Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t1_32.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:51 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 434 FP additions, 260 FP multiplications, | |
32 * (or, 236 additions, 62 multiplications, 198 fused multiply/add), | |
33 * 135 stack variables, 7 constants, and 128 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
40 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
41 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
42 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
46 { | |
47 INT m; | |
48 for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { | |
49 E T90, T8Z; | |
50 { | |
51 E T8x, T87, T8, T3w, T83, T3B, T8y, Tl, T6F, Tz, T3J, T5T, T6G, TM, T3Q; | |
52 E T5U, T46, T5Y, T7D, T6L, T5X, T3Z, T6M, T1f, T7E, T6R, T60, T4e, T6O, T1G; | |
53 E T61, T4l, T78, T7N, T54, T6f, T32, T7b, T6c, T5r, T6X, T7I, T4v, T68, T29; | |
54 E T70, T65, T4S, T5s, T5b, T7O, T7e, T79, T3t, T5t, T5i, T4H, T2y, T4A, T71; | |
55 E T2m, T4B, T4F, T2s; | |
56 { | |
57 E T44, T1d, T3X, T6J, T11, T40, T42, T17, T5h, T5c; | |
58 { | |
59 E Ta, Td, Tg, T3x, Tb, Tj, Tf, Tc, Ti; | |
60 { | |
61 E T1, T86, T3, T6, T2, T5; | |
62 T1 = ri[0]; | |
63 T86 = ii[0]; | |
64 T3 = ri[WS(rs, 16)]; | |
65 T6 = ii[WS(rs, 16)]; | |
66 T2 = W[30]; | |
67 T5 = W[31]; | |
68 { | |
69 E T84, T4, T9, T85, T7; | |
70 Ta = ri[WS(rs, 8)]; | |
71 Td = ii[WS(rs, 8)]; | |
72 T84 = T2 * T6; | |
73 T4 = T2 * T3; | |
74 T9 = W[14]; | |
75 Tg = ri[WS(rs, 24)]; | |
76 T85 = FNMS(T5, T3, T84); | |
77 T7 = FMA(T5, T6, T4); | |
78 T3x = T9 * Td; | |
79 Tb = T9 * Ta; | |
80 T8x = T86 - T85; | |
81 T87 = T85 + T86; | |
82 T8 = T1 + T7; | |
83 T3w = T1 - T7; | |
84 Tj = ii[WS(rs, 24)]; | |
85 Tf = W[46]; | |
86 } | |
87 Tc = W[15]; | |
88 Ti = W[47]; | |
89 } | |
90 { | |
91 E Tu, Tx, T3F, Ts, Tw, T3G, Tv; | |
92 { | |
93 E To, Tr, Tp, T3E, Tq, Tt; | |
94 { | |
95 E T3y, Te, T3A, Tk, T3z, Th, Tn; | |
96 To = ri[WS(rs, 4)]; | |
97 T3z = Tf * Tj; | |
98 Th = Tf * Tg; | |
99 T3y = FNMS(Tc, Ta, T3x); | |
100 Te = FMA(Tc, Td, Tb); | |
101 T3A = FNMS(Ti, Tg, T3z); | |
102 Tk = FMA(Ti, Tj, Th); | |
103 Tr = ii[WS(rs, 4)]; | |
104 Tn = W[6]; | |
105 T83 = T3y + T3A; | |
106 T3B = T3y - T3A; | |
107 T8y = Te - Tk; | |
108 Tl = Te + Tk; | |
109 Tp = Tn * To; | |
110 T3E = Tn * Tr; | |
111 } | |
112 Tq = W[7]; | |
113 Tu = ri[WS(rs, 20)]; | |
114 Tx = ii[WS(rs, 20)]; | |
115 Tt = W[38]; | |
116 T3F = FNMS(Tq, To, T3E); | |
117 Ts = FMA(Tq, Tr, Tp); | |
118 Tw = W[39]; | |
119 T3G = Tt * Tx; | |
120 Tv = Tt * Tu; | |
121 } | |
122 { | |
123 E T3M, TF, TH, TK, TG, TJ, TE, TD, TC; | |
124 { | |
125 E TB, T3H, Ty, TA, T3I, T3D, T3L; | |
126 TB = ri[WS(rs, 28)]; | |
127 TE = ii[WS(rs, 28)]; | |
128 T3H = FNMS(Tw, Tu, T3G); | |
129 Ty = FMA(Tw, Tx, Tv); | |
130 TA = W[54]; | |
131 TD = W[55]; | |
132 T6F = T3F + T3H; | |
133 T3I = T3F - T3H; | |
134 Tz = Ts + Ty; | |
135 T3D = Ts - Ty; | |
136 T3L = TA * TE; | |
137 TC = TA * TB; | |
138 T3J = T3D + T3I; | |
139 T5T = T3I - T3D; | |
140 T3M = FNMS(TD, TB, T3L); | |
141 } | |
142 TF = FMA(TD, TE, TC); | |
143 TH = ri[WS(rs, 12)]; | |
144 TK = ii[WS(rs, 12)]; | |
145 TG = W[22]; | |
146 TJ = W[23]; | |
147 { | |
148 E TU, T3U, T13, T16, T3W, T10, T12, T15, T41, T14; | |
149 { | |
150 E T19, T1c, T18, T1b, T3P, T3K; | |
151 { | |
152 E TQ, TT, T3N, TI, TP, TS; | |
153 TQ = ri[WS(rs, 2)]; | |
154 TT = ii[WS(rs, 2)]; | |
155 T3N = TG * TK; | |
156 TI = TG * TH; | |
157 TP = W[2]; | |
158 TS = W[3]; | |
159 { | |
160 E T3O, TL, T3T, TR; | |
161 T3O = FNMS(TJ, TH, T3N); | |
162 TL = FMA(TJ, TK, TI); | |
163 T3T = TP * TT; | |
164 TR = TP * TQ; | |
165 T6G = T3M + T3O; | |
166 T3P = T3M - T3O; | |
167 TM = TF + TL; | |
168 T3K = TF - TL; | |
169 TU = FMA(TS, TT, TR); | |
170 T3U = FNMS(TS, TQ, T3T); | |
171 } | |
172 } | |
173 T3Q = T3K - T3P; | |
174 T5U = T3K + T3P; | |
175 T19 = ri[WS(rs, 26)]; | |
176 T1c = ii[WS(rs, 26)]; | |
177 T18 = W[50]; | |
178 T1b = W[51]; | |
179 { | |
180 E TW, TZ, TY, T3V, TX, T43, T1a, TV; | |
181 TW = ri[WS(rs, 18)]; | |
182 TZ = ii[WS(rs, 18)]; | |
