T1y + T1E; | |
179 TeZ = TeX - TeY; | |
180 Ths = TeX + TeY; | |
181 T7Q = T7O + T7P; | |
182 TcJ = T7O - T7P; | |
183 T1G = T1s + T1F; | |
184 TeW = T1s - T1F; | |
185 TcI = T7R + T7W; | |
186 T7X = T7R - T7W; | |
187 } | |
188 } | |
189 } | |
190 } | |
191 { | |
192 E T82, T1O, T8s, T27, T1X, T20, T1Z, T84, T1U, T8p, T1Y; | |
193 { | |
194 E T23, T26, T25, T8r, T24; | |
195 { | |
196 E T1K, T1N, T1J, T1M, T81, T1L, T22; | |
197 T1K = ri[WS(rs, 2)]; | |
198 T1N = ii[WS(rs, 2)]; | |
199 T1J = W[2]; | |
200 T1M = W[3]; | |
201 T23 = ri[WS(rs, 50)]; | |
202 T26 = ii[WS(rs, 50)]; | |
203 T81 = T1J * T1N; | |
204 T1L = T1J * T1K; | |
205 T22 = W[98]; | |
206 T25 = W[99]; | |
207 T82 = FNMS(T1M, T1K, T81); | |
208 T1O = FMA(T1M, T1N, T1L); | |
209 T8r = T22 * T26; | |
210 T24 = T22 * T23; | |
211 } | |
212 { | |
213 E T1Q, T1T, T1P, T1S, T83, T1R, T1W; | |
214 T1Q = ri[WS(rs, 34)]; | |
215 T1T = ii[WS(rs, 34)]; | |
216 T8s = FNMS(T25, T23, T8r); | |
217 T27 = FMA(T25, T26, T24); | |
218 T1P = W[66]; | |
219 T1S = W[67]; | |
220 T1X = ri[WS(rs, 18)]; | |
221 T20 = ii[WS(rs, 18)]; | |
222 T83 = T1P * T1T; | |
223 T1R = T1P * T1Q; | |
224 T1W = W[34]; | |
225 T1Z = W[35]; | |
226 T84 = FNMS(T1S, T1Q, T83); | |
227 T1U = FMA(T1S, T1T, T1R); | |
228 T8p = T1W * T20; | |
229 T1Y = T1W * T1X; | |
230 } | |
231 } | |
232 { | |
233 E T85, Tf3, T1V, T8o, T8q, T21; | |
234 T85 = T82 - T84; | |
235 Tf3 = T82 + T84; | |
236 T1V = T1O + T1U; | |
237 T8o = T1O - T1U; | |
238 T8q = FNMS(T1Z, T1X, T8p); | |
239 T21 = FMA(T1Z, T20, T1Y); | |
240 { | |
241 E T8t, Tf4, T86, T28; | |
242 T8t = T8q - T8s; | |
243 Tf4 = T8q + T8s; | |
244 T86 = T21 - T27; | |
245 T28 = T21 + T27; | |
246 Tf5 = Tf3 - Tf4; | |
247 Thv = Tf3 + Tf4; | |
248 T87 = T85 + T86; | |
249 TcN = T85 - T86; | |
250 T29 = T1V + T28; | |
251 Tf8 = T1V - T28; | |
252 TcQ = T8o + T8t; | |
253 T8u = T8o - T8t; | |
254 } | |
255 } | |
256 } | |
257 { | |
258 E Tal, T5p, Tbh, T5I, T5y, T5B, T5A, Tan, T5v, Tbe, T5z; | |
259 { | |
260 E T5E, T5H, T5G, Tbg, T5F; | |
261 { | |
262 E T5l, T5o, T5k, T5n, Tak, T5m, T5D; | |
263 T5l = ri[WS(rs, 63)]; | |
264 T5o = ii[WS(rs, 63)]; | |
265 T5k = W[124]; | |
266 T5n = W[125]; | |
267 T5E = ri[WS(rs, 47)]; | |
268 T5H = ii[WS(rs, 47)]; | |
269 Tak = T5k * T5o; | |
270 T5m = T5k * T5l; | |
271 T5D = W[92]; | |
272 T5G = W[93]; | |
273 Tal = FNMS(T5n, T5l, Tak); | |
274 T5p = FMA(T5n, T5o, T5m); | |
275 Tbg = T5D * T5H; | |
276 T5F = T5D * T5E; | |
277 } | |
278 { | |
279 E T5r, T5u, T5q, T5t, Tam, T5s, T5x; | |
280 T5r = ri[WS(rs, 31)]; | |
281 T5u = ii[WS(rs, 31)]; | |
282 Tbh = FNMS(T5G, T5E, Tbg); | |
283 T5I = FMA(T5G, T5H, T5F); | |
284 T5q = W[60]; | |
285 T5t = W[61]; | |
286 T5y = ri[WS(rs, 15)]; | |
287 T5B = ii[WS(rs, 15)]; | |
288 Tam = T5q * T5u; | |
289 T5s = T5q * T5r; | |
290 T5x = W[28]; | |
291 T5A = W[29]; | |
292 Tan = FNMS(T5t, T5r, Tam); | |
293 T5v = FMA(T5t, T5u, T5s); | |
294 Tbe = T5x * T5B; | |
295 T5z = T5x * T5y; | |
296 } | |
297 } | |
298 { | |
299 E Tao, TfS, T5w, Tbd, Tbf, T5C; | |
300 Tao = Tal - Tan; | |
301 TfS = Tal + Tan; | |
302 T5w = T5p + T5v; | |
303 Tbd = T5p - T5v; | |
304 Tbf = FNMS(T5A, T5y, Tbe); | |
305 T5C = FMA(T5A, T5B, T5z); | |
306 { | |
307 E Tbi, TfT, Tap, T5J; | |
308 Tbi = Tbf - Tbh; | |
309 TfT = Tbf + Tbh; | |
310 Tap = T5C - T5I; | |
311 T5J = T5C + T5I; | |
312 TfU = TfS - TfT; | |
313 ThS = TfS + TfT; | |
314 Taq = Tao + Tap; | |
315 Tdm = Tao - Tap; | |
316 T5K = T5w + T5J; | |
317 Tg9 = T5w - T5J; | |
318 Tdx = Tbd + Tbi; | |
319 Tbj = Tbd - Tbi; | |
320 } | |
321 } | |
322 } | |
323 { | |
324 E T7G, T1d, T7z, TeS, T11, T7C, T7E, T17, T7r, T7m; | |
325 { | |
326 E T7g, Ts, T7q, TL, TB, TE, TD, T7i, Ty, T7n, TC; | |
327 { | |
328 E TH, TK, TJ, T7p, TI; | |
329 { | |
330 E To, Tr, Tn, Tq, T7f, Tp, TG; | |
331 To = ri[WS(rs, 8)]; | |
332 Tr = ii[WS(rs, 8)]; | |
333 Tn = W[14]; | |
334 Tq = W[15]; | |
335 TH = ri[WS(rs, 24)]; | |
336 TK = ii[WS(rs, 24)]; | |
337 T7f = Tn * Tr; | |
338 Tp = Tn * To; | |
339 TG = W[46]; | |
340 TJ = W[47]; | |
341 T7g = FNMS(Tq, To, T7f); | |
342 Ts = FMA(Tq, Tr, Tp); | |
343 T7p = TG * TK; | |
344 TI = TG * TH; | |
345 } | |
346 { | |
347 E Tu, Tx, Tt, Tw, T7h, Tv, TA; | |
348 Tu = ri[WS(rs, 40)]; | |
349 Tx = ii[WS(rs, 40)]; | |
350 T7q = FNMS(TJ, TH, T7p); | |
351 TL = FMA(TJ, TK, TI); | |
352 Tt = W[78]; | |
353 Tw = W[79]; | |
354 TB = ri[WS(rs, 56)]; | |
355 TE = ii[WS(rs, 56)]; | |
356 T7h = Tt * Tx; | |
357 Tv = Tt * Tu; | |
358 TA = W[110]; | |
359 TD = W[111]; | |
360 T7i = FNMS(Tw, Tu, T7h); | |
361 Ty = FMA(Tw, Tx, Tv); | |
362 T7n = TA * TE; | |
363 TC = TA * TB; | |
364 } | |
365 } | |
366 { | |
367 E T7j, TeN, Tz, T7k, T7o, TF, TeO, TM; | |
368 T7j = T7g - T7i; | |
369 TeN = T7g + T7i; | |
370 Tz = Ts + Ty; | |
371 T7k = Ts - Ty; | |
372 T7o = FNMS(TD, TB, T7n); | |
373 TF = FMA(TD, TE, TC); | |
374 T7r = T7o - T7q; | |
375 TeO = T7o + T7q; | |
376 TM = TF + TL; | |
377 T7m = TF - TL; | |
378 TcB = T7k + T7j; | |
379 T7l = T7j - T7k; | |
380 TiP = TeN + TeO; | |
381 TeP = TeN - TeO; | |
382 Tjl = TM - Tz; | |
383 TN = Tz + TM; | |
384 } | |
385 } | |
386 { | |
387 E T7w, TU, T13, T16, T7y, T10, T12, T15, T7D, T14; | |
388 { | |
389 E T19, T1c, T18, T1b; | |
390 { | |
391 E TQ, TT, TS, T7v, TR, TP; | |
392 TQ = ri[WS(rs, 4)]; | |
393 TT = ii[WS(rs, 4)]; | |
394 TP = W[6]; | |
395 TcC = T7m - T7r; | |
396 T7s = T7m + T7r; | |
397 TS = W[7]; | |
398 T7v = TP * TT; | |
399 TR = TP * TQ; | |
400 T19 = ri[WS(rs, 52)]; | |
401 T1c = ii[WS(rs, 52)]; | |
402 T7w = FNMS(TS, TQ, T7v); | |
403 TU = FMA(TS, TT, TR); | |
404 T18 = W[102]; | |
405 T1b = W[103]; | |
406 } | |
407 { | |
408 E TW, TZ, TY, T7x, TX, T7F, T1a, TV; | |
409 TW = ri[WS(rs, 36)]; | |
410 TZ = ii[WS(rs, 36)]; | |
411 T7F = T18 * T1c; | |
412 T1a = T18 * T19; | |
413 TV = W[70]; | |
414 TY = W[71]; | |
415 T7G = FNMS(T1b, T19, T7F); | |
416 T1d = FMA(T1b, T1c, T1a); | |
417 T7x = TV * TZ; | |
418 TX = TV * TW; | |
419 T13 = ri[WS(rs, 20)]; | |
420 T16 = ii[WS(rs, 20)]; | |
421 T7y = FNMS(TY, TW, T7x); | |
422 T10 = FMA(TY, TZ, TX); | |
423 T12 = W[38]; | |
424 T15 = W[39]; | |
425 } | |
426 } | |
427 T7z = T7w - T7y; | |
428 TeS = T7w + T7y; | |
429 T11 = TU + T10; | |
430 T7C = TU - T10; | |
431 T7D = T12 * T16; | |
432 T14 = T12 * T13; | |
433 T7E = FNMS(T15, T13, T7D); | |
434 T17 = FMA(T15, T16, T14); | |
435 } | |
436 { | |
437 E T8B, T2H, T91, T30, T2Q, T2T, T2S, T8D, T2N, T8Y, T2R; | |
438 { | |
439 E T2W, T2Z, T2Y, T90, T2X; | |
440 { | |
441 E T2D, T2G, T2C, T2F, T8A, T2E, T2V; | |
442 T2D = ri[WS(rs, 62)]; | |
443 T2G = ii[WS(rs, 62)]; | |
444 { | |
445 E TeT, T7H, T1e, T7A; | |
446 TeT = T7E + T7G; | |
447 T7H = T7E - T7G; | |
448 T1e = T17 + T1d; | |
449 T7A = T17 - T1d; | |
450 T7I = T7C - T7H; | |
451 TcF = T7C + T7H; | |
452 TeU = TeS - TeT; | |
453 Thr = TeS + TeT; | |
454 T7B = T7z + T7A; | |
455 TcG = T7z - T7A; | |
456 T1f = T11 + T1e; | |
457 TeR = T11 - T1e; | |
458 T2C = W[122]; | |
459 } | |
460 T2F = W[123]; | |
461 T2W = ri[WS(rs, 46)]; | |
462 T2Z = ii[WS(rs, 46)]; | |
463 T8A = T2C * T2G; | |
464 T2E = T2C * T2D; | |
465 T2V = W[90]; | |
466 T2Y = W[91]; | |
467 T8B = FNMS(T2F, T2D, T8A); | |
468 T2H = FMA(T2F, T2G, T2E); | |
469 T90 = T2V * T2Z; | |
470 T2X = T2V * T2W; | |
471 } | |
472 { | |
473 E T2J, T2M, T2I, T2L, T8C, T2K, T2P; | |
474 T2J = ri[WS(rs, 30)]; | |
475 T2M = ii[WS(rs, 30)]; | |
476 T91 = FNMS(T2Y, T2W, T90); | |
477 T30 = FMA(T2Y, T2Z, T2X); | |
478 T2I = W[58]; | |
479 T2L = W[59]; | |
480 T2Q = ri[WS(rs, 14)]; | |
481 T2T = ii[WS(rs, 14)]; | |
482 T8C = T2I * T2M; | |
483 T2K = T2I * T2J; | |
484 T2P = W[26]; | |
485 T2S = W[27]; | |
486 T8D = FNMS(T2L, T2J, T8C); | |
487 T2N = FMA(T2L, T2M, T2K); | |
488 T8Y = T2P * T2T; | |
489 T2R = T2P * T2Q; | |
490 } | |
491 } | |
492 { | |
493 E T8E, Tfe, T2O, T8X, T8Z, T2U; | |
494 T8E = T8B - T8D; | |
495 Tfe = T8B + T8D; | |
496 T2O = T2H + T2N; | |
497 T8X = T2H - T2N; | |
498 T8Z = FNMS(T2S, T2Q, T8Y); | |
499 T2U = FMA(T2S, T2T, T2R); | |
500 { | |
501 E T92, Tff, T8F, T31; | |
502 T92 = T8Z - T91; | |
503 Tff = T8Z + T91; | |
504 T8F = T2U - T30; | |
505 T31 = T2U + T30; | |
506 Tfg = Tfe - Tff; | |
507 ThB = Tfe + Tff; | |
508 T8G = T8E + T8F; | |
509 TcU = T8E - T8F; | |
510 T32 = T2O + T31; | |
511 Tfj = T2O - T31; | |
512 TcX = T8X + T92; | |
513 T93 = T8X - T92; | |
514 } | |
515 } | |
516 } | |
517 { | |
518 E T9c, T3C, Ta8, T3V, T3L, T3O, T3N, T9e, T3I, Ta5, T3M; | |
519 { | |
520 E T3R, T3U, T3T, Ta7, T3S; | |
521 { | |
522 E T3y, T3B, T3x, T3A, T9b, T3z, T3Q; | |
523 T3y = ri[WS(rs, 1)]; | |
524 T3B = ii[WS(rs, 1)]; | |
525 T3x = W[0]; | |
526 T3A = W[1]; | |
527 T3R = ri[WS(rs, 49)]; | |
528 T3U = ii[WS(rs, 49)]; | |
529 T9b = T3x * T3B; | |
530 T3z = T3x * T3y; | |
531 T3Q = W[96]; | |
532 T3T = W[97]; | |
533 T9c = FNMS(T3A, T3y, T9b); | |
534 T3C = FMA(T3A, T3B, T3z); | |
535 Ta7 = T3Q * T3U; | |
536 T3S = T3Q * T3R; | |
537 } | |
538 { | |
539 E T3E, T3H, T3D, T3G, T9d, T3F, T3K; | |
540 T3E = ri[WS(rs, 33)]; | |
541 T3H = ii[WS(rs, 33)]; | |
542 Ta8 = FNMS(T3T, T3R, Ta7); | |
543 T3V = FMA(T3T, T3U, T3S); | |
544 T3D = W[64]; | |
545 T3G = W[65]; | |
546 T3L = ri[WS(rs, 17)]; | |
547 T3O = ii[WS(rs, 17)]; | |
548 T9d = T3D * T3H; | |
549 T3F = T3D * T3E; | |
550 T3K = W[32]; | |
551 T3N = W[33]; | |
552 T9e = FNMS(T3G, T3E, T9d); | |
553 T3I = FMA(T3G, T3H, T3F); | |
554 Ta5 = T3K * T3O; | |
555 T3M = T3K * T3L; | |
556 } | |
557 } | |
558 { | |
559 E T9f, Tfr, T3J, Ta4, Ta6, T3P; | |
560 T9f = T9c - T9e; | |
561 Tfr = T9c + T9e; | |
562 T3J = T3C + T3I; | |
563 Ta4 = T3C - T3I; | |
564 Ta6 = FNMS(T3N, T3L, Ta5); | |
565 T3P = FMA(T3N, T3O, T3M); | |
566 { | |
567 E Ta9, Tfs, T9g, T3W; | |
568 Ta9 = Ta6 - Ta8; | |
569 Tfs = Ta6 + Ta8; | |
570 T9g = T3P - T3V; | |
571 T3W = T3P + T3V; | |
572 Tft = Tfr - Tfs; | |
573 ThH = Tfr + Tfs; | |
574 T9h = T9f + T9g; | |
575 Td3 = T9f - T9g; | |
576 T3X = T3J + T3W; | |
577 TfI = T3J - T3W; | |
578 Tde = Ta4 + Ta9; | |
579 Taa = Ta4 - Ta9; | |
580 } | |
581 } | |
582 } | |
583 } | |
584 { | |
585 E TaC, T69, Taw, Tga, T5X, Tar, TaA, T63; | |
586 { | |
587 E T8S, T3r, T8M, Tfk, T3f, T8H, T8Q, T3l; | |
588 { | |
589 E T8k, T8f, T8w, T8e; | |
590 { | |
591 E T8a, T2f, T8j, T2y, T2o, T2r, T2q, T8c, T2l, T8g, T2p; | |
592 { | |
593 E T2u, T2x, T2w, T8i, T2v; | |
594 { | |
595 E T2b, T2e, T2a, T2d, T89, T2c, T2t; | |
596 T2b = ri[WS(rs, 10)]; | |
597 T2e = ii[WS(rs, 10)]; | |
598 T2a = W[18]; | |
599 T2d = W[19]; | |
600 T2u = ri[WS(rs, 26)]; | |
601 T2x = ii[WS(rs, 26)]; | |
602 T89 = T2a * T2e; | |
603 T2c = T2a * T2b; | |
604 T2t = W[50]; | |
605 T2w = W[51]; | |
606 T8a = FNMS(T2d, T2b, T89); | |
607 T2f = FMA(T2d, T2e, T2c); | |
608 T8i = T2t * T2x; | |
609 T2v = T2t * T2u; | |
610 } | |
611 { | |
612 E T2h, T2k, T2g, T2j, T8b, T2i, T2n; | |
613 T2h = ri[WS(rs, 42)]; | |
614 T2k = ii[WS(rs, 42)]; | |
615 T8j = FNMS(T2w, T2u, T8i); | |
616 T2y = FMA(T2w, T2x, T2v); | |
617 T2g = W[82]; | |
618 T2j = W[83]; | |
619 T2o = ri[WS(rs, 58)]; | |
620 T2r = ii[WS(rs, 58)]; | |
621 T8b = T2g * T2k; | |
622 T2i = T2g * T2h; | |
623 T2n = W[114]; | |
624 T2q = W[115]; | |
625 T8c = FNMS(T2j, T2h, T8b); | |
626 T2l = FMA(T2j, T2k, T2i); | |
627 T8g = T2n * T2r; | |
628 T2p = T2n * T2o; | |
629 } | |
630 } | |
631 { | |
632 E T8d, Tf9, T2m, T88, T8h, T2s, Tfa, T2z; | |
633 T8d = T8a - T8c; | |
634 Tf9 = T8a + T8c; | |
635 T2m = T2f + T2l; | |
636 T88 = T2f - T2l; | |
637 T8h = FNMS(T2q, T2o, T8g); | |
638 T2s = FMA(T2q, T2r, T2p); | |
639 T8k = T8h - T8j; | |
640 Tfa = T8h + T8j; | |
641 T2z = T2s + T2y; | |
642 T8f = T2s - T2y; | |
643 T8w = T8d - T88; | |
644 T8e = T88 + T8d; | |
645 Thw = Tf9 + Tfa; | |
646 Tfb = Tf9 - Tfa; | |
647 Tf6 = T2z - T2m; | |
648 T2A = T2m + T2z; | |
649 } | |
650 } | |
651 { | |
652 E T38, T8J, T3h, T3k, T8L, T3e, T3g, T3j, T8P, T3i; | |
653 { | |
654 E T3n, T3q, T3m, T3p; | |
655 { | |
656 E T34, T37, T33, T8v, T8l, T36, T8I, T35; | |
657 T34 = ri[WS(rs, 6)]; | |
658 T37 = ii[WS(rs, 6)]; | |
659 T33 = W[10]; | |
660 T8v = T8f + T8k; | |
661 T8l = T8f - T8k; | |
662 T36 = W[11]; | |
663 T8I = T33 * T37; | |
664 T35 = T33 * T34; | |
665 T8x = T8v - T8w; | |
666 TcO = T8w + T8v; | |
667 T8m = T8e - T8l; | |
668 TcR = T8e + T8l; | |
669 T38 = FMA(T36, T37, T35); | |
670 T8J = FNMS(T36, T34, T8I); | |
671 } | |
672 T3n = ri[WS(rs, 22)]; | |
673 T3q = ii[WS(rs, 22)]; | |
674 T3m = W[42]; | |
675 T3p = W[43]; | |
676 { | |
677 E T3a, T3d, T3c, T8K, T3b, T8R, T3o, T39; | |
678 T3a = ri[WS(rs, 38)]; | |
679 T3d = ii[WS(rs, 38)]; | |
680 T8R = T3m * T3q; | |
681 T3o = T3m * T3n; | |
682 T39 = W[74]; | |
683 T3c = W[75]; | |
684 T8S = FNMS(T3p, T3n, T8R); | |
685 T3r = FMA(T3p, T3q, T3o); | |
686 T8K = T39 * T3d; | |
687 T3b = T39 * T3a; | |
688 T3h = ri[WS(rs, 54)]; | |
689 T3k = ii[WS(rs, 54)]; | |
690 T8L = FNMS(T3c, T3a, T8K); | |
691 T3e = FMA(T3c, T3d, T3b); | |
692 T3g = W[106]; | |
693 T3j = W[107]; | |
694 } | |
695 } | |
696 T8M = T8J - T8L; | |
697 Tfk = T8J + T8L; | |
698 T3f = T38 + T3e; | |
699 T8H = T38 - T3e; | |
700 T8P = T3g * T3k; | |
701 T3i = T3g * T3h; | |
702 T8Q = FNMS(T3j, T3h, T8P); | |
703 T3l = FMA(T3j, T3k, T3i); | |
704 } | |
705 } | |
706 { | |
707 E T9u, T9p, Tac, T9o; | |
708 { | |
709 E T9k, T43, T9t, T4m, T4c, T4f, T4e, T9m, T49, T9q, T4d; | |
710 { | |
711 E T4i, T4l, T4k, T9s, T4j; | |
712 { | |
713 E T3Z, T42, T3Y, T41, T9j, T40, T4h; | |
714 { | |
715 E T95, T8N, T8T, Tfl, T8O, T3s, T8U, T94; | |
716 T3Z = ri[WS(rs, 9)]; | |
717 T95 = T8M - T8H; | |
718 T8N = T8H + T8M; | |
719 T8T = T8Q - T8S; | |
720 Tfl = T8Q + T8S; | |
721 T8O = T3l - T3r; | |
722 T3s = T3l + T3r; | |
723 T42 = ii[WS(rs, 9)]; | |
724 Tfm = Tfk - Tfl; | |
725 ThC = Tfk + Tfl; | |
726 T8U = T8O - T8T; | |
727 T94 = T8O + T8T; | |
728 T3t = T3f + T3s; | |
729 Tfh = T3s - T3f; | |
730 T96 = T94 - T95; | |