183 T43 = T18 * T1c; | |
184 T1a = T18 * T19; | |
185 TV = W[34]; | |
186 TY = W[35]; | |
187 T44 = FNMS(T1b, T19, T43); | |
188 T1d = FMA(T1b, T1c, T1a); | |
189 T3V = TV * TZ; | |
190 TX = TV * TW; | |
191 T13 = ri[WS(rs, 10)]; | |
192 T16 = ii[WS(rs, 10)]; | |
193 T3W = FNMS(TY, TW, T3V); | |
194 T10 = FMA(TY, TZ, TX); | |
195 T12 = W[18]; | |
196 T15 = W[19]; | |
197 } | |
198 } | |
199 T3X = T3U - T3W; | |
200 T6J = T3U + T3W; | |
201 T11 = TU + T10; | |
202 T40 = TU - T10; | |
203 T41 = T12 * T16; | |
204 T14 = T12 * T13; | |
205 T42 = FNMS(T15, T13, T41); | |
206 T17 = FMA(T15, T16, T14); | |
207 } | |
208 } | |
209 } | |
210 } | |
211 { | |
212 E T49, T1l, T4j, T1E, T1u, T1x, T1w, T4b, T1r, T4g, T1v; | |
213 { | |
214 E T1A, T1D, T1C, T4i, T1B; | |
215 { | |
216 E T1h, T1k, T1g, T1j, T48, T1i, T1z; | |
217 T1h = ri[WS(rs, 30)]; | |
218 T1k = ii[WS(rs, 30)]; | |
219 { | |
220 E T6K, T45, T1e, T3Y; | |
221 T6K = T42 + T44; | |
222 T45 = T42 - T44; | |
223 T1e = T17 + T1d; | |
224 T3Y = T17 - T1d; | |
225 T46 = T40 + T45; | |
226 T5Y = T40 - T45; | |
227 T7D = T6J + T6K; | |
228 T6L = T6J - T6K; | |
229 T5X = T3X + T3Y; | |
230 T3Z = T3X - T3Y; | |
231 T6M = T11 - T1e; | |
232 T1f = T11 + T1e; | |
233 T1g = W[58]; | |
234 } | |
235 T1j = W[59]; | |
236 T1A = ri[WS(rs, 22)]; | |
237 T1D = ii[WS(rs, 22)]; | |
238 T48 = T1g * T1k; | |
239 T1i = T1g * T1h; | |
240 T1z = W[42]; | |
241 T1C = W[43]; | |
242 T49 = FNMS(T1j, T1h, T48); | |
243 T1l = FMA(T1j, T1k, T1i); | |
244 T4i = T1z * T1D; | |
245 T1B = T1z * T1A; | |
246 } | |
247 { | |
248 E T1n, T1q, T1m, T1p, T4a, T1o, T1t; | |
249 T1n = ri[WS(rs, 14)]; | |
250 T1q = ii[WS(rs, 14)]; | |
251 T4j = FNMS(T1C, T1A, T4i); | |
252 T1E = FMA(T1C, T1D, T1B); | |
253 T1m = W[26]; | |
254 T1p = W[27]; | |
255 T1u = ri[WS(rs, 6)]; | |
256 T1x = ii[WS(rs, 6)]; | |
257 T4a = T1m * T1q; | |
258 T1o = T1m * T1n; | |
259 T1t = W[10]; | |
260 T1w = W[11]; | |
261 T4b = FNMS(T1p, T1n, T4a); | |
262 T1r = FMA(T1p, T1q, T1o); | |
263 T4g = T1t * T1x; | |
264 T1v = T1t * T1u; | |
265 } | |
266 } | |
267 { | |
268 E T4c, T6P, T1s, T4f, T4h, T1y; | |
269 T4c = T49 - T4b; | |
270 T6P = T49 + T4b; | |
271 T1s = T1l + T1r; | |
272 T4f = T1l - T1r; | |
273 T4h = FNMS(T1w, T1u, T4g); | |
274 T1y = FMA(T1w, T1x, T1v); | |
275 { | |
276 E T4k, T6Q, T4d, T1F; | |
277 T4k = T4h - T4j; | |
278 T6Q = T4h + T4j; | |
279 T4d = T1y - T1E; | |
280 T1F = T1y + T1E; | |
281 T7E = T6P + T6Q; | |
282 T6R = T6P - T6Q; | |
283 T60 = T4c + T4d; | |
284 T4e = T4c - T4d; | |
285 T6O = T1s - T1F; | |
286 T1G = T1s + T1F; | |
287 T61 = T4f - T4k; | |
288 T4l = T4f + T4k; | |
289 } | |
290 } | |
291 } | |
292 { | |
293 E T4Z, T2H, T5p, T30, T2Q, T2T, T2S, T51, T2N, T5m, T2R; | |
294 { | |
295 E T2W, T2Z, T2Y, T5o, T2X; | |
296 { | |
297 E T2D, T2G, T2C, T2F, T4Y, T2E, T2V; | |
298 T2D = ri[WS(rs, 31)]; | |
299 T2G = ii[WS(rs, 31)]; | |
300 T2C = W[60]; | |
301 T2F = W[61]; | |
302 T2W = ri[WS(rs, 23)]; | |
303 T2Z = ii[WS(rs, 23)]; | |
304 T4Y = T2C * T2G; | |
305 T2E = T2C * T2D; | |
306 T2V = W[44]; | |
307 T2Y = W[45]; | |
308 T4Z = FNMS(T2F, T2D, T4Y); | |
309 T2H = FMA(T2F, T2G, T2E); | |
310 T5o = T2V * T2Z; | |
311 T2X = T2V * T2W; | |
312 } | |
313 { | |
314 E T2J, T2M, T2I, T2L, T50, T2K, T2P; | |
315 T2J = ri[WS(rs, 15)]; | |
316 T2M = ii[WS(rs, 15)]; | |
317 T5p = FNMS(T2Y, T2W, T5o); | |
318 T30 = FMA(T2Y, T2Z, T2X); | |
319 T2I = W[28]; | |
320 T2L = W[29]; | |
321 T2Q = ri[WS(rs, 7)]; | |
322 T2T = ii[WS(rs, 7)]; | |
323 T50 = T2I * T2M; | |
324 T2K = T2I * T2J; | |
325 T2P = W[12]; | |
326 T2S = W[13]; | |
327 T51 = FNMS(T2L, T2J, T50); | |
328 T2N = FMA(T2L, T2M, T2K); | |
329 T5m = T2P * T2T; | |
330 T2R = T2P * T2Q; | |
331 } | |
332 } | |
333 { | |
334 E T52, T76, T2O, T5l, T5n, T2U; | |
335 T52 = T4Z - T51; | |
336 T76 = T4Z + T51; | |
337 T2O = T2H + T2N; | |
338 T5l = T2H - T2N; | |
339 T5n = FNMS(T2S, T2Q, T5m); | |
340 T2U = FMA(T2S, T2T, T2R); | |
341 { | |
342 E T5q, T77, T53, T31; | |
343 T5q = T5n - T5p; | |
344 T77 = T5n + T5p; | |
345 T53 = T2U - T30; | |
346 T31 = T2U + T30; | |