731 TcV = T95 + T94; | |
732 T8V = T8N - T8U; | |
733 TcY = T8N + T8U; | |
734 T3Y = W[16]; | |
735 } | |
736 T41 = W[17]; | |
737 T4i = ri[WS(rs, 25)]; | |
738 T4l = ii[WS(rs, 25)]; | |
739 T9j = T3Y * T42; | |
740 T40 = T3Y * T3Z; | |
741 T4h = W[48]; | |
742 T4k = W[49]; | |
743 T9k = FNMS(T41, T3Z, T9j); | |
744 T43 = FMA(T41, T42, T40); | |
745 T9s = T4h * T4l; | |
746 T4j = T4h * T4i; | |
747 } | |
748 { | |
749 E T45, T48, T44, T47, T9l, T46, T4b; | |
750 T45 = ri[WS(rs, 41)]; | |
751 T48 = ii[WS(rs, 41)]; | |
752 T9t = FNMS(T4k, T4i, T9s); | |
753 T4m = FMA(T4k, T4l, T4j); | |
754 T44 = W[80]; | |
755 T47 = W[81]; | |
756 T4c = ri[WS(rs, 57)]; | |
757 T4f = ii[WS(rs, 57)]; | |
758 T9l = T44 * T48; | |
759 T46 = T44 * T45; | |
760 T4b = W[112]; | |
761 T4e = W[113]; | |
762 T9m = FNMS(T47, T45, T9l); | |
763 T49 = FMA(T47, T48, T46); | |
764 T9q = T4b * T4f; | |
765 T4d = T4b * T4c; | |
766 } | |
767 } | |
768 { | |
769 E T9n, TfJ, T4a, T9i, T9r, T4g, TfK, T4n; | |
770 T9n = T9k - T9m; | |
771 TfJ = T9k + T9m; | |
772 T4a = T43 + T49; | |
773 T9i = T43 - T49; | |
774 T9r = FNMS(T4e, T4c, T9q); | |
775 T4g = FMA(T4e, T4f, T4d); | |
776 T9u = T9r - T9t; | |
777 TfK = T9r + T9t; | |
778 T4n = T4g + T4m; | |
779 T9p = T4g - T4m; | |
780 Tac = T9n - T9i; | |
781 T9o = T9i + T9n; | |
782 ThI = TfJ + TfK; | |
783 TfL = TfJ - TfK; | |
784 Tfu = T4n - T4a; | |
785 T4o = T4a + T4n; | |
786 } | |
787 } | |
788 { | |
789 E T5Q, Tat, T5Z, T62, Tav, T5W, T5Y, T61, Taz, T60; | |
790 { | |
791 E T65, T68, T64, T67; | |
792 { | |
793 E T5M, T5P, T5L, Tab, T9v, T5O, Tas, T5N; | |
794 T5M = ri[WS(rs, 7)]; | |
795 T5P = ii[WS(rs, 7)]; | |
796 T5L = W[12]; | |
797 Tab = T9p + T9u; | |
798 T9v = T9p - T9u; | |
799 T5O = W[13]; | |
800 Tas = T5L * T5P; | |
801 T5N = T5L * T5M; | |
802 Tad = Tab - Tac; | |
803 Td4 = Tac + Tab; | |
804 T9w = T9o - T9v; | |
805 Tdf = T9o + T9v; | |
806 T5Q = FMA(T5O, T5P, T5N); | |
807 Tat = FNMS(T5O, T5M, Tas); | |
808 } | |
809 T65 = ri[WS(rs, 23)]; | |
810 T68 = ii[WS(rs, 23)]; | |
811 T64 = W[44]; | |
812 T67 = W[45]; | |
813 { | |
814 E T5S, T5V, T5U, Tau, T5T, TaB, T66, T5R; | |
815 T5S = ri[WS(rs, 39)]; | |
816 T5V = ii[WS(rs, 39)]; | |
817 TaB = T64 * T68; | |
818 T66 = T64 * T65; | |
819 T5R = W[76]; | |
820 T5U = W[77]; | |
821 TaC = FNMS(T67, T65, TaB); | |
822 T69 = FMA(T67, T68, T66); | |
823 Tau = T5R * T5V; | |
824 T5T = T5R * T5S; | |
825 T5Z = ri[WS(rs, 55)]; | |
826 T62 = ii[WS(rs, 55)]; | |
827 Tav = FNMS(T5U, T5S, Tau); | |
828 T5W = FMA(T5U, T5V, T5T); | |
829 T5Y = W[108]; | |
830 T61 = W[109]; | |
831 } | |
832 } | |
833 Taw = Tat - Tav; | |
834 Tga = Tat + Tav; | |
835 T5X = T5Q + T5W; | |
836 Tar = T5Q - T5W; | |
837 Taz = T5Y * T62; | |
838 T60 = T5Y * T5Z; | |
839 TaA = FNMS(T61, T5Z, Taz); | |
840 T63 = FMA(T61, T62, T60); | |
841 } | |
842 } | |
843 } | |
844 { | |
845 E T9E, Tda, TfE, TfB, Td9, T9L; | |
846 { | |
847 E T9T, Td7, Tfy, Tfz, Td6, Ta0; | |
848 { | |
849 E T9V, T4v, T9R, T4O, T4E, T4H, T4G, T9X, T4B, T9O, T4F; | |
850 { | |
851 E T4K, T4N, T4M, T9Q, T4L; | |
852 { | |
853 E T4r, T4u, T4q, T4t, T9U, T4s, T4J; | |
854 { | |
855 E Tbl, Tax, TaD, Tgb, Tay, T6a, TaE, Tbk; | |
856 T4r = ri[WS(rs, 5)]; | |
857 Tbl = Taw - Tar; | |
858 Tax = Tar + Taw; | |
859 TaD = TaA - TaC; | |
860 Tgb = TaA + TaC; | |
861 Tay = T63 - T69; | |
862 T6a = T63 + T69; | |
863 T4u = ii[WS(rs, 5)]; | |
864 Tgc = Tga - Tgb; | |
865 ThT = Tga + Tgb; | |
866 TaE = Tay - TaD; | |
867 Tbk = Tay + TaD; | |
868 T6b = T5X + T6a; | |
869 TfV = T6a - T5X; | |
870 Tbm = Tbk - Tbl; | |
871 Tdn = Tbl + Tbk; | |
872 TaF = Tax - TaE; | |
873 Tdy = Tax + TaE; | |
874 T4q = W[8]; | |
875 } | |
876 T4t = W[9]; | |
877 T4K = ri[WS(rs, 53)]; | |
878 T4N = ii[WS(rs, 53)]; | |
879 T9U = T4q * T4u; | |
880 T4s = T4q * T4r; | |
881 T4J = W[104]; | |
882 T4M = W[105]; | |
883 T9V = FNMS(T4t, T4r, T9U); | |
884 T4v = FMA(T4t, T4u, T4s); | |
885 T9Q = T4J * T4N; | |
886 T4L = T4J * T4K; | |
887 } | |
888 { | |
889 E T4x, T4A, T4w, T4z, T9W, T4y, T4D; | |
890 T4x = ri[WS(rs, 37)]; | |
891 T4A = ii[WS(rs, 37)]; | |
892 T9R = FNMS(T4M, T4K, T9Q); | |
893 T4O = FMA(T4M, T4N, T4L); | |
894 T4w = W[72]; | |
895 T4z = W[73]; | |
896 T4E = ri[WS(rs, 21)]; | |
897 T4H = ii[WS(rs, 21)]; | |
898 T9W = T4w * T4A; | |
899 T4y = T4w * T4x; | |
900 T4D = W[40]; | |
901 T4G = W[41]; | |
902 T9X = FNMS(T4z, T4x, T9W); | |
903 T4B = FMA(T4z, T4A, T4y); | |
904 T9O = T4D * T4H; | |
905 T4F = T4D * T4E; | |
906 } | |
907 } | |
908 { | |
909 E T9Y, Tfw, T4C, T9N, T9P, T4I; | |
910 T9Y = T9V - T9X; | |
911 Tfw = T9V + T9X; | |
912 T4C = T4v + T4B; | |
913 T9N = T4v - T4B; | |
914 T9P = FNMS(T4G, T4E, T9O); | |
915 T4I = FMA(T4G, T4H, T4F); | |
916 { | |
917 E Tfx, T9S, T9Z, T4P; | |
918 Tfx = T9P + T9R; | |
919 T9S = T9P - T9R; | |
920 T9Z = T4I - T4O; | |
921 T4P = T4I + T4O; | |
922 T9T = T9N - T9S; | |
923 Td7 = T9N + T9S; | |
924 Tfy = Tfw - Tfx; | |
925 ThN = Tfw + Tfx; | |
926 Tfz = T4C - T4P; | |
927 T4Q = T4C + T4P; | |
928 Td6 = T9Y - T9Z; | |
929 Ta0 = T9Y + T9Z; | |
930 } | |
931 } | |
932 } | |
933 { | |
934 E T9G, T4W, T9C, T5f, T55, T58, T57, T9I, T52, T9z, T56; | |
935 { | |
936 E T5b, T5e, T5d, T9B, T5c; | |
937 { | |
938 E T4S, T4V, T4R, T4U, T9F, T4T, T5a; | |
939 T4S = ri[WS(rs, 61)]; | |
940 TfN = Tfz + Tfy; | |
941 TfA = Tfy - Tfz; | |
942 Taf = FMA(KP414213562, T9T, Ta0); | |
943 Ta1 = FNMS(KP414213562, Ta0, T9T); | |
944 Td8 = FNMS(KP414213562, Td7, Td6); | |
945 Tdh = FMA(KP414213562, Td6, Td7); | |
946 T4V = ii[WS(rs, 61)]; | |
947 T4R = W[120]; | |
948 T4U = W[121]; | |
949 T5b = ri[WS(rs, 45)]; | |
950 T5e = ii[WS(rs, 45)]; | |
951 T9F = T4R * T4V; | |
952 T4T = T4R * T4S; | |
953 T5a = W[88]; | |
954 T5d = W[89]; | |
955 T9G = FNMS(T4U, T4S, T9F); | |
956 T4W = FMA(T4U, T4V, T4T); | |
957 T9B = T5a * T5e; | |
958 T5c = T5a * T5b; | |
959 } | |
960 { | |
961 E T4Y, T51, T4X, T50, T9H, T4Z, T54; | |
962 T4Y = ri[WS(rs, 29)]; | |
963 T51 = ii[WS(rs, 29)]; | |
964 T9C = FNMS(T5d, T5b, T9B); | |
965 T5f = FMA(T5d, T5e, T5c); | |
966 T4X = W[56]; | |
967 T50 = W[57]; | |
968 T55 = ri[WS(rs, 13)]; | |
969 T58 = ii[WS(rs, 13)]; | |
970 T9H = T4X * T51; | |
971 T4Z = T4X * T4Y; | |
972 T54 = W[24]; | |
973 T57 = W[25]; | |
974 T9I = FNMS(T50, T4Y, T9H); | |
975 T52 = FMA(T50, T51, T4Z); | |
976 T9z = T54 * T58; | |
977 T56 = T54 * T55; | |
978 } | |
979 } | |
980 { | |
981 E T9J, TfC, T53, T9y, T9A, T59; | |
982 T9J = T9G - T9I; | |
983 TfC = T9G + T9I; | |
984 T53 = T4W + T52; | |
985 T9y = T4W - T52; | |
986 T9A = FNMS(T57, T55, T9z); | |
987 T59 = FMA(T57, T58, T56); | |
988 { | |
989 E TfD, T9D, T9K, T5g; | |
990 TfD = T9A + T9C; | |
991 T9D = T9A - T9C; | |
992 T9K = T59 - T5f; | |
993 T5g = T59 + T5f; | |
994 T9E = T9y - T9D; | |
995 Tda = T9y + T9D; | |
996 TfE = TfC - TfD; | |
997 ThO = TfC + TfD; | |
998 TfB = T53 - T5g; | |
999 T5h = T53 + T5g; | |
1000 Td9 = T9J - T9K; | |
1001 T9L = T9J + T9K; | |
1002 } | |
1003 } | |
1004 } | |
1005 } | |
1006 { | |
1007 E Tb2, Tdq, TfZ, Tg0, Tdp, Tb9; | |
1008 { | |
1009 E Tb4, T6i, Tb0, T6B, T6r, T6u, T6t, Tb6, T6o, TaX, T6s; | |
1010 { | |
1011 E T6x, T6A, T6z, TaZ, T6y; | |
1012 { | |
1013 E T6e, T6h, T6d, T6g, Tb3, T6f, T6w; | |
1014 T6e = ri[WS(rs, 3)]; | |
1015 TfO = TfB - TfE; | |
1016 TfF = TfB + TfE; | |
1017 Tag = FNMS(KP414213562, T9E, T9L); | |
1018 T9M = FMA(KP414213562, T9L, T9E); | |
1019 Tdb = FMA(KP414213562, Tda, Td9); | |
1020 Tdi = FNMS(KP414213562, Td9, Tda); | |
1021 T6h = ii[WS(rs, 3)]; | |
1022 T6d = W[4]; | |
1023 T6g = W[5]; | |
1024 T6x = ri[WS(rs, 51)]; | |
1025 T6A = ii[WS(rs, 51)]; | |
1026 Tb3 = T6d * T6h; | |
1027 T6f = T6d * T6e; | |
1028 T6w = W[100]; | |
1029 T6z = W[101]; | |
1030 Tb4 = FNMS(T6g, T6e, Tb3); | |
1031 T6i = FMA(T6g, T6h, T6f); | |
1032 TaZ = T6w * T6A; | |
1033 T6y = T6w * T6x; | |
1034 } | |
1035 { | |
1036 E T6k, T6n, T6j, T6m, Tb5, T6l, T6q; | |
1037 T6k = ri[WS(rs, 35)]; | |
1038 T6n = ii[WS(rs, 35)]; | |
1039 Tb0 = FNMS(T6z, T6x, TaZ); | |
1040 T6B = FMA(T6z, T6A, T6y); | |
1041 T6j = W[68]; | |
1042 T6m = W[69]; | |
1043 T6r = ri[WS(rs, 19)]; | |
1044 T6u = ii[WS(rs, 19)]; | |
1045 Tb5 = T6j * T6n; | |
1046 T6l = T6j * T6k; | |
1047 T6q = W[36]; | |
1048 T6t = W[37]; | |
1049 Tb6 = FNMS(T6m, T6k, Tb5); | |
1050 T6o = FMA(T6m, T6n, T6l); | |
1051 TaX = T6q * T6u; | |
1052 T6s = T6q * T6r; | |
1053 } | |
1054 } | |
1055 { | |
1056 E Tb7, TfX, T6p, TaW, TaY, T6v; | |
1057 Tb7 = Tb4 - Tb6; | |
1058 TfX = Tb4 + Tb6; | |
1059 T6p = T6i + T6o; | |
1060 TaW = T6i - T6o; | |
1061 TaY = FNMS(T6t, T6r, TaX); | |
1062 T6v = FMA(T6t, T6u, T6s); | |
1063 { | |
1064 E TfY, Tb1, Tb8, T6C; | |
1065 TfY = TaY + Tb0; | |
1066 Tb1 = TaY - Tb0; | |
1067 Tb8 = T6v - T6B; | |
1068 T6C = T6v + T6B; | |
1069 Tb2 = TaW - Tb1; | |
1070 Tdq = TaW + Tb1; | |
1071 TfZ = TfX - TfY; | |
1072 ThY = TfX + TfY; | |
1073 Tg0 = T6p - T6C; | |
1074 T6D = T6p + T6C; | |
1075 Tdp = Tb7 - Tb8; | |
1076 Tb9 = Tb7 + Tb8; | |
1077 } | |
1078 } | |
1079 } | |
1080 { | |
1081 E TaP, T6J, TaL, T72, T6S, T6V, T6U, TaR, T6P, TaI, T6T; | |
1082 { | |
1083 E T6Y, T71, T70, TaK, T6Z; | |
1084 { | |
1085 E T6F, T6I, T6E, T6H, TaO, T6G, T6X; | |
1086 T6F = ri[WS(rs, 59)]; | |
1087 Tge = Tg0 + TfZ; | |
1088 Tg1 = TfZ - Tg0; | |
1089 Tbo = FMA(KP414213562, Tb2, Tb9); | |
1090 Tba = FNMS(KP414213562, Tb9, Tb2); | |
1091 Tdr = FNMS(KP414213562, Tdq, Tdp); | |
1092 TdA = FMA(KP414213562, Tdp, Tdq); | |
1093 T6I = ii[WS(rs, 59)]; | |
1094 T6E = W[116]; | |
1095 T6H = W[117]; | |
1096 T6Y = ri[WS(rs, 43)]; | |
1097 T71 = ii[WS(rs, 43)]; | |
1098 TaO = T6E * T6I; | |
1099 T6G = T6E * T6F; | |
1100 T6X = W[84]; | |
1101 T70 = W[85]; | |
1102 TaP = FNMS(T6H, T6F, TaO); | |
1103 T6J = FMA(T6H, T6I, T6G); | |
1104 TaK = T6X * T71; | |
1105 T6Z = T6X * T6Y; | |
1106 } | |
1107 { | |
1108 E T6L, T6O, T6K, T6N, TaQ, T6M, T6R; | |
1109 T6L = ri[WS(rs, 27)]; | |
1110 T6O = ii[WS(rs, 27)]; | |
1111 TaL = FNMS(T70, T6Y, TaK); | |
1112 T72 = FMA(T70, T71, T6Z); | |
1113 T6K = W[52]; | |
1114 T6N = W[53]; | |
1115 T6S = ri[WS(rs, 11)]; | |
1116 T6V = ii[WS(rs, 11)]; | |
1117 TaQ = T6K * T6O; | |
1118 T6M = T6K * T6L; | |
1119 T6R = W[20]; | |
1120 T6U = W[21]; | |
1121 TaR = FNMS(T6N, T6L, TaQ); | |
1122 T6P = FMA(T6N, T6O, T6M); | |
1123 TaI = T6R * T6V; | |
1124 T6T = T6R * T6S; | |
1125 } | |
1126 } | |
1127 { | |
1128 E TaS, Tg3, T6Q, TaH, TaJ, T6W; | |
1129 TaS = TaP - TaR; | |
1130 Tg3 = TaP + TaR; | |
1131 T6Q = T6J + T6P; | |
1132 TaH = T6J - T6P; | |
1133 TaJ = FNMS(T6U, T6S, TaI); | |
1134 T6W = FMA(T6U, T6V, T6T); | |
1135 { | |
1136 E Tg4, TaM, TaT, T73; | |
1137 Tg4 = TaJ + TaL; | |
1138 TaM = TaJ - TaL; | |
1139 TaT = T6W - T72; | |
1140 T73 = T6W + T72; | |
1141 TaN = TaH - TaM; | |
1142 Tdt = TaH + TaM; | |
1143 Tg5 = Tg3 - Tg4; | |
1144 ThZ = Tg3 + Tg4; | |
1145 Tg2 = T6Q - T73; | |
1146 T74 = T6Q + T73; | |
1147 Tds = TaS - TaT; | |
1148 TaU = TaS + TaT; | |
1149 } | |
1150 } | |
1151 } | |
1152 } | |
1153 } | |
1154 } | |
1155 { | |
1156 E Tgf, Tg6, Tbp, TaV, Tdu, TdB, Tje, Tjd, TjO, TjN; | |
1157 { | |
1158 E Thq, Tj7, Thy, ThA, Tht, Tj8, Thx, ThD, ThX, ThV, ThU, Ti0, ThM, ThK, ThJ; | |
1159 E ThP, TiI, TiZ, TiL, Tj0; | |
1160 { | |
1161 E Tio, T1I, Tj1, T3v, Tj2, TiX, TiN, Tir, T76, TiK, TiC, TiG, T5j, Tit, Tiw; | |
1162 E TiJ; | |
1163 { | |
1164 E TiO, TiW, Tip, Tiq; | |
1165 { | |
1166 E TO, T1H, T2B, T3u; | |
1167 Thq = Tm - TN; | |
1168 TO = Tm + TN; | |
1169 Tgf = Tg2 - Tg5; | |
1170 Tg6 = Tg2 + Tg5; | |
1171 Tbp = FNMS(KP414213562, TaN, TaU); | |
1172 TaV = FMA(KP414213562, TaU, TaN); | |
1173 Tdu = FMA(KP414213562, Tdt, Tds); | |
1174 TdB = FNMS(KP414213562, Tds, Tdt); | |
1175 T1H = T1f + T1G; | |
1176 Tj7 = T1G - T1f; | |
1177 Thy = T29 - T2A; | |
1178 T2B = T29 + T2A; | |
1179 T3u = T32 + T3t; | |
1180 ThA = T32 - T3t; | |
1181 Tht = Thr - Ths; | |
1182 TiO = Thr + Ths; | |
1183 Tio = TO - T1H; | |
1184 T1I = TO + T1H; | |
1185 Tj1 = T3u - T2B; | |
1186 T3v = T2B + T3u; | |
1187 TiW = TiP + TiV; | |
1188 Tj8 = TiV - TiP; | |
1189 } | |
1190 Thx = Thv - Thw; | |
1191 Tip = Thv + Thw; | |
1192 Tiq = ThB + ThC; | |
1193 ThD = ThB - ThC; | |
1194 { | |
1195 E T6c, T75, Tiz, TiA; | |
1196 ThX = T5K - T6b; | |
1197 T6c = T5K + T6b; | |
1198 Tj2 = TiW - TiO; | |
1199 TiX = TiO + TiW; | |
1200 TiN = Tip + Tiq; | |
1201 Tir = Tip - Tiq; | |
1202 T75 = T6D + T74; | |
1203 ThV = T74 - T6D; | |
1204 ThU = ThS - ThT; | |
1205 Tiz = ThS + ThT; | |
1206 TiA = ThY + ThZ; | |
1207 Ti0 = ThY - ThZ; | |
1208 { | |
1209 E T4p, Tiy, TiB, T5i, Tiu, Tiv; | |
1210 ThM = T3X - T4o; | |
1211 T4p = T3X + T4o; | |
1212 T76 = T6c + T75; | |
1213 Tiy = T6c - T75; | |
1214 TiK = Tiz + TiA; | |
1215 TiB = Tiz - TiA; | |
1216 T5i = T4Q + T5h; | |
1217 ThK = T5h - T4Q; | |
1218 ThJ = ThH - ThI; | |
1219 Tiu = ThH + ThI; | |
1220 Tiv = ThN + ThO; | |
1221 ThP = ThN - ThO; | |
1222 TiC = Tiy - TiB; | |
1223 TiG = Tiy + TiB; | |
1224 T5j = T4p + T5i; | |
1225 Tit = T4p - T5i; | |
1226 Tiw = Tiu - Tiv; | |
1227 TiJ = Tiu + Tiv; | |
1228 } | |
1229 } | |
1230 } | |
1231 { | |
1232 E TiE, Tis, TiD, Tj6, Tj5, Tj3, Tj4, TiH; | |
1233 { | |
1234 E T3w, TiF, Tix, T77, TiM, TiY; | |
1235 TiI = T1I - T3v; | |
1236 T3w = T1I + T3v; | |
1237 TiF = Tiw - Tit; | |
1238 Tix = Tit + Tiw; | |
1239 T77 = T5j + T76; | |
1240 TiZ = T76 - T5j; | |
1241 TiL = TiJ - TiK; | |
1242 TiM = TiJ + TiK; | |
1243 TiY = TiN + TiX; | |
1244 Tj0 = TiX - TiN; | |
1245 TiE = Tio - Tir; | |
1246 Tis = Tio + Tir; | |
1247 ri[0] = T3w + T77; | |
1248 ri[WS(rs, 32)] = T3w - T77; | |
1249 ii[WS(rs, 32)] = TiY - TiM; | |
1250 ii[0] = TiM + TiY; | |
1251 TiD = Tix + TiC; | |
1252 Tj6 = TiC - Tix; | |
1253 Tj5 = Tj2 - Tj1; | |
1254 Tj3 = Tj1 + Tj2; | |
1255 Tj4 = TiF + TiG; | |
1256 TiH = TiF - TiG; | |
1257 } | |
1258 ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis); | |
1259 ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis); | |
1260 ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3); | |
1261 ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3); | |
1262 ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE); | |
1263 ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE); | |
1264 ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5); | |
1265 ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5); | |
1266 } | |
1267 } | |
1268 { | |
1269 E Ti8, Thu, Tjf, Tj9, Tib, Tjg, Tja, ThF, Tih, ThW, Tif, Til, Ti5, ThR; | |
1270 ri[WS(rs, 16)] = TiI + TiL; | |
1271 ri[WS(rs, 48)] = TiI - TiL; | |
1272 ii[WS(rs, 48)] = Tj0 - TiZ; | |
1273 ii[WS(rs, 16)] = TiZ + Tj0; | |
1274 Ti8 = Thq + Tht; | |
1275 Thu = Thq - Tht; | |
1276 Tjf = Tj8 - Tj7; | |
1277 Tj9 = Tj7 + Tj8; | |
1278 { | |
1279 E Tie, ThL, Tid, ThQ; | |
1280 { | |
1281 E Ti9, Thz, Tia, ThE; | |
1282 Ti9 = Thy + Thx; | |
1283 Thz = Thx - Thy; | |
1284 Tia = ThA - ThD; | |
1285 ThE = ThA + ThD; | |
1286 Tib = Ti9 + Tia; | |
1287 Tjg = Tia - Ti9; | |
1288 Tja = Thz + ThE; | |
1289 ThF = Thz - ThE; | |
1290 Tie = ThJ + ThK; | |
1291 ThL = ThJ - ThK; | |
1292 } | |
1293 Tid = ThM + ThP; | |
1294 ThQ = ThM - ThP; | |
1295 Tih = ThU + ThV; | |
1296 ThW = ThU - ThV; | |
1297 Tif = FMA(KP414213562, Tie, Tid); | |
1298 Til = FNMS(KP414213562, Tid, Tie); | |
1299 Ti5 = FNMS(KP414213562, ThL, ThQ); | |
1300 ThR = FMA(KP414213562, ThQ, ThL); | |
1301 } | |
1302 { | |
1303 E Ti4, ThG, Tjh, Tjj, Tig, Ti1; | |
1304 Ti4 = FNMS(KP707106781, ThF, Thu); | |
1305 ThG = FMA(KP707106781, ThF, Thu); | |
1306 Tjh = FMA(KP707106781, Tjg, Tjf); | |
1307 Tjj = FNMS(KP707106781, Tjg, Tjf); | |
1308 Tig = ThX + Ti0; | |
1309 Ti1 = ThX - Ti0; | |
1310 { | |
1311 E Tik, Tjb, Tjc, Tin; | |
1312 { | |
1313 E Tic, Tim, Ti6, Ti2, Tij, Tii; | |
1314 Tik = FNMS(KP707106781, Tib, Ti8); | |
1315 Tic = FMA(KP707106781, Tib, Ti8); | |
1316 Tii = FNMS(KP414213562, Tih, Tig); | |
1317 Tim = FMA(KP414213562, Tig, Tih); | |
1318 Ti6 = FMA(KP414213562, ThW, Ti1); | |
1319 Ti2 = FNMS(KP414213562, Ti1, ThW); | |
1320 Tij = Tif + Tii; | |
1321 Tje = Tii - Tif; | |
1322 Tjd = FNMS(KP707106781, Tja, Tj9); | |
1323 Tjb = FMA(KP707106781, Tja, Tj9); | |
1324 { | |
1325 E Ti7, Tji, Tjk, Ti3; | |
1326 Ti7 = Ti5 + Ti6; | |
1327 Tji = Ti6 - Ti5; | |
1328 Tjk = ThR + Ti2; | |
1329 Ti3 = ThR - Ti2; | |
1330 ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic); | |
1331 ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic); | |
1332 ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4); | |
1333 ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4); | |
1334 ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh); | |
1335 ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh); | |
1336 ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj); | |
1337 ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj); | |
1338 ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG); | |
1339 ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG); | |
1340 Tjc = Til + Tim; | |
1341 Tin = Til - Tim; | |
1342 } | |
1343 } | |
1344 ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb); | |
1345 ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb); | |
1346 ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik); | |
1347 ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik); | |
1348 } | |
1349 } | |
1350 } | |
1351 } | |
1352 { | |
1353 E TjD, TjJ, Tgo, Tf2, Tjp, Tjv, Tha, TgI, Tgd, Tgr, Tjw, Tjq, Tfp, Tgg, Thk; | |
1354 E Tho, Th8, Th4, Tgv, TgB, Tgl, TfR, TjE, Thd, TjK, TgP, Tgx, Tg8, Thh, Thn; | |
1355 E Th7, TgX; | |
1356 { | |
1357 E TgJ, TgK, TgM, TgN, Tg7, TfW, Th1, Thj, Th0, Th2; | |
1358 { | |
1359 E TgE, TeQ, TjB, Tjn, TgF, TgG, TjC, Tf1, TeV, Tf0; | |
1360 TgE = TeM - TeP; | |
1361 TeQ = TeM + TeP; | |
1362 TjB = Tjm - Tjl; | |
1363 Tjn = Tjl + Tjm; | |
1364 TgF = TeU - TeR; | |
1365 TeV = TeR + TeU; | |
1366 ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd); | |
1367 ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd); | |
1368 Tf0 = TeW - TeZ; | |
1369 TgG = TeW + TeZ; | |
1370 TjC = Tf0 - TeV; | |
1371 Tf1 = TeV + Tf0; | |
1372 { | |
1373 E Tfi, Tgp, Tfd, Tfn; | |
1374 { | |
1375 E Tf7, Tjo, TgH, Tfc; | |
1376 TgJ = Tf5 - Tf6; | |
1377 Tf7 = Tf5 + Tf6; | |
1378 TjD = FMA(KP707106781, TjC, TjB); | |
1379 TjJ = FNMS(KP707106781, TjC, TjB); | |
1380 Tgo = FMA(KP707106781, Tf1, TeQ); | |
1381 Tf2 = FNMS(KP707106781, Tf1, TeQ); | |
1382 Tjo = TgF + TgG; | |
1383 TgH = TgF - TgG; | |
1384 Tfc = Tf8 + Tfb; | |
1385 TgK = Tf8 - Tfb; | |
1386 TgM = Tfg - Tfh; | |
1387 Tfi = Tfg + Tfh; | |
1388 Tjp = FMA(KP707106781, Tjo, Tjn); | |
1389 Tjv = FNMS(KP707106781, Tjo, Tjn); | |
1390 Tha = FNMS(KP707106781, TgH, TgE); | |
1391 TgI = FMA(KP707106781, TgH, TgE); | |
1392 Tgp = FMA(KP414213562, Tf7, Tfc); | |
1393 Tfd = FNMS(KP414213562, Tfc, Tf7); | |
1394 Tfn = Tfj + Tfm; | |
1395 TgN = Tfj - Tfm; | |
1396 } | |
1397 { | |
1398 E TgY, TgZ, Tgq, Tfo; | |
1399 Tgd = Tg9 + Tgc; | |
1400 TgY = Tg9 - Tgc; | |
1401 TgZ = Tg6 - Tg1; | |
1402 Tg7 = Tg1 + Tg6; | |
1403 TfW = TfU + TfV; | |
1404 Th1 = TfU - TfV; | |
1405 Tgq = FNMS(KP414213562, Tfi, Tfn); | |
1406 Tfo = FMA(KP414213562, Tfn, Tfi); | |
1407 Thj = FMA(KP707106781, TgZ, TgY); | |
1408 Th0 = FNMS(KP707106781, TgZ, TgY); | |
1409 Tgr = Tgp + Tgq; | |
1410 Tjw = Tgq - Tgp; | |
1411 Tjq = Tfd + Tfo; | |
1412 Tfp = Tfd - Tfo; | |
1413 Th2 = Tge - Tgf; | |
1414 Tgg = Tge + Tgf; | |
1415 } | |
1416 } | |
1417 } | |
1418 { | |
1419 E TgU, TgS, TgR, TgV, Thb, TgL; | |
1420 { | |
1421 E TfM, Tgu, TfH, TfP, Tgt, TfQ; | |
1422 { | |
1423 E Tfv, TfG, Thi, Th3; | |
1424 TgU = Tft - Tfu; | |
1425 Tfv = Tft + Tfu; | |
1426 TfG = TfA + TfF; | |
1427 TgS = TfF - TfA; | |
1428 TgR = TfI - TfL; | |
1429 TfM = TfI + TfL; | |
1430 Thi = FMA(KP707106781, Th2, Th1); | |
1431 Th3 = FNMS(KP707106781, Th2, Th1); | |
1432 Tgu = FMA(KP707106781, TfG, Tfv); | |
1433 TfH = FNMS(KP707106781, TfG, Tfv); | |
1434 Thk = FNMS(KP198912367, Thj, Thi); | |
1435 Tho = FMA(KP198912367, Thi, Thj); | |
1436 Th8 = FMA(KP668178637, Th0, Th3); | |
1437 Th4 = FNMS(KP668178637, Th3, Th0); | |
1438 TfP = TfN + TfO; | |
1439 TgV = TfN - TfO; | |
1440 } | |
1441 Tgt = FMA(KP707106781, TfP, TfM); | |
1442 TfQ = FNMS(KP707106781, TfP, TfM); | |
1443 Thb = FNMS(KP414213562, TgJ, TgK); | |
1444 TgL = FMA(KP414213562, TgK, TgJ); | |
1445 Tgv = FMA(KP198912367, Tgu, Tgt); | |
1446 TgB = FNMS(KP198912367, Tgt, Tgu); | |
1447 Tgl = FNMS(KP668178637, TfH, TfQ); | |
1448 TfR = FMA(KP668178637, TfQ, TfH); | |
1449 } | |
1450 { | |
1451 E Thg, TgT, Thc, TgO, Thf, TgW; | |
1452 Thc = FMA(KP414213562, TgM, TgN); | |
1453 TgO = FNMS(KP414213562, TgN, TgM); | |
1454 Thg = FMA(KP707106781, TgS, TgR); | |
1455 TgT = FNMS(KP707106781, TgS, TgR); | |
1456 TjE = Thc - Thb; | |
1457 Thd = Thb + Thc; | |
1458 TjK = TgL + TgO; | |
1459 TgP = TgL - TgO; | |
1460 Thf = FMA(KP707106781, TgV, TgU); | |
1461 TgW = FNMS(KP707106781, TgV, TgU); | |
1462 Tgx = FMA(KP707106781, Tg7, TfW); | |
1463 Tg8 = FNMS(KP707106781, Tg7, TfW); | |
1464 Thh = FMA(KP198912367, Thg, Thf); | |
1465 Thn = FNMS(KP198912367, Thf, Thg); | |
1466 Th7 = FNMS(KP668178637, TgT, TgW); | |
1467 TgX = FMA(KP668178637, TgW, TgT); | |
1468 } | |
1469 } | |
1470 } | |
1471 { | |
1472 E Tju, Tjt, TjI, TjH; | |
1473 { | |
1474 E Tgk, Tfq, Tjx, Tjz, Tgw, Tgh; | |
1475 Tgk = FNMS(KP923879532, Tfp, Tf2); | |
1476 Tfq = FMA(KP923879532, Tfp, Tf2); | |
1477 Tjx = FMA(KP923879532, Tjw, Tjv); | |
1478 Tjz = FNMS(KP923879532, Tjw, Tjv); | |
1479 Tgw = FMA(KP707106781, Tgg, Tgd); | |
1480 Tgh = FNMS(KP707106781, Tgg, Tgd); | |
1481 { | |
1482 E TgA, Tjr, Tjs, TgD; | |
1483 { | |
1484 E Tgs, TgC, Tgm, Tgi, Tgz, Tgy; | |
1485 TgA = FNMS(KP923879532, Tgr, Tgo); | |
1486 Tgs = FMA(KP923879532, Tgr, Tgo); | |
1487 Tgy = FNMS(KP198912367, Tgx, Tgw); | |
1488 TgC = FMA(KP198912367, Tgw, Tgx); | |
1489 Tgm = FMA(KP668178637, Tg8, Tgh); | |
1490 Tgi = FNMS(KP668178637, Tgh, Tg8); | |
1491 Tgz = Tgv + Tgy; | |
1492 Tju = Tgy - Tgv; | |
1493 Tjt = FNMS(KP923879532, Tjq, Tjp); | |
1494 Tjr = FMA(KP923879532, Tjq, Tjp); | |
1495 { | |
1496 E Tgn, Tjy, TjA, Tgj; | |
1497 Tgn = Tgl + Tgm; | |
1498 Tjy = Tgm - Tgl; | |
1499 TjA = TfR + Tgi; | |
1500 Tgj = TfR - Tgi; | |
1501 ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs); | |
1502 ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs); | |
1503 ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk); | |
1504 ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk); | |
1505 ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx); | |
1506 ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx); | |
1507 ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz); | |
1508 ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz); | |
1509 ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq); | |
1510 ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq); | |
1511 Tjs = TgB + TgC; | |
1512 TgD = TgB - TgC; | |
1513 } | |
1514 } | |
1515 ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr); | |
1516 ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr); | |
1517 ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA); | |
1518 ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA); | |
1519 } | |
1520 } | |
1521 { | |
1522 E Th6, TjF, TjG, Th9, TgQ, Th5; | |
1523 Th6 = FNMS(KP923879532, TgP, TgI); | |
1524 TgQ = FMA(KP923879532, TgP, TgI); | |
1525 Th5 = TgX + Th4; | |
1526 TjI = Th4 - TgX; | |
1527 TjH = FNMS(KP923879532, TjE, TjD); | |
1528 TjF = FMA(KP923879532, TjE, TjD); | |
1529 ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt); | |
1530 ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt); | |
1531 ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ); | |
1532 ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ); | |
1533 TjG = Th7 + Th8; | |
1534 Th9 = Th7 - Th8; | |
1535 ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF); | |
1536 ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF); | |
1537 ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6); | |
1538 ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6); | |
1539 } | |
1540 { | |
1541 E Thm, TjL, TjM, Thp, The, Thl; | |
1542 Thm = FMA(KP923879532, Thd, Tha); | |
1543 The = FNMS(KP923879532, Thd, Tha); | |
1544 Thl = Thh - Thk; | |
1545 TjO = Thh + Thk; | |
1546 TjN = FMA(KP923879532, TjK, TjJ); | |
1547 TjL = FNMS(KP923879532, TjK, TjJ); | |
1548 ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH); | |
1549 ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH); | |
1550 ri[WS(rs, 14)] = FMA(KP980785280, Thl, The); | |
1551 ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The); | |
1552 TjM = Tho - Thn; | |
1553 Thp = Thn + Tho; | |
1554 ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL); | |
1555 ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL); | |
1556 ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm); | |
1557 ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm); | |
1558 } | |
1559 } | |
1560 } | |
1561 { | |
1562 E TjS, TcD, Tcw, TkO, TkN, Tcz; | |
1563 { | |
1564 E TbB, Tkw, Tkq, T99, TbF, TbL, Tbv, Taj, Tcu, Tcy, Tci, Tce, Tcr, Tcx, Tch; | |
1565 E Tc7, TkE, Tcn, TkK, TbZ, TbP, T7J, TbO, T7u, TkB, Tkn, TbI, TbM, Tbw, Tbs; | |
1566 E T7Y, TbQ; | |
1567 { | |
1568 E TbT, TbU, TbW, TbX, Tc4, Tc2, Tc1, Tc5, Tbn, Tbb, TaG, Tcb, Tct, Tca, Tcc; | |
1569 E Tbq, Tcl, TbV; | |
1570 { | |
1571 E T8W, Tbz, T8z, T97, T8n, T8y; | |
1572 TbT = FMA(KP707106781, T8m, T87); | |
1573 T8n = FNMS(KP707106781, T8m, T87); | |
1574 T8y = FNMS(KP707106781, T8x, T8u); | |
1575 TbU = FMA(KP707106781, T8x, T8u); | |
1576 TbW = FMA(KP707106781, T8V, T8G); | |
1577 T8W = FNMS(KP707106781, T8V, T8G); | |
1578 ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN); | |
1579 ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN); | |
1580 Tbz = FMA(KP668178637, T8n, T8y); | |
1581 T8z = FNMS(KP668178637, T8y, T8n); | |
1582 T97 = FNMS(KP707106781, T96, T93); | |
1583 TbX = FMA(KP707106781, T96, T93); | |
1584 { | |
1585 E Tae, TbE, Ta3, Tah; | |
1586 { | |
1587 E T9x, Ta2, TbA, T98; | |
1588 Tc4 = FMA(KP707106781, T9w, T9h); | |
1589 T9x = FNMS(KP707106781, T9w, T9h); | |
1590 Ta2 = T9M - Ta1; | |
1591 Tc2 = Ta1 + T9M; | |
1592 Tc1 = FMA(KP707106781, Tad, Taa); | |
1593 Tae = FNMS(KP707106781, Tad, Taa); | |
1594 TbA = FNMS(KP668178637, T8W, T97); | |
1595 T98 = FMA(KP668178637, T97, T8W); | |
1596 TbE = FMA(KP923879532, Ta2, T9x); | |
1597 Ta3 = FNMS(KP923879532, Ta2, T9x); | |
1598 TbB = Tbz + TbA; | |
1599 Tkw = TbA - Tbz; | |
1600 Tkq = T8z + T98; | |
1601 T99 = T8z - T98; | |
1602 Tah = Taf - Tag; | |
1603 Tc5 = Taf + Tag; | |
1604 } | |
1605 { | |
1606 E Tc8, Tc9, TbD, Tai; | |
1607 Tbn = FNMS(KP707106781, Tbm, Tbj); | |
1608 Tc8 = FMA(KP707106781, Tbm, Tbj); | |
1609 Tc9 = Tba + TaV; | |
1610 Tbb = TaV - Tba; | |
1611 TaG = FNMS(KP707106781, TaF, Taq); | |
1612 Tcb = FMA(KP707106781, TaF, Taq); | |
1613 TbD = FMA(KP923879532, Tah, Tae); | |
1614 Tai = FNMS(KP923879532, Tah, Tae); | |
1615 Tct = FMA(KP923879532, Tc9, Tc8); | |
1616 Tca = FNMS(KP923879532, Tc9, Tc8); | |
1617 TbF = FMA(KP303346683, TbE, TbD); | |
1618 TbL = FNMS(KP303346683, TbD, TbE); | |
1619 Tbv = FNMS(KP534511135, Ta3, Tai); | |
1620 Taj = FMA(KP534511135, Tai, Ta3); | |
1621 Tcc = Tbo + Tbp; | |
1622 Tbq = Tbo - Tbp; | |
1623 } | |
1624 } | |
1625 } | |
1626 { | |
1627 E Tcq, Tc3, Tcs, Tcd, Tcp, Tc6; | |
1628 Tcs = FMA(KP923879532, Tcc, Tcb); | |
1629 Tcd = FNMS(KP923879532, Tcc, Tcb); | |
1630 Tcq = FMA(KP923879532, Tc2, Tc1); | |
1631 Tc3 = FNMS(KP923879532, Tc2, Tc1); | |
1632 Tcu = FNMS(KP098491403, Tct, Tcs); | |
1633 Tcy = FMA(KP098491403, Tcs, Tct); | |
1634 Tci = FMA(KP820678790, Tca, Tcd); | |
1635 Tce = FNMS(KP820678790, Tcd, Tca); | |
1636 Tcp = FMA(KP923879532, Tc5, Tc4); | |
1637 Tc6 = FNMS(KP923879532, Tc5, Tc4); | |