347 T78 = T76 - T77; | |
348 T7N = T76 + T77; | |
349 T54 = T52 - T53; | |
350 T6f = T52 + T53; | |
351 T32 = T2O + T31; | |
352 T7b = T2O - T31; | |
353 T6c = T5l - T5q; | |
354 T5r = T5l + T5q; | |
355 } | |
356 } | |
357 } | |
358 { | |
359 E T4q, T1O, T4Q, T27, T1X, T20, T1Z, T4s, T1U, T4N, T1Y; | |
360 { | |
361 E T23, T26, T25, T4P, T24; | |
362 { | |
363 E T1K, T1N, T1J, T1M, T4p, T1L, T22; | |
364 T1K = ri[WS(rs, 1)]; | |
365 T1N = ii[WS(rs, 1)]; | |
366 T1J = W[0]; | |
367 T1M = W[1]; | |
368 T23 = ri[WS(rs, 25)]; | |
369 T26 = ii[WS(rs, 25)]; | |
370 T4p = T1J * T1N; | |
371 T1L = T1J * T1K; | |
372 T22 = W[48]; | |
373 T25 = W[49]; | |
374 T4q = FNMS(T1M, T1K, T4p); | |
375 T1O = FMA(T1M, T1N, T1L); | |
376 T4P = T22 * T26; | |
377 T24 = T22 * T23; | |
378 } | |
379 { | |
380 E T1Q, T1T, T1P, T1S, T4r, T1R, T1W; | |
381 T1Q = ri[WS(rs, 17)]; | |
382 T1T = ii[WS(rs, 17)]; | |
383 T4Q = FNMS(T25, T23, T4P); | |
384 T27 = FMA(T25, T26, T24); | |
385 T1P = W[32]; | |
386 T1S = W[33]; | |
387 T1X = ri[WS(rs, 9)]; | |
388 T20 = ii[WS(rs, 9)]; | |
389 T4r = T1P * T1T; | |
390 T1R = T1P * T1Q; | |
391 T1W = W[16]; | |
392 T1Z = W[17]; | |
393 T4s = FNMS(T1S, T1Q, T4r); | |
394 T1U = FMA(T1S, T1T, T1R); | |
395 T4N = T1W * T20; | |
396 T1Y = T1W * T1X; | |
397 } | |
398 } | |
399 { | |
400 E T4t, T6V, T1V, T4M, T4O, T21; | |
401 T4t = T4q - T4s; | |
402 T6V = T4q + T4s; | |
403 T1V = T1O + T1U; | |
404 T4M = T1O - T1U; | |
405 T4O = FNMS(T1Z, T1X, T4N); | |
406 T21 = FMA(T1Z, T20, T1Y); | |
407 { | |
408 E T4R, T6W, T4u, T28; | |
409 T4R = T4O - T4Q; | |
410 T6W = T4O + T4Q; | |
411 T4u = T21 - T27; | |
412 T28 = T21 + T27; | |
413 T6X = T6V - T6W; | |
414 T7I = T6V + T6W; | |
415 T4v = T4t - T4u; | |
416 T68 = T4t + T4u; | |
417 T29 = T1V + T28; | |
418 T70 = T1V - T28; | |
419 T65 = T4M - T4R; | |
420 T4S = T4M + T4R; | |
421 } | |
422 } | |
423 } | |
424 { | |
425 E T56, T38, T5g, T3r, T3h, T3k, T3j, T58, T3e, T5d, T3i; | |
426 { | |
427 E T3n, T3q, T3p, T5f, T3o; | |
428 { | |
429 E T34, T37, T33, T36, T55, T35, T3m; | |
430 T34 = ri[WS(rs, 3)]; | |
431 T37 = ii[WS(rs, 3)]; | |
432 T33 = W[4]; | |
433 T36 = W[5]; | |
434 T3n = ri[WS(rs, 11)]; | |
435 T3q = ii[WS(rs, 11)]; | |
436 T55 = T33 * T37; | |
437 T35 = T33 * T34; | |
438 T3m = W[20]; | |
439 T3p = W[21]; | |
440 T56 = FNMS(T36, T34, T55); | |
441 T38 = FMA(T36, T37, T35); | |
442 T5f = T3m * T3q; | |
443 T3o = T3m * T3n; | |
444 } | |
445 { | |
446 E T3a, T3d, T39, T3c, T57, T3b, T3g; | |
447 T3a = ri[WS(rs, 19)]; | |
448 T3d = ii[WS(rs, 19)]; | |
449 T5g = FNMS(T3p, T3n, T5f); | |
450 T3r = FMA(T3p, T3q, T3o); | |
451 T39 = W[36]; | |
452 T3c = W[37]; | |
453 T3h = ri[WS(rs, 27)]; | |
454 T3k = ii[WS(rs, 27)]; | |
455 T57 = T39 * T3d; | |
456 T3b = T39 * T3a; | |
457 T3g = W[52]; | |
458 T3j = W[53]; | |
459 T58 = FNMS(T3c, T3a, T57); | |
460 T3e = FMA(T3c, T3d, T3b); | |
461 T5d = T3g * T3k; | |
462 T3i = T3g * T3h; | |
463 } | |
464 } | |
465 { | |
466 E T59, T7c, T3f, T5a, T5e, T3l, T7d, T3s; | |
467 T59 = T56 - T58; | |
468 T7c = T56 + T58; | |
469 T3f = T38 + T3e; | |
470 T5a = T38 - T3e; | |
471 T5e = FNMS(T3j, T3h, T5d); | |
472 T3l = FMA(T3j, T3k, T3i); | |
473 T5h = T5e - T5g; | |
474 T7d = T5e + T5g; | |
475 T3s = T3l + T3r; | |
476 T5c = T3l - T3r; | |
477 T5s = T5a + T59; | |
478 T5b = T59 - T5a; | |
479 T7O = T7c + T7d; | |
480 T7e = T7c - T7d; | |
481 T79 = T3s - T3f; | |
482 T3t = T3f + T3s; | |
483 } | |
484 } | |
485 { | |
486 E T4x, T2f, T2o, T2r, T4z, T2l, T2n, T2q, T4E, T2p; | |
487 { | |
488 E T2u, T2x, T2t, T2w; | |
489 { | |
490 E T2b, T2e, T2d, T4w, T2c, T2a; | |
491 T2b = ri[WS(rs, 5)]; | |
492 T2e = ii[WS(rs, 5)]; | |
493 T2a = W[8]; | |
494 T5t = T5c - T5h; | |
495 T5i = T5c + T5h; | |
496 T2d = W[9]; | |
497 T4w = T2a * T2e; | |
498 T2c = T2a * T2b; | |
499 T2u = ri[WS(rs, 13)]; | |
500 T2x = ii[WS(rs, 13)]; | |
501 T4x = FNMS(T2d, T2b, T4w); | |
502 T2f = FMA(T2d, T2e, T2c); | |
503 T2t = W[24]; | |
504 T2w = W[25]; | |
505 } | |
506 { | |
507 E T2h, T2k, T2j, T4y, T2i, T4G, T2v, T2g; | |
508 T2h = ri[WS(rs, 21)]; | |