1638 Tcl = FNMS(KP198912367, TbT, TbU); | |
1639 TbV = FMA(KP198912367, TbU, TbT); | |
1640 Tcr = FMA(KP098491403, Tcq, Tcp); | |
1641 Tcx = FNMS(KP098491403, Tcp, Tcq); | |
1642 Tch = FNMS(KP820678790, Tc3, Tc6); | |
1643 Tc7 = FMA(KP820678790, Tc6, Tc3); | |
1644 } | |
1645 { | |
1646 E TbH, Tbc, Tcm, TbY; | |
1647 Tcm = FMA(KP198912367, TbW, TbX); | |
1648 TbY = FNMS(KP198912367, TbX, TbW); | |
1649 TbH = FMA(KP923879532, Tbb, TaG); | |
1650 Tbc = FNMS(KP923879532, Tbb, TaG); | |
1651 TkE = Tcm - Tcl; | |
1652 Tcn = Tcl + Tcm; | |
1653 TkK = TbV + TbY; | |
1654 TbZ = TbV - TbY; | |
1655 { | |
1656 E T7t, Tkm, TbG, Tbr; | |
1657 TjS = T7l + T7s; | |
1658 T7t = T7l - T7s; | |
1659 Tkm = TcC - TcB; | |
1660 TcD = TcB + TcC; | |
1661 TbP = FNMS(KP414213562, T7B, T7I); | |
1662 T7J = FMA(KP414213562, T7I, T7B); | |
1663 TbG = FMA(KP923879532, Tbq, Tbn); | |
1664 Tbr = FNMS(KP923879532, Tbq, Tbn); | |
1665 TbO = FNMS(KP707106781, T7t, T7e); | |
1666 T7u = FMA(KP707106781, T7t, T7e); | |
1667 TkB = FNMS(KP707106781, Tkm, Tkl); | |
1668 Tkn = FMA(KP707106781, Tkm, Tkl); | |
1669 TbI = FNMS(KP303346683, TbH, TbG); | |
1670 TbM = FMA(KP303346683, TbG, TbH); | |
1671 Tbw = FMA(KP534511135, Tbc, Tbr); | |
1672 Tbs = FNMS(KP534511135, Tbr, Tbc); | |
1673 T7Y = FNMS(KP414213562, T7X, T7Q); | |
1674 TbQ = FMA(KP414213562, T7Q, T7X); | |
1675 } | |
1676 } | |
1677 } | |
1678 { | |
1679 E TkJ, TkD, Tck, TbS, TbK, Tku, Tkt, TbN; | |
1680 { | |
1681 E TkA, Tby, Tkp, Tbu, Tkz, Tbx; | |
1682 { | |
1683 E Tbt, T9a, Tkx, Tky, Tkv; | |
1684 TkA = Taj + Tbs; | |
1685 Tbt = Taj - Tbs; | |
1686 { | |
1687 E TkC, T7Z, Tko, TbR, T80; | |
1688 TkC = T7J + T7Y; | |
1689 T7Z = T7J - T7Y; | |
1690 Tko = TbQ - TbP; | |
1691 TbR = TbP + TbQ; | |
1692 TkJ = FMA(KP923879532, TkC, TkB); | |
1693 TkD = FNMS(KP923879532, TkC, TkB); | |
1694 Tby = FMA(KP923879532, T7Z, T7u); | |
1695 T80 = FNMS(KP923879532, T7Z, T7u); | |
1696 Tkv = FNMS(KP923879532, Tko, Tkn); | |
1697 Tkp = FMA(KP923879532, Tko, Tkn); | |
1698 Tck = FMA(KP923879532, TbR, TbO); | |
1699 TbS = FNMS(KP923879532, TbR, TbO); | |
1700 T9a = FMA(KP831469612, T99, T80); | |
1701 Tbu = FNMS(KP831469612, T99, T80); | |
1702 } | |
1703 Tkz = FNMS(KP831469612, Tkw, Tkv); | |
1704 Tkx = FMA(KP831469612, Tkw, Tkv); | |
1705 Tky = Tbw - Tbv; | |
1706 Tbx = Tbv + Tbw; | |
1707 ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a); | |
1708 ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a); | |
1709 ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx); | |
1710 ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx); | |
1711 } | |
1712 { | |
1713 E TbC, TbJ, Tkr, Tks; | |
1714 TbK = FNMS(KP831469612, TbB, Tby); | |
1715 TbC = FMA(KP831469612, TbB, Tby); | |
1716 ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu); | |
1717 ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu); | |
1718 ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz); | |
1719 ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz); | |
1720 TbJ = TbF + TbI; | |
1721 Tku = TbI - TbF; | |
1722 Tkt = FNMS(KP831469612, Tkq, Tkp); | |
1723 Tkr = FMA(KP831469612, Tkq, Tkp); | |
1724 Tks = TbL + TbM; | |
1725 TbN = TbL - TbM; | |
1726 ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC); | |
1727 ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC); | |
1728 ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr); | |
1729 ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr); | |
1730 } | |
1731 } | |
1732 { | |
1733 E Tcg, TkI, TkH, Tcj; | |
1734 { | |
1735 E Tc0, Tcf, TkF, TkG; | |
1736 Tcg = FNMS(KP980785280, TbZ, TbS); | |
1737 Tc0 = FMA(KP980785280, TbZ, TbS); | |
1738 ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK); | |
1739 ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK); | |
1740 ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt); | |
1741 ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt); | |
1742 Tcf = Tc7 + Tce; | |
1743 TkI = Tce - Tc7; | |
1744 TkH = FNMS(KP980785280, TkE, TkD); | |
1745 TkF = FMA(KP980785280, TkE, TkD); | |
1746 TkG = Tch + Tci; | |
1747 Tcj = Tch - Tci; | |
1748 ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0); | |
1749 ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0); | |
1750 ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF); | |
1751 ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF); | |
1752 } | |
1753 { | |
1754 E Tco, Tcv, TkL, TkM; | |
1755 Tcw = FMA(KP980785280, Tcn, Tck); | |
1756 Tco = FNMS(KP980785280, Tcn, Tck); | |
1757 ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg); | |
1758 ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg); | |
1759 ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH); | |
1760 ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH); | |
1761 Tcv = Tcr - Tcu; | |
1762 TkO = Tcr + Tcu; | |
1763 TkN = FMA(KP980785280, TkK, TkJ); | |
1764 TkL = FNMS(KP980785280, TkK, TkJ); | |
1765 TkM = Tcy - Tcx; | |
1766 Tcz = Tcx + Tcy; | |
1767 ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco); | |
1768 ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco); | |
1769 ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL); | |
1770 ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL); | |
1771 } | |
1772 } | |
1773 } | |
1774 } | |
1775 { | |
1776 E TdN, Tk2, TjW, Td1, TdR, TdX, TdH, Tdl, TeG, TeK, Teu, Teq, TeD, TeJ, Tet; | |
1777 E Tej, Tka, Tez, Tkg, Teb, Te1, TcH, Te0, TcE, Tk7, TjT, TdU, TdY, TdI, TdE; | |
1778 E TcK, Te2; | |
1779 { | |
1780 E Te5, Te6, Te8, Te9, Teg, Tee, Ted, Teh, Tdz, Tdv, Tdo, Ten, TeF, Tem, Teo; | |
1781 E TdC, Tex, Te7; | |
1782 { | |
1783 E TcP, TcS, TcW, TcZ; | |
1784 Te5 = FNMS(KP707106781, TcO, TcN); | |
1785 TcP = FMA(KP707106781, TcO, TcN); | |
1786 ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw); | |
1787 ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw); | |
1788 ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN); | |
1789 ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN); | |
1790 TcS = FMA(KP707106781, TcR, TcQ); | |
1791 Te6 = FNMS(KP707106781, TcR, TcQ); | |
1792 Te8 = FNMS(KP707106781, TcV, TcU); | |
1793 TcW = FMA(KP707106781, TcV, TcU); | |
1794 TcZ = FMA(KP707106781, TcY, TcX); | |
1795 Te9 = FNMS(KP707106781, TcY, TcX); | |
1796 { | |
1797 E Tdg, TdQ, Tdd, Tdj; | |
1798 { | |
1799 E Td5, TdL, TcT, TdM, Td0, Tdc; | |
1800 Teg = FNMS(KP707106781, Td4, Td3); | |
1801 Td5 = FMA(KP707106781, Td4, Td3); | |
1802 TdL = FMA(KP198912367, TcP, TcS); | |
1803 TcT = FNMS(KP198912367, TcS, TcP); | |
1804 TdM = FNMS(KP198912367, TcW, TcZ); | |
1805 Td0 = FMA(KP198912367, TcZ, TcW); | |
1806 Tdc = Td8 + Tdb; | |
1807 Tee = Tdb - Td8; | |
1808 Ted = FNMS(KP707106781, Tdf, Tde); | |
1809 Tdg = FMA(KP707106781, Tdf, Tde); | |
1810 TdN = TdL + TdM; | |
1811 Tk2 = TdM - TdL; | |
1812 TjW = TcT + Td0; | |
1813 Td1 = TcT - Td0; | |
1814 TdQ = FMA(KP923879532, Tdc, Td5); | |
1815 Tdd = FNMS(KP923879532, Tdc, Td5); | |
1816 Tdj = Tdh + Tdi; | |
1817 Teh = Tdh - Tdi; | |
1818 } | |
1819 { | |
1820 E Tek, Tel, TdP, Tdk; | |
1821 Tdz = FMA(KP707106781, Tdy, Tdx); | |
1822 Tek = FNMS(KP707106781, Tdy, Tdx); | |
1823 Tel = Tdu - Tdr; | |
1824 Tdv = Tdr + Tdu; | |
1825 Tdo = FMA(KP707106781, Tdn, Tdm); | |
1826 Ten = FNMS(KP707106781, Tdn, Tdm); | |
1827 TdP = FMA(KP923879532, Tdj, Tdg); | |
1828 Tdk = FNMS(KP923879532, Tdj, Tdg); | |
1829 TeF = FMA(KP923879532, Tel, Tek); | |
1830 Tem = FNMS(KP923879532, Tel, Tek); | |
1831 TdR = FMA(KP098491403, TdQ, TdP); | |
1832 TdX = FNMS(KP098491403, TdP, TdQ); | |
1833 TdH = FNMS(KP820678790, Tdd, Tdk); | |
1834 Tdl = FMA(KP820678790, Tdk, Tdd); | |
1835 Teo = TdA - TdB; | |
1836 TdC = TdA + TdB; | |
1837 } | |
1838 } | |
1839 } | |
1840 { | |
1841 E TeC, Tef, TeE, Tep, TeB, Tei; | |
1842 TeE = FMA(KP923879532, Teo, Ten); | |
1843 Tep = FNMS(KP923879532, Teo, Ten); | |
1844 TeC = FMA(KP923879532, Tee, Ted); | |
1845 Tef = FNMS(KP923879532, Tee, Ted); | |
1846 TeG = FNMS(KP303346683, TeF, TeE); | |
1847 TeK = FMA(KP303346683, TeE, TeF); | |
1848 Teu = FMA(KP534511135, Tem, Tep); | |
1849 Teq = FNMS(KP534511135, Tep, Tem); | |
1850 TeB = FMA(KP923879532, Teh, Teg); | |
1851 Tei = FNMS(KP923879532, Teh, Teg); | |
1852 Tex = FNMS(KP668178637, Te5, Te6); | |
1853 Te7 = FMA(KP668178637, Te6, Te5); | |
1854 TeD = FMA(KP303346683, TeC, TeB); | |
1855 TeJ = FNMS(KP303346683, TeB, TeC); | |
1856 Tet = FNMS(KP534511135, Tef, Tei); | |
1857 Tej = FMA(KP534511135, Tei, Tef); | |
1858 } | |
1859 { | |
1860 E TdT, Tdw, Tey, Tea, TdS, TdD; | |
1861 Tey = FMA(KP668178637, Te8, Te9); | |
1862 Tea = FNMS(KP668178637, Te9, Te8); | |
1863 TdT = FMA(KP923879532, Tdv, Tdo); | |
1864 Tdw = FNMS(KP923879532, Tdv, Tdo); | |
1865 Tka = Tey - Tex; | |
1866 Tez = Tex + Tey; | |
1867 Tkg = Te7 + Tea; | |
1868 Teb = Te7 - Tea; | |
1869 Te1 = FNMS(KP414213562, TcF, TcG); | |
1870 TcH = FMA(KP414213562, TcG, TcF); | |
1871 TdS = FMA(KP923879532, TdC, Tdz); | |
1872 TdD = FNMS(KP923879532, TdC, Tdz); | |
1873 Te0 = FNMS(KP707106781, TcD, TcA); | |
1874 TcE = FMA(KP707106781, TcD, TcA); | |
1875 Tk7 = FNMS(KP707106781, TjS, TjR); | |
1876 TjT = FMA(KP707106781, TjS, TjR); | |
1877 TdU = FNMS(KP098491403, TdT, TdS); | |
1878 TdY = FMA(KP098491403, TdS, TdT); | |
1879 TdI = FMA(KP820678790, Tdw, TdD); | |
1880 TdE = FNMS(KP820678790, TdD, Tdw); | |
1881 TcK = FNMS(KP414213562, TcJ, TcI); | |
1882 Te2 = FMA(KP414213562, TcI, TcJ); | |
1883 } | |
1884 } | |
1885 { | |
1886 E Tkf, Tk9, Tew, Te4, TdW, Tk0, TjZ, TdZ; | |
1887 { | |
1888 E Tk6, TdK, TjV, TdG, Tk5, TdJ; | |
1889 { | |
1890 E TdF, Td2, Tk3, Tk4, Tk1; | |
1891 Tk6 = Tdl + TdE; | |
1892 TdF = Tdl - TdE; | |
1893 { | |
1894 E Tk8, TcL, TjU, Te3, TcM; | |
1895 Tk8 = TcK - TcH; | |
1896 TcL = TcH + TcK; | |
1897 TjU = Te1 + Te2; | |
1898 Te3 = Te1 - Te2; | |
1899 Tkf = FNMS(KP923879532, Tk8, Tk7); | |
1900 Tk9 = FMA(KP923879532, Tk8, Tk7); | |
1901 TdK = FMA(KP923879532, TcL, TcE); | |
1902 TcM = FNMS(KP923879532, TcL, TcE); | |
1903 Tk1 = FNMS(KP923879532, TjU, TjT); | |
1904 TjV = FMA(KP923879532, TjU, TjT); | |
1905 Tew = FNMS(KP923879532, Te3, Te0); | |
1906 Te4 = FMA(KP923879532, Te3, Te0); | |
1907 Td2 = FMA(KP980785280, Td1, TcM); | |
1908 TdG = FNMS(KP980785280, Td1, TcM); | |
1909 } | |
1910 Tk5 = FNMS(KP980785280, Tk2, Tk1); | |
1911 Tk3 = FMA(KP980785280, Tk2, Tk1); | |
1912 Tk4 = TdI - TdH; | |
1913 TdJ = TdH + TdI; | |
1914 ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2); | |
1915 ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2); | |
1916 ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3); | |
1917 ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3); | |
1918 } | |
1919 { | |
1920 E TdO, TdV, TjX, TjY; | |
1921 TdW = FNMS(KP980785280, TdN, TdK); | |
1922 TdO = FMA(KP980785280, TdN, TdK); | |
1923 ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG); | |
1924 ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG); | |
1925 ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5); | |
1926 ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5); | |
1927 TdV = TdR + TdU; | |
1928 Tk0 = TdU - TdR; | |
1929 TjZ = FNMS(KP980785280, TjW, TjV); | |
1930 TjX = FMA(KP980785280, TjW, TjV); | |
1931 TjY = TdX + TdY; | |
1932 TdZ = TdX - TdY; | |
1933 ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO); | |
1934 ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO); | |
1935 ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX); | |
1936 ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX); | |
1937 } | |
1938 } | |
1939 { | |
1940 E Tes, Tke, Tkd, Tev; | |
1941 { | |
1942 E Tec, Ter, Tkb, Tkc; | |
1943 Tes = FNMS(KP831469612, Teb, Te4); | |
1944 Tec = FMA(KP831469612, Teb, Te4); | |
1945 ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW); | |
1946 ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW); | |
1947 ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ); | |
1948 ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ); | |
1949 Ter = Tej + Teq; | |
1950 Tke = Teq - Tej; | |
1951 Tkd = FNMS(KP831469612, Tka, Tk9); | |
1952 Tkb = FMA(KP831469612, Tka, Tk9); | |
1953 Tkc = Tet + Teu; | |
1954 Tev = Tet - Teu; | |
1955 ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec); | |
1956 ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec); | |
1957 ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb); | |
1958 ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb); | |
1959 } | |
1960 { | |
1961 E TeA, TeH, Tkh, Tki; | |
1962 TeI = FMA(KP831469612, Tez, Tew); | |
1963 TeA = FNMS(KP831469612, Tez, Tew); | |
1964 ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes); | |
1965 ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes); | |
1966 ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd); | |
1967 ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd); | |
1968 TeH = TeD - TeG; | |
1969 Tkk = TeD + TeG; | |
1970 Tkj = FMA(KP831469612, Tkg, Tkf); | |
1971 Tkh = FNMS(KP831469612, Tkg, Tkf); | |
1972 Tki = TeK - TeJ; | |
1973 TeL = TeJ + TeK; | |
1974 ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA); | |
1975 ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA); | |
1976 ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh); | |
1977 ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh); | |
1978 } | |
1979 } | |
1980 } | |
1981 } | |
1982 } | |
1983 } | |
1984 } | |
1985 ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI); | |
1986 ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI); | |
1987 ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj); | |
1988 ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj); | |
1989 } | |
1990 } | |
1991 } | |
1992 | |
1993 static const tw_instr twinstr[] = { | |
1994 {TW_FULL, 0, 64}, | |
1995 {TW_NEXT, 1, 0} | |
1996 }; | |
1997 | |
1998 static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {520, 126, 518, 0}, 0, 0, 0 }; | |
1999 | |