509 T2k = ii[WS(rs, 21)]; | |
510 T4G = T2t * T2x; | |
511 T2v = T2t * T2u; | |
512 T2g = W[40]; | |
513 T2j = W[41]; | |
514 T4H = FNMS(T2w, T2u, T4G); | |
515 T2y = FMA(T2w, T2x, T2v); | |
516 T4y = T2g * T2k; | |
517 T2i = T2g * T2h; | |
518 T2o = ri[WS(rs, 29)]; | |
519 T2r = ii[WS(rs, 29)]; | |
520 T4z = FNMS(T2j, T2h, T4y); | |
521 T2l = FMA(T2j, T2k, T2i); | |
522 T2n = W[56]; | |
523 T2q = W[57]; | |
524 } | |
525 } | |
526 T4A = T4x - T4z; | |
527 T71 = T4x + T4z; | |
528 T2m = T2f + T2l; | |
529 T4B = T2f - T2l; | |
530 T4E = T2n * T2r; | |
531 T2p = T2n * T2o; | |
532 T4F = FNMS(T2q, T2o, T4E); | |
533 T2s = FMA(T2q, T2r, T2p); | |
534 } | |
535 } | |
536 { | |
537 E T4T, T4C, T4J, T4U, T7y, T8q, T8p, T7B; | |
538 { | |
539 E T6E, T8j, T73, T6Y, T6H, T8k, T8i, T8h; | |
540 { | |
541 E T7C, TO, T80, T7Z, T8e, T89, T8d, T1H, T8b, T3v, T7T, T7L, T7U, T7Q, T2A; | |
542 E T7K, T7P, T7W, T1I; | |
543 { | |
544 E T7X, T7Y, T7J, T82, T88; | |
545 { | |
546 E Tm, T4I, T72, T4D, T2z, TN; | |
547 T6E = T8 - Tl; | |
548 Tm = T8 + Tl; | |
549 T4T = T4B + T4A; | |
550 T4C = T4A - T4B; | |
551 T4I = T4F - T4H; | |
552 T72 = T4F + T4H; | |
553 T4D = T2s - T2y; | |
554 T2z = T2s + T2y; | |
555 TN = Tz + TM; | |
556 T8j = TM - Tz; | |
557 T73 = T71 - T72; | |
558 T7J = T71 + T72; | |
559 T4J = T4D + T4I; | |
560 T4U = T4D - T4I; | |
561 T2A = T2m + T2z; | |
562 T6Y = T2z - T2m; | |
563 T7C = Tm - TN; | |
564 TO = Tm + TN; | |
565 } | |
566 T7K = T7I - T7J; | |
567 T7X = T7I + T7J; | |
568 T7Y = T7N + T7O; | |
569 T7P = T7N - T7O; | |
570 T6H = T6F - T6G; | |
571 T82 = T6F + T6G; | |
572 T88 = T83 + T87; | |
573 T8k = T87 - T83; | |
574 T80 = T7X + T7Y; | |
575 T7Z = T7X - T7Y; | |
576 T8e = T88 - T82; | |
577 T89 = T82 + T88; | |
578 } | |
579 { | |
580 E T7H, T7M, T2B, T3u; | |
581 T7H = T29 - T2A; | |
582 T2B = T29 + T2A; | |
583 T3u = T32 + T3t; | |
584 T7M = T32 - T3t; | |
585 T8d = T1G - T1f; | |
586 T1H = T1f + T1G; | |
587 T8b = T3u - T2B; | |
588 T3v = T2B + T3u; | |
589 T7T = T7K - T7H; | |
590 T7L = T7H + T7K; | |
591 T7U = T7M + T7P; | |
592 T7Q = T7M - T7P; | |
593 } | |
594 T7W = TO - T1H; | |
595 T1I = TO + T1H; | |
596 { | |
597 E T7S, T8f, T8g, T7V; | |
598 { | |
599 E T7R, T8c, T8a, T7G, T81, T7F; | |
600 T8i = T7Q - T7L; | |
601 T7R = T7L + T7Q; | |
602 T81 = T7D + T7E; | |
603 T7F = T7D - T7E; | |
604 ri[0] = T1I + T3v; | |
605 ri[WS(rs, 16)] = T1I - T3v; | |
606 ri[WS(rs, 8)] = T7W + T7Z; | |
607 ri[WS(rs, 24)] = T7W - T7Z; | |
608 T8c = T89 - T81; | |
609 T8a = T81 + T89; | |
610 T7G = T7C + T7F; | |
611 T7S = T7C - T7F; | |
612 T8h = T8e - T8d; | |
613 T8f = T8d + T8e; | |
614 ii[WS(rs, 24)] = T8c - T8b; | |
615 ii[WS(rs, 8)] = T8b + T8c; | |
616 ii[WS(rs, 16)] = T8a - T80; | |
617 ii[0] = T80 + T8a; | |
618 ri[WS(rs, 4)] = FMA(KP707106781, T7R, T7G); | |
619 ri[WS(rs, 20)] = FNMS(KP707106781, T7R, T7G); | |
620 T8g = T7T + T7U; | |
621 T7V = T7T - T7U; | |
622 } | |
623 ii[WS(rs, 20)] = FNMS(KP707106781, T8g, T8f); | |
624 ii[WS(rs, 4)] = FMA(KP707106781, T8g, T8f); | |
625 ri[WS(rs, 12)] = FMA(KP707106781, T7V, T7S); | |
626 ri[WS(rs, 28)] = FNMS(KP707106781, T7V, T7S); | |
627 } | |
628 } | |
629 { | |
630 E T7f, T7m, T6I, T7a, T7A, T7w, T8r, T8l, T8m, T6T, T7j, T75, T8s, T7p, T7z; | |
631 E T7t; | |
632 { | |
633 E T7n, T6N, T6S, T7o, T7u, T7v; | |
634 T7f = T7b - T7e; | |
635 T7u = T7b + T7e; | |
636 ii[WS(rs, 28)] = FNMS(KP707106781, T8i, T8h); | |
637 ii[WS(rs, 12)] = FMA(KP707106781, T8i, T8h); | |
638 T7m = T6E + T6H; | |
639 T6I = T6E - T6H; | |
640 T7v = T78 + T79; | |
641 T7a = T78 - T79; | |
642 T7n = T6M + T6L; | |
643 T6N = T6L - T6M; | |
644 T7A = FMA(KP414213562, T7u, T7v); | |
645 T7w = FNMS(KP414213562, T7v, T7u); | |
646 T8r = T8k - T8j; | |
647 T8l = T8j + T8k; | |
648 T6S = T6O + T6R; | |
649 T7o = T6O - T6R; | |
650 { | |
651 E T7s, T7r, T6Z, T74; | |
652 T7s = T6X + T6Y; | |
653 T6Z = T6X - T6Y; | |
654 T74 = T70 - T73; | |
655 T7r = T70 + T73; | |
656 T8m = T6N + T6S; | |
657 T6T = T6N - T6S; | |
658 T7j = FNMS(KP414213562, T6Z, T74); | |
659 T75 = FMA(KP414213562, T74, T6Z); | |
660 T8s = T7o - T7n; | |