2000 void X(codelet_t1_64) (planner *p) { | |
2001 X(kdft_dit_register) (p, t1_64, &desc); | |
2002 } | |
2003 #else /* HAVE_FMA */ | |
2004 | |
2005 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include t.h */ | |
2006 | |
2007 /* | |
2008 * This function contains 1038 FP additions, 500 FP multiplications, | |
2009 * (or, 808 additions, 270 multiplications, 230 fused multiply/add), | |
2010 * 176 stack variables, 15 constants, and 256 memory accesses | |
2011 */ | |
2012 #include "t.h" | |
2013 | |
2014 static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
2015 { | |
2016 DK(KP471396736, +0.471396736825997648556387625905254377657460319); | |
2017 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
2018 DK(KP290284677, +0.290284677254462367636192375817395274691476278); | |
2019 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
2020 DK(KP634393284, +0.634393284163645498215171613225493370675687095); | |
2021 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
2022 DK(KP098017140, +0.098017140329560601994195563888641845861136673); | |
2023 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
2024 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
2025 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
2026 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
2027 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
2028 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
2029 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
2030 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
2031 { | |
2032 INT m; | |
2033 for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { | |
2034 E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC; | |
2035 E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1; | |
2036 E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a; | |
2037 E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM; | |
2038 E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D; | |
2039 E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt; | |
2040 E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO; | |
2041 E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted; | |
2042 E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA; | |
2043 { | |
2044 E T1, TgR, T6, TgQ, Tc, T68, Th, T69; | |
2045 T1 = ri[0]; | |
2046 TgR = ii[0]; | |
2047 { | |
2048 E T3, T5, T2, T4; | |
2049 T3 = ri[WS(rs, 32)]; | |
2050 T5 = ii[WS(rs, 32)]; | |
2051 T2 = W[62]; | |
2052 T4 = W[63]; | |
2053 T6 = FMA(T2, T3, T4 * T5); | |
2054 TgQ = FNMS(T4, T3, T2 * T5); | |
2055 } | |
2056 { | |
2057 E T9, Tb, T8, Ta; | |
2058 T9 = ri[WS(rs, 16)]; | |
2059 Tb = ii[WS(rs, 16)]; | |
2060 T8 = W[30]; | |
2061 Ta = W[31]; | |
2062 Tc = FMA(T8, T9, Ta * Tb); | |
2063 T68 = FNMS(Ta, T9, T8 * Tb); | |
2064 } | |
2065 { | |
2066 E Te, Tg, Td, Tf; | |
2067 Te = ri[WS(rs, 48)]; | |
2068 Tg = ii[WS(rs, 48)]; | |
2069 Td = W[94]; | |
2070 Tf = W[95]; | |
2071 Th = FMA(Td, Te, Tf * Tg); | |
2072 T69 = FNMS(Tf, Te, Td * Tg); | |
2073 } | |
2074 { | |
2075 E T7, Ti, ThR, ThS; | |
2076 T7 = T1 + T6; | |
2077 Ti = Tc + Th; | |
2078 Tj = T7 + Ti; | |
2079 TcL = T7 - Ti; | |
2080 ThR = TgR - TgQ; | |
2081 ThS = Tc - Th; | |
2082 ThT = ThR - ThS; | |
2083 Tin = ThS + ThR; | |
2084 } | |
2085 { | |
2086 E T67, T6a, TgP, TgS; | |
2087 T67 = T1 - T6; | |
2088 T6a = T68 - T69; | |
2089 T6b = T67 - T6a; | |
2090 Taz = T67 + T6a; | |
2091 TgP = T68 + T69; | |
2092 TgS = TgQ + TgR; | |
2093 TgT = TgP + TgS; | |
2094 Thn = TgS - TgP; | |
2095 } | |
2096 } | |
2097 { | |
2098 E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k; | |
2099 { | |
2100 E Tl, Tn, Tk, Tm; | |
2101 Tl = ri[WS(rs, 8)]; | |
2102 Tn = ii[WS(rs, 8)]; | |
2103 Tk = W[14]; | |
2104 Tm = W[15]; | |
2105 To = FMA(Tk, Tl, Tm * Tn); | |
2106 T6c = FNMS(Tm, Tl, Tk * Tn); | |
2107 } | |
2108 { | |
2109 E Tq, Ts, Tp, Tr; | |
2110 Tq = ri[WS(rs, 40)]; | |
2111 Ts = ii[WS(rs, 40)]; | |
2112 Tp = W[78]; | |
2113 Tr = W[79]; | |
2114 Tt = FMA(Tp, Tq, Tr * Ts); | |
2115 T6d = FNMS(Tr, Tq, Tp * Ts); | |
2116 } | |
2117 T6e = T6c - T6d; | |
2118 T6f = To - Tt; | |
2119 { | |
2120 E Tw, Ty, Tv, Tx; | |
2121 Tw = ri[WS(rs, 56)]; | |
2122 Ty = ii[WS(rs, 56)]; | |
2123 Tv = W[110]; | |
2124 Tx = W[111]; | |
2125 Tz = FMA(Tv, Tw, Tx * Ty); | |
2126 T6i = FNMS(Tx, Tw, Tv * Ty); | |
2127 } | |
2128 { | |
2129 E TB, TD, TA, TC; | |
2130 TB = ri[WS(rs, 24)]; | |
2131 TD = ii[WS(rs, 24)]; | |
2132 TA = W[46]; | |
2133 TC = W[47]; | |
2134 TE = FMA(TA, TB, TC * TD); | |
2135 T6j = FNMS(TC, TB, TA * TD); | |
2136 } | |
2137 T6h = Tz - TE; | |
2138 T6k = T6i - T6j; | |
2139 { | |
2140 E Tu, TF, TcM, TcN; | |
2141 Tu = To + Tt; | |
2142 TF = Tz + TE; | |
2143 TG = Tu + TF; | |
2144 Thm = TF - Tu; | |
2145 TcM = T6c + T6d; | |
2146 TcN = T6i + T6j; | |
2147 TcO = TcM - TcN; | |
2148 TgO = TcM + TcN; | |
2149 } | |
2150 { | |
2151 E T6g, T6l, TaA, TaB; | |
2152 T6g = T6e - T6f; | |
2153 T6l = T6h + T6k; | |
2154 T6m = KP707106781 * (T6g - T6l); | |
2155 ThQ = KP707106781 * (T6g + T6l); | |
2156 TaA = T6f + T6e; | |
2157 TaB = T6h - T6k; | |
2158 TaC = KP707106781 * (TaA + TaB); | |
2159 Tim = KP707106781 * (TaB - TaA); | |
2160 } | |
2161 } | |
2162 { | |
2163 E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x; | |
2164 { | |
2165 E TM, T6o, TR, T6p; | |
2166 { | |
2167 E TJ, TL, TI, TK; | |
2168 TJ = ri[WS(rs, 4)]; | |
2169 TL = ii[WS(rs, 4)]; | |
2170 TI = W[6]; | |
2171 TK = W[7]; | |
2172 TM = FMA(TI, TJ, TK * TL); | |
2173 T6o = FNMS(TK, TJ, TI * TL); | |
2174 } | |
2175 { | |
2176 E TO, TQ, TN, TP; | |
2177 TO = ri[WS(rs, 36)]; | |
2178 TQ = ii[WS(rs, 36)]; | |
2179 TN = W[70]; | |
2180 TP = W[71]; | |
2181 TR = FMA(TN, TO, TP * TQ); | |
2182 T6p = FNMS(TP, TO, TN * TQ); | |
2183 } | |
2184 TS = TM + TR; | |
2185 TcQ = T6o + T6p; | |
2186 T6q = T6o - T6p; | |
2187 T6t = TM - TR; | |
2188 } | |
2189 { | |
2190 E TX, T6u, T12, T6v; | |
2191 { | |
2192 E TU, TW, TT, TV; | |
2193 TU = ri[WS(rs, 20)]; | |
2194 TW = ii[WS(rs, 20)]; | |
2195 TT = W[38]; | |
2196 TV = W[39]; | |
2197 TX = FMA(TT, TU, TV * TW); | |
2198 T6u = FNMS(TV, TU, TT * TW); | |
2199 } | |
2200 { | |
2201 E TZ, T11, TY, T10; | |
2202 TZ = ri[WS(rs, 52)]; | |
2203 T11 = ii[WS(rs, 52)]; | |
2204 TY = W[102]; | |
2205 T10 = W[103]; | |
2206 T12 = FMA(TY, TZ, T10 * T11); | |
2207 T6v = FNMS(T10, TZ, TY * T11); | |
2208 } | |
2209 T13 = TX + T12; | |
2210 TcR = T6u + T6v; | |
2211 T6r = TX - T12; | |
2212 T6w = T6u - T6v; | |
2213 } | |
2214 T14 = TS + T13; | |
2215 Tfq = TcQ + TcR; | |
2216 T6s = T6q + T6r; | |
2217 T6x = T6t - T6w; | |
2218 T6y = FNMS(KP923879532, T6x, KP382683432 * T6s); | |
2219 T9O = FMA(KP923879532, T6s, KP382683432 * T6x); | |
2220 { | |
2221 E TaE, TaF, TcS, TcT; | |
2222 TaE = T6q - T6r; | |
2223 TaF = T6t + T6w; | |
2224 TaG = FNMS(KP382683432, TaF, KP923879532 * TaE); | |
2225 Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF); | |
2226 TcS = TcQ - TcR; | |
2227 TcT = TS - T13; | |
2228 TcU = TcS - TcT; | |
2229 TeE = TcT + TcS; | |
2230 } | |
2231 } | |
2232 { | |
2233 E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; | |
2234 { | |
2235 E T19, T6z, T1e, T6A; | |
2236 { | |
2237 E T16, T18, T15, T17; | |
2238 T16 = ri[WS(rs, 60)]; | |
2239 T18 = ii[WS(rs, 60)]; | |
2240 T15 = W[118]; | |
2241 T17 = W[119]; | |
2242 T19 = FMA(T15, T16, T17 * T18); | |
2243 T6z = FNMS(T17, T16, T15 * T18); | |
2244 } | |
2245 { | |
2246 E T1b, T1d, T1a, T1c; | |
2247 T1b = ri[WS(rs, 28)]; | |
2248 T1d = ii[WS(rs, 28)]; | |
2249 T1a = W[54]; | |
2250 T1c = W[55]; | |
2251 T1e = FMA(T1a, T1b, T1c * T1d); | |
2252 T6A = FNMS(T1c, T1b, T1a * T1d); | |
2253 } | |
2254 T1f = T19 + T1e; | |
2255 TcW = T6z + T6A; | |
2256 T6B = T6z - T6A; | |
2257 T6E = T19 - T1e; | |
2258 } | |
2259 { | |
2260 E T1k, T6F, T1p, T6G; | |
2261 { | |
2262 E T1h, T1j, T1g, T1i; | |
2263 T1h = ri[WS(rs, 12)]; | |
2264 T1j = ii[WS(rs, 12)]; | |
2265 T1g = W[22]; | |
2266 T1i = W[23]; | |
2267 T1k = FMA(T1g, T1h, T1i * T1j); | |
2268 T6F = FNMS(T1i, T1h, T1g * T1j); | |
2269 } | |
2270 { | |
2271 E T1m, T1o, T1l, T1n; | |
2272 T1m = ri[WS(rs, 44)]; | |
2273 T1o = ii[WS(rs, 44)]; | |
2274 T1l = W[86]; | |
2275 T1n = W[87]; | |
2276 T1p = FMA(T1l, T1m, T1n * T1o); | |
2277 T6G = FNMS(T1n, T1m, T1l * T1o); | |
2278 } | |
2279 T1q = T1k + T1p; | |
2280 TcX = T6F + T6G; | |
2281 T6C = T1k - T1p; | |
2282 T6H = T6F - T6G; | |
2283 } | |
2284 T1r = T1f + T1q; | |
2285 Tfr = TcW + TcX; | |
2286 T6D = T6B + T6C; | |
2287 T6I = T6E - T6H; | |
2288 T6J = FMA(KP382683432, T6D, KP923879532 * T6I); | |
2289 T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); | |
2290 { | |
2291 E TaH, TaI, TcV, TcY; | |
2292 TaH = T6B - T6C; | |
2293 TaI = T6E + T6H; | |
2294 TaJ = FMA(KP923879532, TaH, KP382683432 * TaI); | |
2295 Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI); | |
2296 TcV = T1f - T1q; | |
2297 TcY = TcW - TcX; | |
2298 TcZ = TcV + TcY; | |
2299 TeF = TcV - TcY; | |
2300 } | |
2301 } | |
2302 { | |
2303 E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W; | |
2304 E T6Z, T2c, Td9, T6R, T6U; | |
2305 { | |
2306 E T1v, T1x, T1u, T1w; | |
2307 T1v = ri[WS(rs, 2)]; | |
2308 T1x = ii[WS(rs, 2)]; | |
2309 T1u = W[2]; | |
2310 T1w = W[3]; | |
2311 T1y = FMA(T1u, T1v, T1w * T1x); | |
2312 T6M = FNMS(T1w, T1v, T1u * T1x); | |
2313 } | |
2314 { | |
2315 E T1A, T1C, T1z, T1B; | |
2316 T1A = ri[WS(rs, 34)]; | |
2317 T1C = ii[WS(rs, 34)]; | |
2318 T1z = W[66]; | |
2319 T1B = W[67]; | |
2320 T1D = FMA(T1z, T1A, T1B * T1C); | |
2321 T6N = FNMS(T1B, T1A, T1z * T1C); | |
2322 } | |
2323 T1E = T1y + T1D; | |
2324 Td2 = T6M + T6N; | |
2325 { | |
2326 E T1G, T1I, T1F, T1H; | |
2327 T1G = ri[WS(rs, 18)]; | |
2328 T1I = ii[WS(rs, 18)]; | |
2329 T1F = W[34]; | |
2330 T1H = W[35]; | |
2331 T1J = FMA(T1F, T1G, T1H * T1I); | |
2332 T74 = FNMS(T1H, T1G, T1F * T1I); | |
2333 } | |
2334 { | |
2335 E T1L, T1N, T1K, T1M; | |
2336 T1L = ri[WS(rs, 50)]; | |
2337 T1N = ii[WS(rs, 50)]; | |
2338 T1K = W[98]; | |
2339 T1M = W[99]; | |
2340 T1O = FMA(T1K, T1L, T1M * T1N); | |
2341 T75 = FNMS(T1M, T1L, T1K * T1N); | |
2342 } | |
2343 T1P = T1J + T1O; | |
2344 Td3 = T74 + T75; | |
2345 { | |
2346 E T1V, T6X, T20, T6Y; | |
2347 { | |
2348 E T1S, T1U, T1R, T1T; | |
2349 T1S = ri[WS(rs, 10)]; | |
2350 T1U = ii[WS(rs, 10)]; | |
2351 T1R = W[18]; | |
2352 T1T = W[19]; | |
2353 T1V = FMA(T1R, T1S, T1T * T1U); | |
2354 T6X = FNMS(T1T, T1S, T1R * T1U); | |
2355 } | |
2356 { | |
2357 E T1X, T1Z, T1W, T1Y; | |
2358 T1X = ri[WS(rs, 42)]; | |
2359 T1Z = ii[WS(rs, 42)]; | |
2360 T1W = W[82]; | |
2361 T1Y = W[83]; | |
2362 T20 = FMA(T1W, T1X, T1Y * T1Z); | |
2363 T6Y = FNMS(T1Y, T1X, T1W * T1Z); | |
2364 } | |
2365 T21 = T1V + T20; | |
2366 Td8 = T6X + T6Y; | |
2367 T6W = T1V - T20; | |
2368 T6Z = T6X - T6Y; | |
2369 } | |
2370 { | |
2371 E T26, T6S, T2b, T6T; | |
2372 { | |
2373 E T23, T25, T22, T24; | |
2374 T23 = ri[WS(rs, 58)]; | |
2375 T25 = ii[WS(rs, 58)]; | |
2376 T22 = W[114]; | |
2377 T24 = W[115]; | |
2378 T26 = FMA(T22, T23, T24 * T25); | |
2379 T6S = FNMS(T24, T23, T22 * T25); | |
2380 } | |
2381 { | |
2382 E T28, T2a, T27, T29; | |
2383 T28 = ri[WS(rs, 26)]; | |
2384 T2a = ii[WS(rs, 26)]; | |
2385 T27 = W[50]; | |
2386 T29 = W[51]; | |
2387 T2b = FMA(T27, T28, T29 * T2a); | |
2388 T6T = FNMS(T29, T28, T27 * T2a); | |
2389 } | |
2390 T2c = T26 + T2b; | |
2391 Td9 = T6S + T6T; | |
2392 T6R = T26 - T2b; | |
2393 T6U = T6S - T6T; | |
2394 } | |
2395 T1Q = T1E + T1P; | |
2396 T2d = T21 + T2c; | |
2397 Tfx = T1Q - T2d; | |
2398 Tfu = Td2 + Td3; | |
2399 Tfv = Td8 + Td9; | |
2400 Tfw = Tfu - Tfv; | |
2401 { | |
2402 E T6O, T6P, Td7, Tda; | |
2403 T6O = T6M - T6N; | |
2404 T6P = T1J - T1O; | |
2405 T6Q = T6O + T6P; | |
2406 TaM = T6O - T6P; | |
2407 Td7 = T1E - T1P; | |
2408 Tda = Td8 - Td9; | |
2409 Tdb = Td7 - Tda; | |
2410 TeJ = Td7 + Tda; | |
2411 } | |
2412 { | |
2413 E T6V, T70, T78, T79; | |
2414 T6V = T6R - T6U; | |
2415 T70 = T6W + T6Z; | |
2416 T71 = KP707106781 * (T6V - T70); | |
2417 TaQ = KP707106781 * (T70 + T6V); | |
2418 T78 = T6Z - T6W; | |
2419 T79 = T6R + T6U; | |
2420 T7a = KP707106781 * (T78 - T79); | |
2421 TaN = KP707106781 * (T78 + T79); | |
2422 } | |
2423 { | |
2424 E Td4, Td5, T73, T76; | |
2425 Td4 = Td2 - Td3; | |
2426 Td5 = T2c - T21; | |
2427 Td6 = Td4 - Td5; | |
2428 TeI = Td4 + Td5; | |
2429 T73 = T1y - T1D; | |
2430 T76 = T74 - T75; | |
2431 T77 = T73 - T76; | |
2432 TaP = T73 + T76; | |
2433 } | |
2434 } | |
2435 { | |
2436 E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n; | |
2437 E T7q, T2X, Tdk, T7i, T7l; | |
2438 { | |
2439 E T2g, T2i, T2f, T2h; | |
2440 T2g = ri[WS(rs, 62)]; | |
2441 T2i = ii[WS(rs, 62)]; | |
2442 T2f = W[122]; | |
2443 T2h = W[123]; | |
2444 T2j = FMA(T2f, T2g, T2h * T2i); | |
2445 T7d = FNMS(T2h, T2g, T2f * T2i); | |
2446 } | |
2447 { | |
2448 E T2l, T2n, T2k, T2m; | |
2449 T2l = ri[WS(rs, 30)]; | |
2450 T2n = ii[WS(rs, 30)]; | |
2451 T2k = W[58]; | |
2452 T2m = W[59]; | |
2453 T2o = FMA(T2k, T2l, T2m * T2n); | |
2454 T7e = FNMS(T2m, T2l, T2k * T2n); | |
2455 } | |
2456 T2p = T2j + T2o; | |
2457 Tdd = T7d + T7e; | |
2458 { | |
2459 E T2r, T2t, T2q, T2s; | |
2460 T2r = ri[WS(rs, 14)]; | |
2461 T2t = ii[WS(rs, 14)]; | |
2462 T2q = W[26]; | |
2463 T2s = W[27]; | |
2464 T2u = FMA(T2q, T2r, T2s * T2t); | |
2465 T7v = FNMS(T2s, T2r, T2q * T2t); | |
2466 } | |
2467 { | |
2468 E T2w, T2y, T2v, T2x; | |
2469 T2w = ri[WS(rs, 46)]; | |
2470 T2y = ii[WS(rs, 46)]; | |
2471 T2v = W[90]; | |
2472 T2x = W[91]; | |
2473 T2z = FMA(T2v, T2w, T2x * T2y); | |
2474 T7w = FNMS(T2x, T2w, T2v * T2y); | |
2475 } | |
2476 T2A = T2u + T2z; | |
2477 Tde = T7v + T7w; | |
2478 { | |
2479 E T2G, T7o, T2L, T7p; | |
2480 { | |
2481 E T2D, T2F, T2C, T2E; | |
2482 T2D = ri[WS(rs, 6)]; | |
2483 T2F = ii[WS(rs, 6)]; | |
2484 T2C = W[10]; | |
2485 T2E = W[11]; | |
2486 T2G = FMA(T2C, T2D, T2E * T2F); | |
2487 T7o = FNMS(T2E, T2D, T2C * T2F); | |