661 T7p = T7n + T7o; | |
662 T7z = FNMS(KP414213562, T7r, T7s); | |
663 T7t = FMA(KP414213562, T7s, T7r); | |
664 } | |
665 } | |
666 { | |
667 E T7i, T6U, T8t, T8v, T7k, T7g; | |
668 T7i = FNMS(KP707106781, T6T, T6I); | |
669 T6U = FMA(KP707106781, T6T, T6I); | |
670 T8t = FMA(KP707106781, T8s, T8r); | |
671 T8v = FNMS(KP707106781, T8s, T8r); | |
672 T7k = FMA(KP414213562, T7a, T7f); | |
673 T7g = FNMS(KP414213562, T7f, T7a); | |
674 { | |
675 E T7q, T7x, T8n, T8o; | |
676 T7y = FNMS(KP707106781, T7p, T7m); | |
677 T7q = FMA(KP707106781, T7p, T7m); | |
678 { | |
679 E T7l, T8u, T8w, T7h; | |
680 T7l = T7j + T7k; | |
681 T8u = T7k - T7j; | |
682 T8w = T75 + T7g; | |
683 T7h = T75 - T7g; | |
684 ri[WS(rs, 30)] = FMA(KP923879532, T7l, T7i); | |
685 ri[WS(rs, 14)] = FNMS(KP923879532, T7l, T7i); | |
686 ii[WS(rs, 22)] = FNMS(KP923879532, T8u, T8t); | |
687 ii[WS(rs, 6)] = FMA(KP923879532, T8u, T8t); | |
688 ii[WS(rs, 30)] = FMA(KP923879532, T8w, T8v); | |
689 ii[WS(rs, 14)] = FNMS(KP923879532, T8w, T8v); | |
690 ri[WS(rs, 6)] = FMA(KP923879532, T7h, T6U); | |
691 ri[WS(rs, 22)] = FNMS(KP923879532, T7h, T6U); | |
692 T7x = T7t + T7w; | |
693 T8q = T7w - T7t; | |
694 } | |
695 T8p = FNMS(KP707106781, T8m, T8l); | |
696 T8n = FMA(KP707106781, T8m, T8l); | |
697 T8o = T7z + T7A; | |
698 T7B = T7z - T7A; | |
699 ri[WS(rs, 2)] = FMA(KP923879532, T7x, T7q); | |
700 ri[WS(rs, 18)] = FNMS(KP923879532, T7x, T7q); | |
701 ii[WS(rs, 18)] = FNMS(KP923879532, T8o, T8n); | |
702 ii[WS(rs, 2)] = FMA(KP923879532, T8o, T8n); | |
703 } | |
704 } | |
705 } | |
706 } | |
707 { | |
708 E T5S, T8O, T8N, T5V, T6d, T6g, T66, T69, T8G, T8F; | |
709 { | |
710 E T5C, T3S, T8C, T4n, T8H, T8B, T8I, T5F, T5k, T5L, T5u, T4K, T4V; | |
711 { | |
712 E T5D, T5E, T8z, T8A, T5j; | |
713 { | |
714 E T3C, T3R, T47, T4m; | |
715 T5S = T3w - T3B; | |
716 T3C = T3w + T3B; | |
717 ri[WS(rs, 10)] = FMA(KP923879532, T7B, T7y); | |
718 ri[WS(rs, 26)] = FNMS(KP923879532, T7B, T7y); | |
719 ii[WS(rs, 26)] = FNMS(KP923879532, T8q, T8p); | |
720 ii[WS(rs, 10)] = FMA(KP923879532, T8q, T8p); | |
721 T3R = T3J + T3Q; | |
722 T8O = T3Q - T3J; | |
723 T5D = FMA(KP414213562, T3Z, T46); | |
724 T47 = FNMS(KP414213562, T46, T3Z); | |
725 T4m = FMA(KP414213562, T4l, T4e); | |
726 T5E = FNMS(KP414213562, T4e, T4l); | |
727 T8N = T8y + T8x; | |
728 T8z = T8x - T8y; | |
729 T5C = FMA(KP707106781, T3R, T3C); | |
730 T3S = FNMS(KP707106781, T3R, T3C); | |
731 T8C = T47 + T4m; | |
732 T4n = T47 - T4m; | |
733 T8A = T5T + T5U; | |
734 T5V = T5T - T5U; | |
735 } | |
736 T6d = T5i - T5b; | |
737 T5j = T5b + T5i; | |
738 T8H = FNMS(KP707106781, T8A, T8z); | |
739 T8B = FMA(KP707106781, T8A, T8z); | |
740 T8I = T5E - T5D; | |
741 T5F = T5D + T5E; | |
742 T5k = FNMS(KP707106781, T5j, T54); | |
743 T5L = FMA(KP707106781, T5j, T54); | |
744 T5u = T5s + T5t; | |
745 T6g = T5s - T5t; | |
746 T66 = T4J - T4C; | |
747 T4K = T4C + T4J; | |
748 T4V = T4T + T4U; | |
749 T69 = T4T - T4U; | |
750 } | |
751 { | |
752 E T5M, T5Q, T5J, T5P, T8L, T8M; | |
753 { | |
754 E T5y, T4o, T5A, T5w, T5z, T4X, T8J, T5K, T5v, T8K, T5B, T5x; | |
755 T5y = FNMS(KP923879532, T4n, T3S); | |
756 T4o = FMA(KP923879532, T4n, T3S); | |
757 T5K = FMA(KP707106781, T5u, T5r); | |
758 T5v = FNMS(KP707106781, T5u, T5r); | |
759 { | |
760 E T5I, T4L, T5H, T4W; | |
761 T5I = FMA(KP707106781, T4K, T4v); | |
762 T4L = FNMS(KP707106781, T4K, T4v); | |
763 T5H = FMA(KP707106781, T4V, T4S); | |
764 T4W = FNMS(KP707106781, T4V, T4S); | |
765 T5M = FNMS(KP198912367, T5L, T5K); | |
766 T5Q = FMA(KP198912367, T5K, T5L); | |
767 T5A = FMA(KP668178637, T5k, T5v); | |
768 T5w = FNMS(KP668178637, T5v, T5k); | |
769 T5J = FMA(KP198912367, T5I, T5H); | |
770 T5P = FNMS(KP198912367, T5H, T5I); | |
771 T5z = FNMS(KP668178637, T4L, T4W); | |
772 T4X = FMA(KP668178637, T4W, T4L); | |
773 } | |
774 T8J = FMA(KP923879532, T8I, T8H); | |
775 T8L = FNMS(KP923879532, T8I, T8H); | |
776 T8K = T5A - T5z; | |
777 T5B = T5z + T5A; | |
778 T8M = T4X + T5w; | |
779 T5x = T4X - T5w; | |
780 ii[WS(rs, 21)] = FNMS(KP831469612, T8K, T8J); | |