2488 } | |
2489 { | |
2490 E T2I, T2K, T2H, T2J; | |
2491 T2I = ri[WS(rs, 38)]; | |
2492 T2K = ii[WS(rs, 38)]; | |
2493 T2H = W[74]; | |
2494 T2J = W[75]; | |
2495 T2L = FMA(T2H, T2I, T2J * T2K); | |
2496 T7p = FNMS(T2J, T2I, T2H * T2K); | |
2497 } | |
2498 T2M = T2G + T2L; | |
2499 Tdj = T7o + T7p; | |
2500 T7n = T2G - T2L; | |
2501 T7q = T7o - T7p; | |
2502 } | |
2503 { | |
2504 E T2R, T7j, T2W, T7k; | |
2505 { | |
2506 E T2O, T2Q, T2N, T2P; | |
2507 T2O = ri[WS(rs, 54)]; | |
2508 T2Q = ii[WS(rs, 54)]; | |
2509 T2N = W[106]; | |
2510 T2P = W[107]; | |
2511 T2R = FMA(T2N, T2O, T2P * T2Q); | |
2512 T7j = FNMS(T2P, T2O, T2N * T2Q); | |
2513 } | |
2514 { | |
2515 E T2T, T2V, T2S, T2U; | |
2516 T2T = ri[WS(rs, 22)]; | |
2517 T2V = ii[WS(rs, 22)]; | |
2518 T2S = W[42]; | |
2519 T2U = W[43]; | |
2520 T2W = FMA(T2S, T2T, T2U * T2V); | |
2521 T7k = FNMS(T2U, T2T, T2S * T2V); | |
2522 } | |
2523 T2X = T2R + T2W; | |
2524 Tdk = T7j + T7k; | |
2525 T7i = T2R - T2W; | |
2526 T7l = T7j - T7k; | |
2527 } | |
2528 T2B = T2p + T2A; | |
2529 T2Y = T2M + T2X; | |
2530 Tfz = T2B - T2Y; | |
2531 TfA = Tdd + Tde; | |
2532 TfB = Tdj + Tdk; | |
2533 TfC = TfA - TfB; | |
2534 { | |
2535 E T7f, T7g, Tdi, Tdl; | |
2536 T7f = T7d - T7e; | |
2537 T7g = T2u - T2z; | |
2538 T7h = T7f + T7g; | |
2539 TaW = T7f - T7g; | |
2540 Tdi = T2p - T2A; | |
2541 Tdl = Tdj - Tdk; | |
2542 Tdm = Tdi - Tdl; | |
2543 TeM = Tdi + Tdl; | |
2544 } | |
2545 { | |
2546 E T7m, T7r, T7z, T7A; | |
2547 T7m = T7i - T7l; | |
2548 T7r = T7n + T7q; | |
2549 T7s = KP707106781 * (T7m - T7r); | |
2550 TaU = KP707106781 * (T7r + T7m); | |
2551 T7z = T7q - T7n; | |
2552 T7A = T7i + T7l; | |
2553 T7B = KP707106781 * (T7z - T7A); | |
2554 TaX = KP707106781 * (T7z + T7A); | |
2555 } | |
2556 { | |
2557 E Tdf, Tdg, T7u, T7x; | |
2558 Tdf = Tdd - Tde; | |
2559 Tdg = T2X - T2M; | |
2560 Tdh = Tdf - Tdg; | |
2561 TeL = Tdf + Tdg; | |
2562 T7u = T2j - T2o; | |
2563 T7x = T7v - T7w; | |
2564 T7y = T7u - T7x; | |
2565 TaT = T7u + T7x; | |
2566 } | |
2567 } | |
2568 { | |
2569 E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G; | |
2570 E T8H, T5h, TdT, T8J, T8M; | |
2571 { | |
2572 E T4A, T4C, T4z, T4B; | |
2573 T4A = ri[WS(rs, 63)]; | |
2574 T4C = ii[WS(rs, 63)]; | |
2575 T4z = W[124]; | |
2576 T4B = W[125]; | |
2577 T4D = FMA(T4z, T4A, T4B * T4C); | |
2578 T9e = FNMS(T4B, T4A, T4z * T4C); | |
2579 } | |
2580 { | |
2581 E T4F, T4H, T4E, T4G; | |
2582 T4F = ri[WS(rs, 31)]; | |
2583 T4H = ii[WS(rs, 31)]; | |
2584 T4E = W[60]; | |
2585 T4G = W[61]; | |
2586 T4I = FMA(T4E, T4F, T4G * T4H); | |
2587 T9f = FNMS(T4G, T4F, T4E * T4H); | |
2588 } | |
2589 T4J = T4D + T4I; | |
2590 Te8 = T9e + T9f; | |
2591 { | |
2592 E T4L, T4N, T4K, T4M; | |
2593 T4L = ri[WS(rs, 15)]; | |
2594 T4N = ii[WS(rs, 15)]; | |
2595 T4K = W[28]; | |
2596 T4M = W[29]; | |
2597 T4O = FMA(T4K, T4L, T4M * T4N); | |
2598 T8A = FNMS(T4M, T4L, T4K * T4N); | |
2599 } | |
2600 { | |
2601 E T4Q, T4S, T4P, T4R; | |
2602 T4Q = ri[WS(rs, 47)]; | |
2603 T4S = ii[WS(rs, 47)]; | |
2604 T4P = W[92]; | |
2605 T4R = W[93]; | |
2606 T4T = FMA(T4P, T4Q, T4R * T4S); | |
2607 T8B = FNMS(T4R, T4Q, T4P * T4S); | |
2608 } | |
2609 T4U = T4O + T4T; | |
2610 Te9 = T8A + T8B; | |
2611 { | |
2612 E T50, T8E, T55, T8F; | |
2613 { | |
2614 E T4X, T4Z, T4W, T4Y; | |
2615 T4X = ri[WS(rs, 7)]; | |
2616 T4Z = ii[WS(rs, 7)]; | |
2617 T4W = W[12]; | |
2618 T4Y = W[13]; | |
2619 T50 = FMA(T4W, T4X, T4Y * T4Z); | |
2620 T8E = FNMS(T4Y, T4X, T4W * T4Z); | |
2621 } | |
2622 { | |
2623 E T52, T54, T51, T53; | |
2624 T52 = ri[WS(rs, 39)]; | |
2625 T54 = ii[WS(rs, 39)]; | |
2626 T51 = W[76]; | |
2627 T53 = W[77]; | |
2628 T55 = FMA(T51, T52, T53 * T54); | |
2629 T8F = FNMS(T53, T52, T51 * T54); | |
2630 } | |
2631 T56 = T50 + T55; | |
2632 TdS = T8E + T8F; | |
2633 T8G = T8E - T8F; | |
2634 T8H = T50 - T55; | |
2635 } | |
2636 { | |
2637 E T5b, T8K, T5g, T8L; | |
2638 { | |
2639 E T58, T5a, T57, T59; | |
2640 T58 = ri[WS(rs, 55)]; | |
2641 T5a = ii[WS(rs, 55)]; | |
2642 T57 = W[108]; | |
2643 T59 = W[109]; | |
2644 T5b = FMA(T57, T58, T59 * T5a); | |
2645 T8K = FNMS(T59, T58, T57 * T5a); | |
2646 } | |
2647 { | |
2648 E T5d, T5f, T5c, T5e; | |
2649 T5d = ri[WS(rs, 23)]; | |
2650 T5f = ii[WS(rs, 23)]; | |
2651 T5c = W[44]; | |
2652 T5e = W[45]; | |
2653 T5g = FMA(T5c, T5d, T5e * T5f); | |
2654 T8L = FNMS(T5e, T5d, T5c * T5f); | |
2655 } | |
2656 T5h = T5b + T5g; | |
2657 TdT = T8K + T8L; | |
2658 T8J = T5b - T5g; | |
2659 T8M = T8K - T8L; | |
2660 } | |
2661 { | |
2662 E T4V, T5i, Tea, Teb; | |
2663 T4V = T4J + T4U; | |
2664 T5i = T56 + T5h; | |
2665 T5j = T4V + T5i; | |
2666 TfR = T4V - T5i; | |
2667 Tea = Te8 - Te9; | |
2668 Teb = T5h - T56; | |
2669 Tec = Tea - Teb; | |
2670 Tf0 = Tea + Teb; | |
2671 } | |
2672 { | |
2673 E TfW, TfX, T8z, T8C; | |
2674 TfW = Te8 + Te9; | |
2675 TfX = TdS + TdT; | |
2676 TfY = TfW - TfX; | |
2677 Tgy = TfW + TfX; | |
2678 T8z = T4D - T4I; | |
2679 T8C = T8A - T8B; | |
2680 T8D = T8z - T8C; | |
2681 Tbl = T8z + T8C; | |
2682 } | |
2683 { | |
2684 E T8I, T8N, T9j, T9k; | |
2685 T8I = T8G - T8H; | |
2686 T8N = T8J + T8M; | |
2687 T8O = KP707106781 * (T8I - T8N); | |
2688 Tbx = KP707106781 * (T8I + T8N); | |
2689 T9j = T8J - T8M; | |
2690 T9k = T8H + T8G; | |
2691 T9l = KP707106781 * (T9j - T9k); | |
2692 Tbm = KP707106781 * (T9k + T9j); | |
2693 } | |
2694 { | |
2695 E TdR, TdU, T9g, T9h; | |
2696 TdR = T4J - T4U; | |
2697 TdU = TdS - TdT; | |
2698 TdV = TdR - TdU; | |
2699 TeX = TdR + TdU; | |
2700 T9g = T9e - T9f; | |
2701 T9h = T4O - T4T; | |
2702 T9i = T9g + T9h; | |
2703 Tbw = T9g - T9h; | |
2704 } | |
2705 } | |
2706 { | |
2707 E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q; | |
2708 E T7T, T3K, TdJ, T7L, T7O; | |
2709 { | |
2710 E T33, T35, T32, T34; | |
2711 T33 = ri[WS(rs, 1)]; | |
2712 T35 = ii[WS(rs, 1)]; | |
2713 T32 = W[0]; | |
2714 T34 = W[1]; | |
2715 T36 = FMA(T32, T33, T34 * T35); | |
2716 T7G = FNMS(T34, T33, T32 * T35); | |
2717 } | |
2718 { | |
2719 E T38, T3a, T37, T39; | |
2720 T38 = ri[WS(rs, 33)]; | |
2721 T3a = ii[WS(rs, 33)]; | |
2722 T37 = W[64]; | |
2723 T39 = W[65]; | |
2724 T3b = FMA(T37, T38, T39 * T3a); | |
2725 T7H = FNMS(T39, T38, T37 * T3a); | |
2726 } | |
2727 T3c = T36 + T3b; | |
2728 Tdq = T7G + T7H; | |
2729 { | |
2730 E T3e, T3g, T3d, T3f; | |
2731 T3e = ri[WS(rs, 17)]; | |
2732 T3g = ii[WS(rs, 17)]; | |
2733 T3d = W[32]; | |
2734 T3f = W[33]; | |
2735 T3h = FMA(T3d, T3e, T3f * T3g); | |
2736 T8m = FNMS(T3f, T3e, T3d * T3g); | |
2737 } | |
2738 { | |
2739 E T3j, T3l, T3i, T3k; | |
2740 T3j = ri[WS(rs, 49)]; | |
2741 T3l = ii[WS(rs, 49)]; | |
2742 T3i = W[96]; | |
2743 T3k = W[97]; | |
2744 T3m = FMA(T3i, T3j, T3k * T3l); | |
2745 T8n = FNMS(T3k, T3j, T3i * T3l); | |
2746 } | |
2747 T3n = T3h + T3m; | |
2748 Tdr = T8m + T8n; | |
2749 { | |
2750 E T3t, T7R, T3y, T7S; | |
2751 { | |
2752 E T3q, T3s, T3p, T3r; | |
2753 T3q = ri[WS(rs, 9)]; | |
2754 T3s = ii[WS(rs, 9)]; | |
2755 T3p = W[16]; | |
2756 T3r = W[17]; | |
2757 T3t = FMA(T3p, T3q, T3r * T3s); | |
2758 T7R = FNMS(T3r, T3q, T3p * T3s); | |
2759 } | |
2760 { | |
2761 E T3v, T3x, T3u, T3w; | |
2762 T3v = ri[WS(rs, 41)]; | |
2763 T3x = ii[WS(rs, 41)]; | |
2764 T3u = W[80]; | |
2765 T3w = W[81]; | |
2766 T3y = FMA(T3u, T3v, T3w * T3x); | |
2767 T7S = FNMS(T3w, T3v, T3u * T3x); | |
2768 } | |
2769 T3z = T3t + T3y; | |
2770 TdI = T7R + T7S; | |
2771 T7Q = T3t - T3y; | |
2772 T7T = T7R - T7S; | |
2773 } | |
2774 { | |
2775 E T3E, T7M, T3J, T7N; | |
2776 { | |
2777 E T3B, T3D, T3A, T3C; | |
2778 T3B = ri[WS(rs, 57)]; | |
2779 T3D = ii[WS(rs, 57)]; | |
2780 T3A = W[112]; | |
2781 T3C = W[113]; | |
2782 T3E = FMA(T3A, T3B, T3C * T3D); | |
2783 T7M = FNMS(T3C, T3B, T3A * T3D); | |
2784 } | |
2785 { | |
2786 E T3G, T3I, T3F, T3H; | |
2787 T3G = ri[WS(rs, 25)]; | |
2788 T3I = ii[WS(rs, 25)]; | |
2789 T3F = W[48]; | |
2790 T3H = W[49]; | |
2791 T3J = FMA(T3F, T3G, T3H * T3I); | |
2792 T7N = FNMS(T3H, T3G, T3F * T3I); | |
2793 } | |
2794 T3K = T3E + T3J; | |
2795 TdJ = T7M + T7N; | |
2796 T7L = T3E - T3J; | |
2797 T7O = T7M - T7N; | |
2798 } | |
2799 { | |
2800 E T3o, T3L, TdH, TdK; | |
2801 T3o = T3c + T3n; | |
2802 T3L = T3z + T3K; | |
2803 T3M = T3o + T3L; | |
2804 TfL = T3o - T3L; | |
2805 TdH = T3c - T3n; | |
2806 TdK = TdI - TdJ; | |
2807 TdL = TdH - TdK; | |
2808 TeQ = TdH + TdK; | |
2809 } | |
2810 { | |
2811 E TfG, TfH, T7I, T7J; | |
2812 TfG = Tdq + Tdr; | |
2813 TfH = TdI + TdJ; | |
2814 TfI = TfG - TfH; | |
2815 Tgt = TfG + TfH; | |
2816 T7I = T7G - T7H; | |
2817 T7J = T3h - T3m; | |
2818 T7K = T7I + T7J; | |
2819 Tb2 = T7I - T7J; | |
2820 } | |
2821 { | |
2822 E T7P, T7U, T8q, T8r; | |
2823 T7P = T7L - T7O; | |
2824 T7U = T7Q + T7T; | |
2825 T7V = KP707106781 * (T7P - T7U); | |
2826 Tbe = KP707106781 * (T7U + T7P); | |
2827 T8q = T7T - T7Q; | |
2828 T8r = T7L + T7O; | |
2829 T8s = KP707106781 * (T8q - T8r); | |
2830 Tb3 = KP707106781 * (T8q + T8r); | |
2831 } | |
2832 { | |
2833 E Tds, Tdt, T8l, T8o; | |
2834 Tds = Tdq - Tdr; | |
2835 Tdt = T3K - T3z; | |
2836 Tdu = Tds - Tdt; | |
2837 TeT = Tds + Tdt; | |
2838 T8l = T36 - T3b; | |
2839 T8o = T8m - T8n; | |
2840 T8p = T8l - T8o; | |
2841 Tbd = T8l + T8o; | |
2842 } | |
2843 } | |
2844 { | |
2845 E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X; | |
2846 E T84; | |
2847 { | |
2848 E T3R, T88, T3W, T89; | |
2849 { | |
2850 E T3O, T3Q, T3N, T3P; | |
2851 T3O = ri[WS(rs, 5)]; | |
2852 T3Q = ii[WS(rs, 5)]; | |
2853 T3N = W[8]; | |
2854 T3P = W[9]; | |
2855 T3R = FMA(T3N, T3O, T3P * T3Q); | |
2856 T88 = FNMS(T3P, T3O, T3N * T3Q); | |
2857 } | |
2858 { | |
2859 E T3T, T3V, T3S, T3U; | |
2860 T3T = ri[WS(rs, 37)]; | |
2861 T3V = ii[WS(rs, 37)]; | |
2862 T3S = W[72]; | |
2863 T3U = W[73]; | |
2864 T3W = FMA(T3S, T3T, T3U * T3V); | |
2865 T89 = FNMS(T3U, T3T, T3S * T3V); | |
2866 } | |
2867 T3X = T3R + T3W; | |
2868 TdB = T88 + T89; | |
2869 T8a = T88 - T89; | |
2870 T8d = T3R - T3W; | |
2871 } | |
2872 { | |
2873 E T4p, T7Y, T4u, T7Z; | |
2874 { | |
2875 E T4m, T4o, T4l, T4n; | |
2876 T4m = ri[WS(rs, 13)]; | |
2877 T4o = ii[WS(rs, 13)]; | |
2878 T4l = W[24]; | |
2879 T4n = W[25]; | |
2880 T4p = FMA(T4l, T4m, T4n * T4o); | |
2881 T7Y = FNMS(T4n, T4m, T4l * T4o); | |
2882 } | |
2883 { | |
2884 E T4r, T4t, T4q, T4s; | |
2885 T4r = ri[WS(rs, 45)]; | |
2886 T4t = ii[WS(rs, 45)]; | |
2887 T4q = W[88]; | |
2888 T4s = W[89]; | |
2889 T4u = FMA(T4q, T4r, T4s * T4t); | |
2890 T7Z = FNMS(T4s, T4r, T4q * T4t); | |
2891 } | |
2892 T4v = T4p + T4u; | |
2893 Tdx = T7Y + T7Z; | |
2894 T80 = T7Y - T7Z; | |
2895 T85 = T4p - T4u; | |
2896 } | |
2897 { | |
2898 E T42, T8e, T47, T8f; | |
2899 { | |
2900 E T3Z, T41, T3Y, T40; | |
2901 T3Z = ri[WS(rs, 21)]; | |
2902 T41 = ii[WS(rs, 21)]; | |
2903 T3Y = W[40]; | |
2904 T40 = W[41]; | |
2905 T42 = FMA(T3Y, T3Z, T40 * T41); | |
2906 T8e = FNMS(T40, T3Z, T3Y * T41); | |
2907 } | |
2908 { | |
2909 E T44, T46, T43, T45; | |
2910 T44 = ri[WS(rs, 53)]; | |
2911 T46 = ii[WS(rs, 53)]; | |
2912 T43 = W[104]; | |
2913 T45 = W[105]; | |
2914 T47 = FMA(T43, T44, T45 * T46); | |
2915 T8f = FNMS(T45, T44, T43 * T46); | |
2916 } | |
2917 T48 = T42 + T47; | |
2918 TdC = T8e + T8f; | |
2919 T8b = T42 - T47; | |
2920 T8g = T8e - T8f; | |
2921 } | |
2922 { | |
2923 E T4e, T82, T4j, T83; | |
2924 { | |
2925 E T4b, T4d, T4a, T4c; | |
2926 T4b = ri[WS(rs, 61)]; | |
2927 T4d = ii[WS(rs, 61)]; | |
2928 T4a = W[120]; | |
2929 T4c = W[121]; | |
2930 T4e = FMA(T4a, T4b, T4c * T4d); | |
2931 T82 = FNMS(T4c, T4b, T4a * T4d); | |
2932 } | |
2933 { | |
2934 E T4g, T4i, T4f, T4h; | |
2935 T4g = ri[WS(rs, 29)]; | |
2936 T4i = ii[WS(rs, 29)]; | |
2937 T4f = W[56]; | |
2938 T4h = W[57]; | |
2939 T4j = FMA(T4f, T4g, T4h * T4i); | |
2940 T83 = FNMS(T4h, T4g, T4f * T4i); | |
2941 } | |
2942 T4k = T4e + T4j; | |
2943 Tdw = T82 + T83; | |
2944 T7X = T4e - T4j; | |
2945 T84 = T82 - T83; | |
2946 } | |
2947 { | |
2948 E T49, T4w, TdA, TdD; | |
2949 T49 = T3X + T48; | |
2950 T4w = T4k + T4v; | |
2951 T4x = T49 + T4w; | |
2952 TfJ = T4w - T49; | |
2953 TdA = T3X - T48; | |
2954 TdD = TdB - TdC; | |
2955 TdE = TdA + TdD; | |
2956 TdM = TdD - TdA; | |
2957 } | |
2958 { | |
2959 E TfM, TfN, T81, T86; | |
2960 TfM = TdB + TdC; | |
2961 TfN = Tdw + Tdx; | |
2962 TfO = TfM - TfN; | |
2963 Tgu = TfM + TfN; | |
2964 T81 = T7X - T80; | |
2965 T86 = T84 + T85; | |
2966 T87 = FNMS(KP923879532, T86, KP382683432 * T81); | |
2967 T8v = FMA(KP382683432, T86, KP923879532 * T81); | |
2968 } | |
2969 { | |
2970 E T8c, T8h, Tb8, Tb9; | |
2971 T8c = T8a + T8b; | |
2972 T8h = T8d - T8g; | |
2973 T8i = FMA(KP923879532, T8c, KP382683432 * T8h); | |
2974 T8u = FNMS(KP923879532, T8h, KP382683432 * T8c); | |
2975 Tb8 = T8a - T8b; | |
2976 Tb9 = T8d + T8g; | |
2977 Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9); | |
2978 Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8); | |
2979 } | |
2980 { | |
2981 E Tdv, Tdy, Tb5, Tb6; | |
2982 Tdv = T4k - T4v; | |
2983 Tdy = Tdw - Tdx; | |
2984 Tdz = Tdv - Tdy; | |
2985 TdN = Tdv + Tdy; | |
2986 Tb5 = T7X + T80; | |
2987 Tb6 = T84 - T85; | |
2988 Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5); | |
2989 Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5); | |
2990 } | |
2991 } | |
2992 { | |
2993 E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93; | |
2994 E T96; | |
2995 { | |
2996 E T5o, T8Q, T5t, T8R; | |
2997 { | |
2998 E T5l, T5n, T5k, T5m; | |
2999 T5l = ri[WS(rs, 3)]; | |
3000 T5n = ii[WS(rs, 3)]; | |
3001 T5k = W[4]; | |
3002 T5m = W[5]; | |
3003 T5o = FMA(T5k, T5l, T5m * T5n); | |
3004 T8Q = FNMS(T5m, T5l, T5k * T5n); | |
3005 } | |
3006 { | |
3007 E T5q, T5s, T5p, T5r; | |
3008 T5q = ri[WS(rs, 35)]; | |
3009 T5s = ii[WS(rs, 35)]; | |
3010 T5p = W[68]; | |
3011 T5r = W[69]; | |
3012 T5t = FMA(T5p, T5q, T5r * T5s); | |
3013 T8R = FNMS(T5r, T5q, T5p * T5s); | |
3014 } | |
3015 T5u = T5o + T5t; | |
3016 TdW = T8Q + T8R; | |