781 ii[WS(rs, 5)] = FMA(KP831469612, T8K, T8J); | |
782 ri[WS(rs, 5)] = FMA(KP831469612, T5x, T4o); | |
783 ri[WS(rs, 21)] = FNMS(KP831469612, T5x, T4o); | |
784 ri[WS(rs, 29)] = FMA(KP831469612, T5B, T5y); | |
785 ri[WS(rs, 13)] = FNMS(KP831469612, T5B, T5y); | |
786 } | |
787 { | |
788 E T5O, T8D, T8E, T5R, T5G, T5N; | |
789 T5O = FNMS(KP923879532, T5F, T5C); | |
790 T5G = FMA(KP923879532, T5F, T5C); | |
791 T5N = T5J + T5M; | |
792 T8G = T5M - T5J; | |
793 T8F = FNMS(KP923879532, T8C, T8B); | |
794 T8D = FMA(KP923879532, T8C, T8B); | |
795 ii[WS(rs, 29)] = FMA(KP831469612, T8M, T8L); | |
796 ii[WS(rs, 13)] = FNMS(KP831469612, T8M, T8L); | |
797 ri[WS(rs, 1)] = FMA(KP980785280, T5N, T5G); | |
798 ri[WS(rs, 17)] = FNMS(KP980785280, T5N, T5G); | |
799 T8E = T5P + T5Q; | |
800 T5R = T5P - T5Q; | |
801 ii[WS(rs, 17)] = FNMS(KP980785280, T8E, T8D); | |
802 ii[WS(rs, 1)] = FMA(KP980785280, T8E, T8D); | |
803 ri[WS(rs, 9)] = FMA(KP980785280, T5R, T5O); | |
804 ri[WS(rs, 25)] = FNMS(KP980785280, T5R, T5O); | |
805 } | |
806 } | |
807 } | |
808 { | |
809 E T6o, T5W, T8W, T63, T8V, T8P, T8Q, T6r, T67, T6u, T6y, T6C, T6m, T6i; | |
810 { | |
811 E T6p, T5Z, T62, T6q; | |
812 T6p = FNMS(KP414213562, T5X, T5Y); | |
813 T5Z = FMA(KP414213562, T5Y, T5X); | |
814 ii[WS(rs, 25)] = FNMS(KP980785280, T8G, T8F); | |
815 ii[WS(rs, 9)] = FMA(KP980785280, T8G, T8F); | |
816 T6o = FNMS(KP707106781, T5V, T5S); | |
817 T5W = FMA(KP707106781, T5V, T5S); | |
818 T62 = FNMS(KP414213562, T61, T60); | |
819 T6q = FMA(KP414213562, T60, T61); | |
820 T8W = T5Z + T62; | |
821 T63 = T5Z - T62; | |
822 T8V = FNMS(KP707106781, T8O, T8N); | |
823 T8P = FMA(KP707106781, T8O, T8N); | |
824 { | |
825 E T6x, T6e, T6w, T6h; | |
826 T8Q = T6q - T6p; | |
827 T6r = T6p + T6q; | |
828 T6x = FMA(KP707106781, T6d, T6c); | |
829 T6e = FNMS(KP707106781, T6d, T6c); | |
830 T6w = FMA(KP707106781, T6g, T6f); | |
831 T6h = FNMS(KP707106781, T6g, T6f); | |
832 T67 = FNMS(KP707106781, T66, T65); | |
833 T6u = FMA(KP707106781, T66, T65); | |
834 T6y = FNMS(KP198912367, T6x, T6w); | |
835 T6C = FMA(KP198912367, T6w, T6x); | |
836 T6m = FMA(KP668178637, T6e, T6h); | |
837 T6i = FNMS(KP668178637, T6h, T6e); | |
838 } | |
839 } | |
840 { | |
841 E T6k, T64, T8R, T8T, T6t, T6a; | |
842 T6k = FNMS(KP923879532, T63, T5W); | |
843 T64 = FMA(KP923879532, T63, T5W); | |
844 T8R = FMA(KP923879532, T8Q, T8P); | |
845 T8T = FNMS(KP923879532, T8Q, T8P); | |
846 T6t = FMA(KP707106781, T69, T68); | |
847 T6a = FNMS(KP707106781, T69, T68); | |
848 { | |
849 E T6A, T8X, T8Y, T6D; | |
850 { | |
851 E T6s, T6B, T6l, T6b, T6z, T6v; | |
852 T6A = FMA(KP923879532, T6r, T6o); | |
853 T6s = FNMS(KP923879532, T6r, T6o); | |
854 T6v = FMA(KP198912367, T6u, T6t); | |
855 T6B = FNMS(KP198912367, T6t, T6u); | |
856 T6l = FNMS(KP668178637, T67, T6a); | |
857 T6b = FMA(KP668178637, T6a, T67); | |
858 T6z = T6v - T6y; | |
859 T90 = T6v + T6y; | |
860 T8Z = FMA(KP923879532, T8W, T8V); | |
861 T8X = FNMS(KP923879532, T8W, T8V); | |
862 { | |
863 E T6n, T8S, T8U, T6j; | |
864 T6n = T6l - T6m; | |
865 T8S = T6l + T6m; | |
866 T8U = T6i - T6b; | |
867 T6j = T6b + T6i; | |
868 ri[WS(rs, 7)] = FMA(KP980785280, T6z, T6s); | |
869 ri[WS(rs, 23)] = FNMS(KP980785280, T6z, T6s); | |
870 ri[WS(rs, 11)] = FMA(KP831469612, T6n, T6k); | |
871 ri[WS(rs, 27)] = FNMS(KP831469612, T6n, T6k); | |
872 ii[WS(rs, 19)] = FNMS(KP831469612, T8S, T8R); | |
873 ii[WS(rs, 3)] = FMA(KP831469612, T8S, T8R); | |
874 ii[WS(rs, 27)] = FNMS(KP831469612, T8U, T8T); | |
875 ii[WS(rs, 11)] = FMA(KP831469612, T8U, T8T); | |
876 ri[WS(rs, 3)] = FMA(KP831469612, T6j, T64); | |
877 ri[WS(rs, 19)] = FNMS(KP831469612, T6j, T64); | |
878 T8Y = T6C - T6B; | |
879 T6D = T6B + T6C; | |
880 } | |
881 } | |
882 ii[WS(rs, 23)] = FNMS(KP980785280, T8Y, T8X); | |
883 ii[WS(rs, 7)] = FMA(KP980785280, T8Y, T8X); | |
884 ri[WS(rs, 31)] = FMA(KP980785280, T6D, T6A); | |
885 ri[WS(rs, 15)] = FNMS(KP980785280, T6D, T6A); | |
886 } | |
887 } | |
888 } | |
889 } | |
890 } | |
891 } | |
892 ii[WS(rs, 31)] = FMA(KP980785280, T90, T8Z); | |
893 ii[WS(rs, 15)] = FNMS(KP980785280, T90, T8Z); | |
894 } | |
895 } | |
896 } | |
897 | |
898 static const tw_instr twinstr[] = { | |
899 {TW_FULL, 0, 32}, | |
900 {TW_NEXT, 1, 0} | |
901 }; | |
902 | |
903 static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {236, 62, 198, 0}, 0, 0, 0 }; | |
904 | |
905 void X(codelet_t1_32) (planner *p) { | |
906 X(kdft_dit_register) (p, t1_32, &desc); | |
907 } | |
908 #else /* HAVE_FMA */ | |
909 | |
910 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include t.h */ | |
911 | |
912 /* | |
913 * This function contains 434 FP additions, 208 FP multiplications, | |
914 * (or, 340 additions, 114 multiplications, 94 fused multiply/add), | |
915 * 96 stack variables, 7 constants, and 128 memory accesses | |
916 */ | |
917 #include "t.h" | |
918 | |
919 static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
920 { | |
921 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
922 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
923 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
924 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
925 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
926 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
927 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
928 { | |
929 INT m; | |
930 for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { | |
931 E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T59, T41; | |
932 E T56, T2B, T67, T6e, T6O, T4b, T5d, T4s, T5g, TG, T7l, T5I, T73, T3a, T4U; | |
933 E T3f, T4V, T14, T5N, T5M, T6E, T3m, T4Y, T3r, T4Z, T1r, T5P, T5S, T6F, T3x; | |
934 E T51, T3C, T52, T2d, T5Z, T64, T6K, T3V, T57, T44, T5a, T2Y, T6f, T6a, T6P; | |
935 E T4m, T5h, T4v, T5e; | |
936 { | |
937 E T1, T76, T6, T75, Tc, T32, Th, T33; | |
938 T1 = ri[0]; | |
939 T76 = ii[0]; | |
940 { | |
941 E T3, T5, T2, T4; | |
942 T3 = ri[WS(rs, 16)]; | |
943 T5 = ii[WS(rs, 16)]; | |
944 T2 = W[30]; | |
945 T4 = W[31]; | |
946 T6 = FMA(T2, T3, T4 * T5); | |
947 T75 = FNMS(T4, T3, T2 * T5); | |
948 } | |
949 { | |
950 E T9, Tb, T8, Ta; | |
951 T9 = ri[WS(rs, 8)]; | |
952 Tb = ii[WS(rs, 8)]; | |
953 T8 = W[14]; | |
954 Ta = W[15]; | |
955 Tc = FMA(T8, T9, Ta * Tb); | |
956 T32 = FNMS(Ta, T9, T8 * Tb); | |
957 } | |
958 { | |
959 E Te, Tg, Td, Tf; | |
960 Te = ri[WS(rs, 24)]; | |
961 Tg = ii[WS(rs, 24)]; | |
962 Td = W[46]; | |
963 Tf = W[47]; | |
964 Th = FMA(Td, Te, Tf * Tg); | |
965 T33 = FNMS(Tf, Te, Td * Tg); | |
966 } | |
967 { | |
968 E T7, Ti, T7A, T7B; | |
969 T7 = T1 + T6; | |
970 Ti = Tc + Th; | |
971 Tj = T7 + Ti; | |
972 T5F = T7 - Ti; | |
973 T7A = T76 - T75; | |
974 T7B = Tc - Th; | |
975 T7C = T7A - T7B; | |
976 T7Q = T7B + T7A; | |
977 } | |
978 { | |
979 E T31, T34, T74, T77; | |
980 T31 = T1 - T6; | |
981 T34 = T32 - T33; | |
982 T35 = T31 - T34; | |
983 T4T = T31 + T34; | |
984 T74 = T32 + T33; | |
985 T77 = T75 + T76; | |
986 T78 = T74 + T77; | |
987 T7m = T77 - T74; | |
988 } | |
989 } | |
990 { | |
991 E T1y, T3G, T1O, T3Z, T1D, T3H, T1J, T3Y; | |
992 { | |
993 E T1v, T1x, T1u, T1w; | |
994 T1v = ri[WS(rs, 1)]; | |
995 T1x = ii[WS(rs, 1)]; | |
996 T1u = W[0]; | |
997 T1w = W[1]; | |
998 T1y = FMA(T1u, T1v, T1w * T1x); | |
999 T3G = FNMS(T1w, T1v, T1u * T1x); | |
1000 } | |
1001 { | |
1002 E T1L, T1N, T1K, T1M; | |
1003 T1L = ri[WS(rs, 25)]; | |
1004 T1N = ii[WS(rs, 25)]; | |
1005 T1K = W[48]; | |
1006 T1M = W[49]; | |
1007 T1O = FMA(T1K, T1L, T1M * T1N); | |
1008 T3Z = FNMS(T1M, T1L, T1K * T1N); | |
1009 } | |
1010 { | |
1011 E T1A, T1C, T1z, T1B; | |
1012 T1A = ri[WS(rs, 17)]; | |
1013 T1C = ii[WS(rs, 17)]; | |
1014 T1z = W[32]; | |
1015 T1B = W[33]; | |
1016 T1D = FMA(T1z, T1A, T1B * T1C); | |
1017 T3H = FNMS(T1B, T1A, T1z * T1C); | |
1018 } | |
1019 { | |
1020 E T1G, T1I, T1F, T1H; | |
1021 T1G = ri[WS(rs, 9)]; | |
1022 T1I = ii[WS(rs, 9)]; | |
1023 T1F = W[16]; | |
1024 T1H = W[17]; | |
1025 T1J = FMA(T1F, T1G, T1H * T1I); | |
1026 T3Y = FNMS(T1H, T1G, T1F * T1I); | |
1027 } | |
1028 { | |
1029 E T1E, T1P, T5W, T5X; | |
1030 T1E = T1y + T1D; | |
1031 T1P = T1J + T1O; | |
1032 T1Q = T1E + T1P; | |
1033 T61 = T1E - T1P; | |
1034 T5W = T3G + T3H; | |