3017 T8S = T8Q - T8R; | |
3018 T8V = T5o - T5t; | |
3019 } | |
3020 { | |
3021 E T5W, T97, T61, T98; | |
3022 { | |
3023 E T5T, T5V, T5S, T5U; | |
3024 T5T = ri[WS(rs, 11)]; | |
3025 T5V = ii[WS(rs, 11)]; | |
3026 T5S = W[20]; | |
3027 T5U = W[21]; | |
3028 T5W = FMA(T5S, T5T, T5U * T5V); | |
3029 T97 = FNMS(T5U, T5T, T5S * T5V); | |
3030 } | |
3031 { | |
3032 E T5Y, T60, T5X, T5Z; | |
3033 T5Y = ri[WS(rs, 43)]; | |
3034 T60 = ii[WS(rs, 43)]; | |
3035 T5X = W[84]; | |
3036 T5Z = W[85]; | |
3037 T61 = FMA(T5X, T5Y, T5Z * T60); | |
3038 T98 = FNMS(T5Z, T5Y, T5X * T60); | |
3039 } | |
3040 T62 = T5W + T61; | |
3041 Te3 = T97 + T98; | |
3042 T94 = T5W - T61; | |
3043 T99 = T97 - T98; | |
3044 } | |
3045 { | |
3046 E T5z, T8W, T5E, T8X; | |
3047 { | |
3048 E T5w, T5y, T5v, T5x; | |
3049 T5w = ri[WS(rs, 19)]; | |
3050 T5y = ii[WS(rs, 19)]; | |
3051 T5v = W[36]; | |
3052 T5x = W[37]; | |
3053 T5z = FMA(T5v, T5w, T5x * T5y); | |
3054 T8W = FNMS(T5x, T5w, T5v * T5y); | |
3055 } | |
3056 { | |
3057 E T5B, T5D, T5A, T5C; | |
3058 T5B = ri[WS(rs, 51)]; | |
3059 T5D = ii[WS(rs, 51)]; | |
3060 T5A = W[100]; | |
3061 T5C = W[101]; | |
3062 T5E = FMA(T5A, T5B, T5C * T5D); | |
3063 T8X = FNMS(T5C, T5B, T5A * T5D); | |
3064 } | |
3065 T5F = T5z + T5E; | |
3066 TdX = T8W + T8X; | |
3067 T8T = T5z - T5E; | |
3068 T8Y = T8W - T8X; | |
3069 } | |
3070 { | |
3071 E T5L, T91, T5Q, T92; | |
3072 { | |
3073 E T5I, T5K, T5H, T5J; | |
3074 T5I = ri[WS(rs, 59)]; | |
3075 T5K = ii[WS(rs, 59)]; | |
3076 T5H = W[116]; | |
3077 T5J = W[117]; | |
3078 T5L = FMA(T5H, T5I, T5J * T5K); | |
3079 T91 = FNMS(T5J, T5I, T5H * T5K); | |
3080 } | |
3081 { | |
3082 E T5N, T5P, T5M, T5O; | |
3083 T5N = ri[WS(rs, 27)]; | |
3084 T5P = ii[WS(rs, 27)]; | |
3085 T5M = W[52]; | |
3086 T5O = W[53]; | |
3087 T5Q = FMA(T5M, T5N, T5O * T5P); | |
3088 T92 = FNMS(T5O, T5N, T5M * T5P); | |
3089 } | |
3090 T5R = T5L + T5Q; | |
3091 Te2 = T91 + T92; | |
3092 T93 = T91 - T92; | |
3093 T96 = T5L - T5Q; | |
3094 } | |
3095 { | |
3096 E T5G, T63, Te1, Te4; | |
3097 T5G = T5u + T5F; | |
3098 T63 = T5R + T62; | |
3099 T64 = T5G + T63; | |
3100 TfZ = T63 - T5G; | |
3101 Te1 = T5R - T62; | |
3102 Te4 = Te2 - Te3; | |
3103 Te5 = Te1 + Te4; | |
3104 Ted = Te1 - Te4; | |
3105 } | |
3106 { | |
3107 E TfS, TfT, T8U, T8Z; | |
3108 TfS = TdW + TdX; | |
3109 TfT = Te2 + Te3; | |
3110 TfU = TfS - TfT; | |
3111 Tgz = TfS + TfT; | |
3112 T8U = T8S + T8T; | |
3113 T8Z = T8V - T8Y; | |
3114 T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U); | |
3115 T9o = FMA(KP923879532, T8U, KP382683432 * T8Z); | |
3116 } | |
3117 { | |
3118 E T95, T9a, Tbr, Tbs; | |
3119 T95 = T93 + T94; | |
3120 T9a = T96 - T99; | |
3121 T9b = FMA(KP382683432, T95, KP923879532 * T9a); | |
3122 T9n = FNMS(KP923879532, T95, KP382683432 * T9a); | |
3123 Tbr = T93 - T94; | |
3124 Tbs = T96 + T99; | |
3125 Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs); | |
3126 Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs); | |
3127 } | |
3128 { | |
3129 E TdY, TdZ, Tbo, Tbp; | |
3130 TdY = TdW - TdX; | |
3131 TdZ = T5u - T5F; | |
3132 Te0 = TdY - TdZ; | |
3133 Tee = TdZ + TdY; | |
3134 Tbo = T8S - T8T; | |
3135 Tbp = T8V + T8Y; | |
3136 Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo); | |
3137 TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp); | |
3138 } | |
3139 } | |
3140 { | |
3141 E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; | |
3142 E TgM; | |
3143 { | |
3144 E TH, T1s, TgI, TgJ; | |
3145 TH = Tj + TG; | |
3146 T1s = T14 + T1r; | |
3147 T1t = TH + T1s; | |
3148 Tgn = TH - T1s; | |
3149 TgI = Tgt + Tgu; | |
3150 TgJ = Tgy + Tgz; | |
3151 TgK = TgI - TgJ; | |
3152 TgL = TgI + TgJ; | |
3153 } | |
3154 { | |
3155 E TgN, TgU, T2e, T2Z; | |
3156 TgN = Tfq + Tfr; | |
3157 TgU = TgO + TgT; | |
3158 TgV = TgN + TgU; | |
3159 Th1 = TgU - TgN; | |
3160 T2e = T1Q + T2d; | |
3161 T2Z = T2B + T2Y; | |
3162 T30 = T2e + T2Z; | |
3163 Th0 = T2Z - T2e; | |
3164 } | |
3165 { | |
3166 E T4y, T65, Tgs, Tgv; | |
3167 T4y = T3M + T4x; | |
3168 T65 = T5j + T64; | |
3169 T66 = T4y + T65; | |
3170 TgX = T65 - T4y; | |
3171 Tgs = T3M - T4x; | |
3172 Tgv = Tgt - Tgu; | |
3173 Tgw = Tgs + Tgv; | |
3174 TgE = Tgv - Tgs; | |
3175 } | |
3176 { | |
3177 E Tgx, TgA, Tgo, Tgp; | |
3178 Tgx = T5j - T64; | |
3179 TgA = Tgy - Tgz; | |
3180 TgB = Tgx - TgA; | |
3181 TgF = Tgx + TgA; | |
3182 Tgo = Tfu + Tfv; | |
3183 Tgp = TfA + TfB; | |
3184 Tgq = Tgo - Tgp; | |
3185 TgM = Tgo + Tgp; | |
3186 } | |
3187 { | |
3188 E T31, TgW, TgH, TgY; | |
3189 T31 = T1t + T30; | |
3190 ri[WS(rs, 32)] = T31 - T66; | |
3191 ri[0] = T31 + T66; | |
3192 TgW = TgM + TgV; | |
3193 ii[0] = TgL + TgW; | |
3194 ii[WS(rs, 32)] = TgW - TgL; | |
3195 TgH = T1t - T30; | |
3196 ri[WS(rs, 48)] = TgH - TgK; | |
3197 ri[WS(rs, 16)] = TgH + TgK; | |
3198 TgY = TgV - TgM; | |
3199 ii[WS(rs, 16)] = TgX + TgY; | |
3200 ii[WS(rs, 48)] = TgY - TgX; | |
3201 } | |
3202 { | |
3203 E Tgr, TgC, TgZ, Th2; | |
3204 Tgr = Tgn + Tgq; | |
3205 TgC = KP707106781 * (Tgw + TgB); | |
3206 ri[WS(rs, 40)] = Tgr - TgC; | |
3207 ri[WS(rs, 8)] = Tgr + TgC; | |
3208 TgZ = KP707106781 * (TgE + TgF); | |
3209 Th2 = Th0 + Th1; | |
3210 ii[WS(rs, 8)] = TgZ + Th2; | |
3211 ii[WS(rs, 40)] = Th2 - TgZ; | |
3212 } | |
3213 { | |
3214 E TgD, TgG, Th3, Th4; | |
3215 TgD = Tgn - Tgq; | |
3216 TgG = KP707106781 * (TgE - TgF); | |
3217 ri[WS(rs, 56)] = TgD - TgG; | |
3218 ri[WS(rs, 24)] = TgD + TgG; | |
3219 Th3 = KP707106781 * (TgB - Tgw); | |
3220 Th4 = Th1 - Th0; | |
3221 ii[WS(rs, 24)] = Th3 + Th4; | |
3222 ii[WS(rs, 56)] = Th4 - Th3; | |
3223 } | |
3224 } | |
3225 { | |
3226 E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; | |
3227 E Tg5; | |
3228 { | |
3229 E Tfp, Tfs, Tgf, Tgg; | |
3230 Tfp = Tj - TG; | |
3231 Tfs = Tfq - Tfr; | |
3232 Tft = Tfp - Tfs; | |
3233 Tg7 = Tfp + Tfs; | |
3234 Tgf = TfR + TfU; | |
3235 Tgg = TfY + TfZ; | |
3236 Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf); | |
3237 Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf); | |
3238 } | |
3239 { | |
3240 E Th7, Th8, Tfy, TfD; | |
3241 Th7 = T1r - T14; | |
3242 Th8 = TgT - TgO; | |
3243 Th9 = Th7 + Th8; | |
3244 Thf = Th8 - Th7; | |
3245 Tfy = Tfw - Tfx; | |
3246 TfD = Tfz + TfC; | |
3247 TfE = KP707106781 * (Tfy - TfD); | |
3248 Th6 = KP707106781 * (Tfy + TfD); | |
3249 } | |
3250 { | |
3251 E TfK, TfP, Tg8, Tg9; | |
3252 TfK = TfI - TfJ; | |
3253 TfP = TfL - TfO; | |
3254 TfQ = FMA(KP923879532, TfK, KP382683432 * TfP); | |
3255 Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK); | |
3256 Tg8 = Tfx + Tfw; | |
3257 Tg9 = Tfz - TfC; | |
3258 Tga = KP707106781 * (Tg8 + Tg9); | |
3259 The = KP707106781 * (Tg9 - Tg8); | |
3260 } | |
3261 { | |
3262 E Tgc, Tgd, TfV, Tg0; | |
3263 Tgc = TfI + TfJ; | |
3264 Tgd = TfL + TfO; | |
3265 Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd); | |
3266 Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc); | |
3267 TfV = TfR - TfU; | |
3268 Tg0 = TfY - TfZ; | |
3269 Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV); | |
3270 Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV); | |
3271 } | |
3272 { | |
3273 E TfF, Tg2, Thd, Thg; | |
3274 TfF = Tft + TfE; | |
3275 Tg2 = TfQ + Tg1; | |
3276 ri[WS(rs, 44)] = TfF - Tg2; | |
3277 ri[WS(rs, 12)] = TfF + Tg2; | |
3278 Thd = Tg4 + Tg5; | |
3279 Thg = The + Thf; | |
3280 ii[WS(rs, 12)] = Thd + Thg; | |
3281 ii[WS(rs, 44)] = Thg - Thd; | |
3282 } | |
3283 { | |
3284 E Tg3, Tg6, Thh, Thi; | |
3285 Tg3 = Tft - TfE; | |
3286 Tg6 = Tg4 - Tg5; | |
3287 ri[WS(rs, 60)] = Tg3 - Tg6; | |
3288 ri[WS(rs, 28)] = Tg3 + Tg6; | |
3289 Thh = Tg1 - TfQ; | |
3290 Thi = Thf - The; | |
3291 ii[WS(rs, 28)] = Thh + Thi; | |
3292 ii[WS(rs, 60)] = Thi - Thh; | |
3293 } | |
3294 { | |
3295 E Tgb, Tgi, Th5, Tha; | |
3296 Tgb = Tg7 + Tga; | |
3297 Tgi = Tge + Tgh; | |
3298 ri[WS(rs, 36)] = Tgb - Tgi; | |
3299 ri[WS(rs, 4)] = Tgb + Tgi; | |
3300 Th5 = Tgk + Tgl; | |
3301 Tha = Th6 + Th9; | |
3302 ii[WS(rs, 4)] = Th5 + Tha; | |
3303 ii[WS(rs, 36)] = Tha - Th5; | |
3304 } | |
3305 { | |
3306 E Tgj, Tgm, Thb, Thc; | |
3307 Tgj = Tg7 - Tga; | |
3308 Tgm = Tgk - Tgl; | |
3309 ri[WS(rs, 52)] = Tgj - Tgm; | |
3310 ri[WS(rs, 20)] = Tgj + Tgm; | |
3311 Thb = Tgh - Tge; | |
3312 Thc = Th9 - Th6; | |
3313 ii[WS(rs, 20)] = Thb + Thc; | |
3314 ii[WS(rs, 52)] = Thc - Thb; | |
3315 } | |
3316 } | |
3317 { | |
3318 E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; | |
3319 E Teu; | |
3320 { | |
3321 E TcP, Td0, Teo, Tep; | |
3322 TcP = TcL - TcO; | |
3323 Td0 = KP707106781 * (TcU - TcZ); | |
3324 Td1 = TcP - Td0; | |
3325 Ten = TcP + Td0; | |
3326 { | |
3327 E Tdc, Tdn, ThB, ThC; | |
3328 Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); | |
3329 Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm); | |
3330 Tdo = Tdc - Tdn; | |
3331 ThA = Tdc + Tdn; | |
3332 ThB = KP707106781 * (TeF - TeE); | |
3333 ThC = Thn - Thm; | |
3334 ThD = ThB + ThC; | |
3335 ThJ = ThC - ThB; | |
3336 } | |
3337 Teo = FMA(KP923879532, Td6, KP382683432 * Tdb); | |
3338 Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm); | |
3339 Teq = Teo + Tep; | |
3340 ThI = Tep - Teo; | |
3341 { | |
3342 E Te7, Tev, Teg, Tew, Te6, Tef; | |
3343 Te6 = KP707106781 * (Te0 - Te5); | |
3344 Te7 = TdV - Te6; | |
3345 Tev = TdV + Te6; | |
3346 Tef = KP707106781 * (Ted - Tee); | |
3347 Teg = Tec - Tef; | |
3348 Tew = Tec + Tef; | |
3349 Teh = FNMS(KP980785280, Teg, KP195090322 * Te7); | |
3350 TeB = FMA(KP831469612, Tew, KP555570233 * Tev); | |
3351 Tel = FMA(KP195090322, Teg, KP980785280 * Te7); | |
3352 Tex = FNMS(KP555570233, Tew, KP831469612 * Tev); | |
3353 } | |
3354 { | |
3355 E TdG, Tes, TdP, Tet, TdF, TdO; | |
3356 TdF = KP707106781 * (Tdz - TdE); | |
3357 TdG = Tdu - TdF; | |
3358 Tes = Tdu + TdF; | |
3359 TdO = KP707106781 * (TdM - TdN); | |
3360 TdP = TdL - TdO; | |
3361 Tet = TdL + TdO; | |
3362 TdQ = FMA(KP980785280, TdG, KP195090322 * TdP); | |
3363 TeA = FNMS(KP555570233, Tet, KP831469612 * Tes); | |
3364 Tek = FNMS(KP980785280, TdP, KP195090322 * TdG); | |
3365 Teu = FMA(KP555570233, Tes, KP831469612 * Tet); | |
3366 } | |
3367 } | |
3368 { | |
3369 E Tdp, Tei, ThH, ThK; | |
3370 Tdp = Td1 + Tdo; | |
3371 Tei = TdQ + Teh; | |
3372 ri[WS(rs, 46)] = Tdp - Tei; | |
3373 ri[WS(rs, 14)] = Tdp + Tei; | |
3374 ThH = Tek + Tel; | |
3375 ThK = ThI + ThJ; | |
3376 ii[WS(rs, 14)] = ThH + ThK; | |
3377 ii[WS(rs, 46)] = ThK - ThH; | |
3378 } | |
3379 { | |
3380 E Tej, Tem, ThL, ThM; | |
3381 Tej = Td1 - Tdo; | |
3382 Tem = Tek - Tel; | |
3383 ri[WS(rs, 62)] = Tej - Tem; | |
3384 ri[WS(rs, 30)] = Tej + Tem; | |
3385 ThL = Teh - TdQ; | |
3386 ThM = ThJ - ThI; | |
3387 ii[WS(rs, 30)] = ThL + ThM; | |
3388 ii[WS(rs, 62)] = ThM - ThL; | |
3389 } | |
3390 { | |
3391 E Ter, Tey, Thz, ThE; | |
3392 Ter = Ten + Teq; | |
3393 Tey = Teu + Tex; | |
3394 ri[WS(rs, 38)] = Ter - Tey; | |
3395 ri[WS(rs, 6)] = Ter + Tey; | |
3396 Thz = TeA + TeB; | |
3397 ThE = ThA + ThD; | |
3398 ii[WS(rs, 6)] = Thz + ThE; | |
3399 ii[WS(rs, 38)] = ThE - Thz; | |
3400 } | |
3401 { | |
3402 E Tez, TeC, ThF, ThG; | |
3403 Tez = Ten - Teq; | |
3404 TeC = TeA - TeB; | |
3405 ri[WS(rs, 54)] = Tez - TeC; | |
3406 ri[WS(rs, 22)] = Tez + TeC; | |
3407 ThF = Tex - Teu; | |
3408 ThG = ThD - ThA; | |
3409 ii[WS(rs, 22)] = ThF + ThG; | |
3410 ii[WS(rs, 54)] = ThG - ThF; | |
3411 } | |
3412 } | |
3413 { | |
3414 E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; | |
3415 E Tfg; | |
3416 { | |
3417 E TeD, TeG, Tfa, Tfb; | |
3418 TeD = TcL + TcO; | |
3419 TeG = KP707106781 * (TeE + TeF); | |
3420 TeH = TeD - TeG; | |
3421 Tf9 = TeD + TeG; | |
3422 { | |
3423 E TeK, TeN, Thl, Tho; | |
3424 TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI); | |
3425 TeN = FMA(KP923879532, TeL, KP382683432 * TeM); | |
3426 TeO = TeK - TeN; | |
3427 Thk = TeK + TeN; | |
3428 Thl = KP707106781 * (TcU + TcZ); | |
3429 Tho = Thm + Thn; | |
3430 Thp = Thl + Tho; | |
3431 Thv = Tho - Thl; | |
3432 } | |
3433 Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ); | |
3434 Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM); | |
3435 Tfc = Tfa + Tfb; | |
3436 Thu = Tfb - Tfa; | |
3437 { | |
3438 E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; | |
3439 TeY = KP707106781 * (Tee + Ted); | |
3440 TeZ = TeX - TeY; | |
3441 Tfh = TeX + TeY; | |
3442 Tf1 = KP707106781 * (Te0 + Te5); | |
3443 Tf2 = Tf0 - Tf1; | |
3444 Tfi = Tf0 + Tf1; | |
3445 Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ); | |
3446 Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi); | |
3447 Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2); | |
3448 Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh); | |
3449 } | |
3450 { | |
3451 E TeS, Tfe, TeV, Tff, TeR, TeU; | |
3452 TeR = KP707106781 * (TdE + Tdz); | |
3453 TeS = TeQ - TeR; | |
3454 Tfe = TeQ + TeR; | |
3455 TeU = KP707106781 * (TdM + TdN); | |
3456 TeV = TeT - TeU; | |
3457 Tff = TeT + TeU; | |
3458 TeW = FMA(KP555570233, TeS, KP831469612 * TeV); | |
3459 Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff); | |
3460 Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV); | |
3461 Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff); | |
3462 } | |
3463 } | |
3464 { | |
3465 E TeP, Tf4, Tht, Thw; | |
3466 TeP = TeH + TeO; | |
3467 Tf4 = TeW + Tf3; | |
3468 ri[WS(rs, 42)] = TeP - Tf4; | |
3469 ri[WS(rs, 10)] = TeP + Tf4; | |
3470 Tht = Tf6 + Tf7; | |
3471 Thw = Thu + Thv; | |
3472 ii[WS(rs, 10)] = Tht + Thw; | |
3473 ii[WS(rs, 42)] = Thw - Tht; | |
3474 } | |
3475 { | |
3476 E Tf5, Tf8, Thx, Thy; | |
3477 Tf5 = TeH - TeO; | |
3478 Tf8 = Tf6 - Tf7; | |
3479 ri[WS(rs, 58)] = Tf5 - Tf8; | |
3480 ri[WS(rs, 26)] = Tf5 + Tf8; | |
3481 Thx = Tf3 - TeW; | |
3482 Thy = Thv - Thu; | |
3483 ii[WS(rs, 26)] = Thx + Thy; | |
3484 ii[WS(rs, 58)] = Thy - Thx; | |
3485 } | |
3486 { | |
3487 E Tfd, Tfk, Thj, Thq; | |
3488 Tfd = Tf9 + Tfc; | |
3489 Tfk = Tfg + Tfj; | |
3490 ri[WS(rs, 34)] = Tfd - Tfk; | |
3491 ri[WS(rs, 2)] = Tfd + Tfk; | |
3492 Thj = Tfm + Tfn; | |
3493 Thq = Thk + Thp; | |
3494 ii[WS(rs, 2)] = Thj + Thq; | |
3495 ii[WS(rs, 34)] = Thq - Thj; | |
3496 } | |
3497 { | |
3498 E Tfl, Tfo, Thr, Ths; | |
3499 Tfl = Tf9 - Tfc; | |
3500 Tfo = Tfm - Tfn; | |
3501 ri[WS(rs, 50)] = Tfl - Tfo; | |
3502 ri[WS(rs, 18)] = Tfl + Tfo; | |
3503 Thr = Tfj - Tfg; | |
3504 Ths = Thp - Thk; | |
3505 ii[WS(rs, 18)] = Thr + Ths; | |
3506 ii[WS(rs, 50)] = Ths - Thr; | |
3507 } | |
3508 } | |
3509 { | |
3510 E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v; | |
3511 E T9H; | |
3512 { | |
3513 E T6n, T6K, TiB, TiC; | |
3514 T6n = T6b - T6m; | |
3515 T6K = T6y - T6J; | |
3516 T6L = T6n - T6K; | |
3517 T9x = T6n + T6K; | |
3518 TiB = T9P - T9O; | |
3519 TiC = Tin - Tim; | |
3520 TiD = TiB + TiC; | |
3521 TiJ = TiC - TiB; | |
3522 } | |
3523 { | |
3524 E T7c, T9y, T7D, T9z; | |
3525 { | |
3526 E T72, T7b, T7t, T7C; | |
3527 T72 = T6Q - T71; | |
3528 T7b = T77 - T7a; | |
3529 T7c = FNMS(KP980785280, T7b, KP195090322 * T72); | |
3530 T9y = FMA(KP980785280, T72, KP195090322 * T7b); | |
3531 T7t = T7h - T7s; | |
3532 T7C = T7y - T7B; | |
3533 T7D = FMA(KP195090322, T7t, KP980785280 * T7C); | |
3534 T9z = FNMS(KP980785280, T7t, KP195090322 * T7C); | |
3535 } | |
3536 T7E = T7c - T7D; | |
3537 TiI = T9z - T9y; | |
3538 T9A = T9y + T9z; | |
3539 TiA = T7c + T7D; | |
3540 } | |
3541 { | |
3542 E T8k, T9C, T8x, T9D; | |
3543 { | |
3544 E T7W, T8j, T8t, T8w; | |
3545 T7W = T7K - T7V; | |
3546 T8j = T87 - T8i; | |
3547 T8k = T7W - T8j; | |
3548 T9C = T7W + T8j; | |
3549 T8t = T8p - T8s; | |
3550 T8w = T8u - T8v; | |
3551 T8x = T8t - T8w; | |
3552 T9D = T8t + T8w; | |
3553 } | |
3554 T8y = FMA(KP995184726, T8k, KP098017140 * T8x); | |
3555 T9K = FNMS(KP634393284, T9D, KP773010453 * T9C); | |
3556 T9u = FNMS(KP995184726, T8x, KP098017140 * T8k); | |
3557 T9E = FMA(KP634393284, T9C, KP773010453 * T9D); | |
3558 } | |
3559 { | |
3560 E T9d, T9F, T9q, T9G; | |
3561 { | |
3562 E T8P, T9c, T9m, T9p; | |
3563 T8P = T8D - T8O; | |
3564 T9c = T90 - T9b; | |
3565 T9d = T8P - T9c; | |
3566 T9F = T8P + T9c; | |
3567 T9m = T9i - T9l; | |
3568 T9p = T9n - T9o; | |
3569 T9q = T9m - T9p; | |
3570 T9G = T9m + T9p; | |
3571 } | |
3572 T9r = FNMS(KP995184726, T9q, KP098017140 * T9d); | |
3573 T9L = FMA(KP773010453, T9G, KP634393284 * T9F); | |
3574 T9v = FMA(KP098017140, T9q, KP995184726 * T9d); | |
3575 T9H = FNMS(KP634393284, T9G, KP773010453 * T9F); | |
3576 } | |
3577 { | |
3578 E T7F, T9s, TiH, TiK; | |
3579 T7F = T6L + T7E; | |
3580 T9s = T8y + T9r; | |
3581 ri[WS(rs, 47)] = T7F - T9s; | |
3582 ri[WS(rs, 15)] = T7F + T9s; | |
3583 TiH = T9u + T9v; | |
3584 TiK = TiI + TiJ; | |
3585 ii[WS(rs, 15)] = TiH + TiK; | |
3586 ii[WS(rs, 47)] = TiK - TiH; | |
3587 } | |
3588 { | |
3589 E T9t, T9w, TiL, TiM; | |
3590 T9t = T6L - T7E; | |
3591 T9w = T9u - T9v; | |
3592 ri[WS(rs, 63)] = T9t - T9w; | |
3593 ri[WS(rs, 31)] = T9t + T9w; | |
3594 TiL = T9r - T8y; | |
3595 TiM = TiJ - TiI; | |
3596 ii[WS(rs, 31)] = TiL + TiM; | |
3597 ii[WS(rs, 63)] = TiM - TiL; | |
3598 } | |
3599 { | |
3600 E T9B, T9I, Tiz, TiE; | |
3601 T9B = T9x + T9A; | |
3602 T9I = T9E + T9H; | |
3603 ri[WS(rs, 39)] = T9B - T9I; | |
3604 ri[WS(rs, 7)] = T9B + T9I; | |
3605 Tiz = T9K + T9L; | |
3606 TiE = TiA + TiD; | |
3607 ii[WS(rs, 7)] = Tiz + TiE; | |
3608 ii[WS(rs, 39)] = TiE - Tiz; | |
3609 } | |
3610 { | |
3611 E T9J, T9M, TiF, TiG; | |
3612 T9J = T9x - T9A; | |
3613 T9M = T9K - T9L; | |
3614 ri[WS(rs, 55)] = T9J - T9M; | |
3615 ri[WS(rs, 23)] = T9J + T9M; | |
3616 TiF = T9H - T9E; | |
3617 TiG = TiD - TiA; | |
3618 ii[WS(rs, 23)] = TiF + TiG; | |
3619 ii[WS(rs, 55)] = TiG - TiF; | |
3620 } | |
3621 } | |
3622 { | |
3623 E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; | |
3624 E TbT; | |
3625 { | |
3626 E TaD, TaK, Ti7, Ti8; | |
3627 TaD = Taz - TaC; | |
3628 TaK = TaG - TaJ; | |
3629 TaL = TaD - TaK; | |
3630 TbJ = TaD + TaK; | |
3631 Ti7 = Tc1 - Tc0; | |
3632 Ti8 = ThT - ThQ; | |
3633 Ti9 = Ti7 + Ti8; | |
3634 Tif = Ti8 - Ti7; | |
3635 } | |
3636 { | |
3637 E TaS, TbK, TaZ, TbL; | |
3638 { | |
3639 E TaO, TaR, TaV, TaY; | |
3640 TaO = TaM - TaN; | |
3641 TaR = TaP - TaQ; | |
3642 TaS = FNMS(KP831469612, TaR, KP555570233 * TaO); | |
3643 TbK = FMA(KP555570233, TaR, KP831469612 * TaO); | |
3644 TaV = TaT - TaU; | |
3645 TaY = TaW - TaX; | |
3646 TaZ = FMA(KP831469612, TaV, KP555570233 * TaY); | |
3647 TbL = FNMS(KP831469612, TaY, KP555570233 * TaV); | |
3648 } | |
3649 Tb0 = TaS - TaZ; | |
3650 Tie = TbL - TbK; | |
3651 TbM = TbK + TbL; | |
3652 Ti6 = TaS + TaZ; | |
3653 } | |
3654 { | |
3655 E Tbc, TbO, Tbj, TbP; | |
3656 { | |
3657 E Tb4, Tbb, Tbf, Tbi; | |
3658 Tb4 = Tb2 - Tb3; | |
3659 Tbb = Tb7 - Tba; | |
3660 Tbc = Tb4 - Tbb; | |
3661 TbO = Tb4 + Tbb; | |
3662 Tbf = Tbd - Tbe; | |
3663 Tbi = Tbg - Tbh; | |
3664 Tbj = Tbf - Tbi; | |
3665 TbP = Tbf + Tbi; | |
3666 } | |
3667 Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj); | |
3668 TbW = FNMS(KP471396736, TbP, KP881921264 * TbO); | |
3669 TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc); | |
3670 TbQ = FMA(KP471396736, TbO, KP881921264 * TbP); | |
3671 } | |
3672 { | |
3673 E Tbv, TbR, TbC, TbS; | |
3674 { | |
3675 E Tbn, Tbu, Tby, TbB; | |
3676 Tbn = Tbl - Tbm; | |
3677 Tbu = Tbq - Tbt; | |
3678 Tbv = Tbn - Tbu; | |
3679 TbR = Tbn + Tbu; | |
3680 Tby = Tbw - Tbx; | |
3681 TbB = Tbz - TbA; | |
3682 TbC = Tby - TbB; | |
3683 TbS = Tby + TbB; | |
3684 } | |
3685 TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv); | |
3686 TbX = FMA(KP881921264, TbS, KP471396736 * TbR); | |
3687 TbH = FMA(KP290284677, TbC, KP956940335 * Tbv); | |
3688 TbT = FNMS(KP471396736, TbS, KP881921264 * TbR); | |
3689 } | |
3690 { | |
3691 E Tb1, TbE, Tid, Tig; | |
3692 Tb1 = TaL + Tb0; | |
3693 TbE = Tbk + TbD; | |
3694 ri[WS(rs, 45)] = Tb1 - TbE; | |
3695 ri[WS(rs, 13)] = Tb1 + TbE; | |
3696 Tid = TbG + TbH; | |
3697 Tig = Tie + Tif; | |
3698 ii[WS(rs, 13)] = Tid + Tig; | |
3699 ii[WS(rs, 45)] = Tig - Tid; | |
3700 } | |
3701 { | |
3702 E TbF, TbI, Tih, Tii; | |
3703 TbF = TaL - Tb0; | |
3704 TbI = TbG - TbH; | |
3705 ri[WS(rs, 61)] = TbF - TbI; | |
3706 ri[WS(rs, 29)] = TbF + TbI; | |
3707 Tih = TbD - Tbk; | |
3708 Tii = Tif - Tie; | |
3709 ii[WS(rs, 29)] = Tih + Tii; | |
3710 ii[WS(rs, 61)] = Tii - Tih; | |
3711 } | |
3712 { | |
3713 E TbN, TbU, Ti5, Tia; | |
3714 TbN = TbJ + TbM; | |
3715 TbU = TbQ + TbT; | |
3716 ri[WS(rs, 37)] = TbN - TbU; | |
3717 ri[WS(rs, 5)] = TbN + TbU; | |
3718 Ti5 = TbW + TbX; | |
3719 Tia = Ti6 + Ti9; | |
3720 ii[WS(rs, 5)] = Ti5 + Tia; | |
3721 ii[WS(rs, 37)] = Tia - Ti5; | |
3722 } | |
3723 { | |
3724 E TbV, TbY, Tib, Tic; | |
3725 TbV = TbJ - TbM; | |
3726 TbY = TbW - TbX; | |
3727 ri[WS(rs, 53)] = TbV - TbY; | |
3728 ri[WS(rs, 21)] = TbV + TbY; | |
3729 Tib = TbT - TbQ; | |
3730 Tic = Ti9 - Ti6; | |
3731 ii[WS(rs, 21)] = Tib + Tic; | |
3732 ii[WS(rs, 53)] = Tic - Tib; | |
3733 } | |
3734 } | |
3735 { | |
3736 E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; | |
3737 E TcF; | |
3738 { | |
3739 E TbZ, Tc2, ThP, ThU; | |
3740 TbZ = Taz + TaC; | |
3741 Tc2 = Tc0 + Tc1; | |
3742 Tc3 = TbZ - Tc2; | |
3743 Tcv = TbZ + Tc2; | |
3744 ThP = TaG + TaJ; | |
3745 ThU = ThQ + ThT; | |
3746 ThV = ThP + ThU; | |
3747 Ti1 = ThU - ThP; | |
3748 } | |
3749 { | |
3750 E Tc6, Tcw, Tc9, Tcx; | |
3751 { | |
3752 E Tc4, Tc5, Tc7, Tc8; | |
3753 Tc4 = TaM + TaN; | |
3754 Tc5 = TaP + TaQ; | |
3755 Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4); | |
3756 Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4); | |
3757 Tc7 = TaT + TaU; | |
3758 Tc8 = TaW + TaX; | |
3759 Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8); | |
3760 Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7); | |
3761 } | |
3762 Tca = Tc6 - Tc9; | |
3763 Ti0 = Tcx - Tcw; | |
3764 Tcy = Tcw + Tcx; | |
3765 ThO = Tc6 + Tc9; | |
3766 } | |
3767 { | |
3768 E Tce, TcA, Tch, TcB; | |
3769 { | |
3770 E Tcc, Tcd, Tcf, Tcg; | |
3771 Tcc = Tbd + Tbe; | |
3772 Tcd = Tba + Tb7; | |
3773 Tce = Tcc - Tcd; | |
3774 TcA = Tcc + Tcd; | |
3775 Tcf = Tb2 + Tb3; | |
3776 Tcg = Tbg + Tbh; | |
3777 Tch = Tcf - Tcg; | |
3778 TcB = Tcf + Tcg; | |
3779 } | |
3780 Tci = FMA(KP634393284, Tce, KP773010453 * Tch); | |
3781 TcI = FNMS(KP098017140, TcA, KP995184726 * TcB); | |
3782 Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch); | |
3783 TcC = FMA(KP995184726, TcA, KP098017140 * TcB); | |
3784 } | |
3785 { | |
3786 E Tcl, TcD, Tco, TcE; | |
3787 { | |
3788 E Tcj, Tck, Tcm, Tcn; | |
3789 Tcj = Tbl + Tbm; | |
3790 Tck = TbA + Tbz; | |
3791 Tcl = Tcj - Tck; | |
3792 TcD = Tcj + Tck; | |
3793 Tcm = Tbw + Tbx; | |
3794 Tcn = Tbq + Tbt; | |
3795 Tco = Tcm - Tcn; | |
3796 TcE = Tcm + Tcn; | |
3797 } | |
3798 Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl); | |
3799 TcJ = FMA(KP098017140, TcD, KP995184726 * TcE); | |
3800 Tct = FMA(KP773010453, Tcl, KP634393284 * Tco); | |
3801 TcF = FNMS(KP098017140, TcE, KP995184726 * TcD); | |
3802 } | |
3803 { | |
3804 E Tcb, Tcq, ThZ, Ti2; | |
3805 Tcb = Tc3 + Tca; | |
3806 Tcq = Tci + Tcp; | |
3807 ri[WS(rs, 41)] = Tcb - Tcq; | |
3808 ri[WS(rs, 9)] = Tcb + Tcq; | |
3809 ThZ = Tcs + Tct; | |
3810 Ti2 = Ti0 + Ti1; | |
3811 ii[WS(rs, 9)] = ThZ + Ti2; | |
3812 ii[WS(rs, 41)] = Ti2 - ThZ; | |
3813 } | |
3814 { | |
3815 E Tcr, Tcu, Ti3, Ti4; | |
3816 Tcr = Tc3 - Tca; | |
3817 Tcu = Tcs - Tct; | |
3818 ri[WS(rs, 57)] = Tcr - Tcu; | |
3819 ri[WS(rs, 25)] = Tcr + Tcu; | |
3820 Ti3 = Tcp - Tci; | |
3821 Ti4 = Ti1 - Ti0; | |
3822 ii[WS(rs, 25)] = Ti3 + Ti4; | |
3823 ii[WS(rs, 57)] = Ti4 - Ti3; | |
3824 } | |
3825 { | |
3826 E Tcz, TcG, ThN, ThW; | |
3827 Tcz = Tcv + Tcy; | |
3828 TcG = TcC + TcF; | |
3829 ri[WS(rs, 33)] = Tcz - TcG; | |
3830 ri[WS(rs, 1)] = Tcz + TcG; | |
3831 ThN = TcI + TcJ; | |
3832 ThW = ThO + ThV; | |
3833 ii[WS(rs, 1)] = ThN + ThW; | |
3834 ii[WS(rs, 33)] = ThW - ThN; | |
3835 } | |
3836 { | |
3837 E TcH, TcK, ThX, ThY; | |
3838 TcH = Tcv - Tcy; | |
3839 TcK = TcI - TcJ; | |
3840 ri[WS(rs, 49)] = TcH - TcK; | |
3841 ri[WS(rs, 17)] = TcH + TcK; | |
3842 ThX = TcF - TcC; | |
3843 ThY = ThV - ThO; | |
3844 ii[WS(rs, 17)] = ThX + ThY; | |
3845 ii[WS(rs, 49)] = ThY - ThX; | |
3846 } | |
3847 } | |
3848 { | |
3849 E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; | |
3850 E Tat; | |
3851 { | |
3852 E T9N, T9Q, Til, Tio; | |
3853 T9N = T6b + T6m; | |
3854 T9Q = T9O + T9P; | |
3855 T9R = T9N - T9Q; | |
3856 Taj = T9N + T9Q; | |
3857 Til = T6y + T6J; | |
3858 Tio = Tim + Tin; | |
3859 Tip = Til + Tio; | |
3860 Tiv = Tio - Til; | |
3861 } | |
3862 { | |
3863 E T9U, Tak, T9X, Tal; | |
3864 { | |
3865 E T9S, T9T, T9V, T9W; | |
3866 T9S = T6Q + T71; | |
3867 T9T = T77 + T7a; | |
3868 T9U = FNMS(KP555570233, T9T, KP831469612 * T9S); | |
3869 Tak = FMA(KP555570233, T9S, KP831469612 * T9T); | |
3870 T9V = T7h + T7s; | |
3871 T9W = T7y + T7B; | |
3872 T9X = FMA(KP831469612, T9V, KP555570233 * T9W); | |
3873 Tal = FNMS(KP555570233, T9V, KP831469612 * T9W); | |
3874 } | |
3875 T9Y = T9U - T9X; | |
3876 Tiu = Tal - Tak; | |
3877 Tam = Tak + Tal; | |
3878 Tik = T9U + T9X; | |
3879 } | |
3880 { | |
3881 E Ta2, Tao, Ta5, Tap; | |
3882 { | |
3883 E Ta0, Ta1, Ta3, Ta4; | |
3884 Ta0 = T8p + T8s; | |
3885 Ta1 = T8i + T87; | |
3886 Ta2 = Ta0 - Ta1; | |
3887 Tao = Ta0 + Ta1; | |
3888 Ta3 = T7K + T7V; | |
3889 Ta4 = T8u + T8v; | |
3890 Ta5 = Ta3 - Ta4; | |
3891 Tap = Ta3 + Ta4; | |
3892 } | |
3893 Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); | |
3894 Taw = FNMS(KP290284677, Tao, KP956940335 * Tap); | |
3895 Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5); | |
3896 Taq = FMA(KP956940335, Tao, KP290284677 * Tap); | |
3897 } | |
3898 { | |
3899 E Ta9, Tar, Tac, Tas; | |
3900 { | |
3901 E Ta7, Ta8, Taa, Tab; | |
3902 Ta7 = T8D + T8O; | |
3903 Ta8 = T9o + T9n; | |
3904 Ta9 = Ta7 - Ta8; | |
3905 Tar = Ta7 + Ta8; | |
3906 Taa = T9i + T9l; | |
3907 Tab = T90 + T9b; | |
3908 Tac = Taa - Tab; | |
3909 Tas = Taa + Tab; | |
3910 } | |
3911 Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); | |
3912 Tax = FMA(KP290284677, Tar, KP956940335 * Tas); | |
3913 Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); | |
3914 Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); | |
3915 } | |
3916 { | |
3917 E T9Z, Tae, Tit, Tiw; | |
3918 T9Z = T9R + T9Y; | |
3919 Tae = Ta6 + Tad; | |
3920 ri[WS(rs, 43)] = T9Z - Tae; | |
3921 ri[WS(rs, 11)] = T9Z + Tae; | |
3922 Tit = Tag + Tah; | |
3923 Tiw = Tiu + Tiv; | |
3924 ii[WS(rs, 11)] = Tit + Tiw; | |
3925 ii[WS(rs, 43)] = Tiw - Tit; | |
3926 } | |
3927 { | |
3928 E Taf, Tai, Tix, Tiy; | |
3929 Taf = T9R - T9Y; | |
3930 Tai = Tag - Tah; | |
3931 ri[WS(rs, 59)] = Taf - Tai; | |
3932 ri[WS(rs, 27)] = Taf + Tai; | |
3933 Tix = Tad - Ta6; | |
3934 Tiy = Tiv - Tiu; | |
3935 ii[WS(rs, 27)] = Tix + Tiy; | |
3936 ii[WS(rs, 59)] = Tiy - Tix; | |
3937 } | |
3938 { | |
3939 E Tan, Tau, Tij, Tiq; | |
3940 Tan = Taj + Tam; | |
3941 Tau = Taq + Tat; | |
3942 ri[WS(rs, 35)] = Tan - Tau; | |
3943 ri[WS(rs, 3)] = Tan + Tau; | |
3944 Tij = Taw + Tax; | |
3945 Tiq = Tik + Tip; | |
3946 ii[WS(rs, 3)] = Tij + Tiq; | |
3947 ii[WS(rs, 35)] = Tiq - Tij; | |
3948 } | |
3949 { | |
3950 E Tav, Tay, Tir, Tis; | |
3951 Tav = Taj - Tam; | |
3952 Tay = Taw - Tax; | |
3953 ri[WS(rs, 51)] = Tav - Tay; | |
3954 ri[WS(rs, 19)] = Tav + Tay; | |
3955 Tir = Tat - Taq; | |
3956 Tis = Tip - Tik; | |
3957 ii[WS(rs, 19)] = Tir + Tis; | |
3958 ii[WS(rs, 51)] = Tis - Tir; | |
3959 } | |
3960 } | |
3961 } | |
3962 } | |
3963 } | |
3964 | |
3965 static const tw_instr twinstr[] = { | |
3966 {TW_FULL, 0, 64}, | |
3967 {TW_NEXT, 1, 0} | |
3968 }; | |
3969 | |
3970 static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {808, 270, 230, 0}, 0, 0, 0 }; | |
3971 | |
3972 void X(codelet_t1_64) (planner *p) { | |
3973 X(kdft_dit_register) (p, t1_64, &desc); | |
3974 } | |
3975 #endif /* HAVE_FMA */ |