1035 T5X = T3Y + T3Z; | |
1036 T5Y = T5W - T5X; | |
1037 T6J = T5W + T5X; | |
1038 } | |
1039 { | |
1040 E T3I, T3J, T3X, T40; | |
1041 T3I = T3G - T3H; | |
1042 T3J = T1J - T1O; | |
1043 T3K = T3I + T3J; | |
1044 T59 = T3I - T3J; | |
1045 T3X = T1y - T1D; | |
1046 T40 = T3Y - T3Z; | |
1047 T41 = T3X - T40; | |
1048 T56 = T3X + T40; | |
1049 } | |
1050 } | |
1051 { | |
1052 E T2j, T4o, T2z, T49, T2o, T4p, T2u, T48; | |
1053 { | |
1054 E T2g, T2i, T2f, T2h; | |
1055 T2g = ri[WS(rs, 31)]; | |
1056 T2i = ii[WS(rs, 31)]; | |
1057 T2f = W[60]; | |
1058 T2h = W[61]; | |
1059 T2j = FMA(T2f, T2g, T2h * T2i); | |
1060 T4o = FNMS(T2h, T2g, T2f * T2i); | |
1061 } | |
1062 { | |
1063 E T2w, T2y, T2v, T2x; | |
1064 T2w = ri[WS(rs, 23)]; | |
1065 T2y = ii[WS(rs, 23)]; | |
1066 T2v = W[44]; | |
1067 T2x = W[45]; | |
1068 T2z = FMA(T2v, T2w, T2x * T2y); | |
1069 T49 = FNMS(T2x, T2w, T2v * T2y); | |
1070 } | |
1071 { | |
1072 E T2l, T2n, T2k, T2m; | |
1073 T2l = ri[WS(rs, 15)]; | |
1074 T2n = ii[WS(rs, 15)]; | |
1075 T2k = W[28]; | |
1076 T2m = W[29]; | |
1077 T2o = FMA(T2k, T2l, T2m * T2n); | |
1078 T4p = FNMS(T2m, T2l, T2k * T2n); | |
1079 } | |
1080 { | |
1081 E T2r, T2t, T2q, T2s; | |
1082 T2r = ri[WS(rs, 7)]; | |
1083 T2t = ii[WS(rs, 7)]; | |
1084 T2q = W[12]; | |
1085 T2s = W[13]; | |
1086 T2u = FMA(T2q, T2r, T2s * T2t); | |
1087 T48 = FNMS(T2s, T2r, T2q * T2t); | |
1088 } | |
1089 { | |
1090 E T2p, T2A, T6c, T6d; | |
1091 T2p = T2j + T2o; | |
1092 T2A = T2u + T2z; | |
1093 T2B = T2p + T2A; | |
1094 T67 = T2p - T2A; | |
1095 T6c = T4o + T4p; | |
1096 T6d = T48 + T49; | |
1097 T6e = T6c - T6d; | |
1098 T6O = T6c + T6d; | |
1099 } | |
1100 { | |
1101 E T47, T4a, T4q, T4r; | |
1102 T47 = T2j - T2o; | |
1103 T4a = T48 - T49; | |
1104 T4b = T47 - T4a; | |
1105 T5d = T47 + T4a; | |
1106 T4q = T4o - T4p; | |
1107 T4r = T2u - T2z; | |
1108 T4s = T4q + T4r; | |
1109 T5g = T4q - T4r; | |
1110 } | |
1111 } | |
1112 { | |
1113 E To, T36, TE, T3d, Tt, T37, Tz, T3c; | |
1114 { | |
1115 E Tl, Tn, Tk, Tm; | |
1116 Tl = ri[WS(rs, 4)]; | |
1117 Tn = ii[WS(rs, 4)]; | |
1118 Tk = W[6]; | |
1119 Tm = W[7]; | |
1120 To = FMA(Tk, Tl, Tm * Tn); | |
1121 T36 = FNMS(Tm, Tl, Tk * Tn); | |
1122 } | |
1123 { | |
1124 E TB, TD, TA, TC; | |
1125 TB = ri[WS(rs, 12)]; | |
1126 TD = ii[WS(rs, 12)]; | |
1127 TA = W[22]; | |
1128 TC = W[23]; | |
1129 TE = FMA(TA, TB, TC * TD); | |
1130 T3d = FNMS(TC, TB, TA * TD); | |
1131 } | |
1132 { | |
1133 E Tq, Ts, Tp, Tr; | |
1134 Tq = ri[WS(rs, 20)]; | |
1135 Ts = ii[WS(rs, 20)]; | |
1136 Tp = W[38]; | |
1137 Tr = W[39]; | |
1138 Tt = FMA(Tp, Tq, Tr * Ts); | |
1139 T37 = FNMS(Tr, Tq, Tp * Ts); | |
1140 } | |
1141 { | |
1142 E Tw, Ty, Tv, Tx; | |
1143 Tw = ri[WS(rs, 28)]; | |
1144 Ty = ii[WS(rs, 28)]; | |
1145 Tv = W[54]; | |
1146 Tx = W[55]; | |
1147 Tz = FMA(Tv, Tw, Tx * Ty); | |
1148 T3c = FNMS(Tx, Tw, Tv * Ty); | |
1149 } | |
1150 { | |
1151 E Tu, TF, T5G, T5H; | |
1152 Tu = To + Tt; | |
1153 TF = Tz + TE; | |
1154 TG = Tu + TF; | |
1155 T7l = TF - Tu; | |
1156 T5G = T36 + T37; | |
1157 T5H = T3c + T3d; | |
1158 T5I = T5G - T5H; | |
1159 T73 = T5G + T5H; | |
1160 } | |
1161 { | |
1162 E T38, T39, T3b, T3e; | |
1163 T38 = T36 - T37; | |
1164 T39 = To - Tt; | |
1165 T3a = T38 - T39; | |
1166 T4U = T39 + T38; | |
1167 T3b = Tz - TE; | |
1168 T3e = T3c - T3d; | |
1169 T3f = T3b + T3e; | |
1170 T4V = T3b - T3e; | |
1171 } | |
1172 } | |
1173 { | |
1174 E TM, T3i, T12, T3p, TR, T3j, TX, T3o; | |
1175 { | |
1176 E TJ, TL, TI, TK; | |
1177 TJ = ri[WS(rs, 2)]; | |
1178 TL = ii[WS(rs, 2)]; | |
1179 TI = W[2]; | |
1180 TK = W[3]; | |
1181 TM = FMA(TI, TJ, TK * TL); | |
1182 T3i = FNMS(TK, TJ, TI * TL); | |
1183 } | |
1184 { | |
1185 E TZ, T11, TY, T10; | |
1186 TZ = ri[WS(rs, 26)]; | |
1187 T11 = ii[WS(rs, 26)]; | |
1188 TY = W[50]; | |
1189 T10 = W[51]; | |
1190 T12 = FMA(TY, TZ, T10 * T11); | |
1191 T3p = FNMS(T10, TZ, TY * T11); | |
1192 } | |
1193 { | |
1194 E TO, TQ, TN, TP; | |
1195 TO = ri[WS(rs, 18)]; | |
1196 TQ = ii[WS(rs, 18)]; | |
1197 TN = W[34]; | |
1198 TP = W[35]; | |
1199 TR = FMA(TN, TO, TP * TQ); | |
1200 T3j = FNMS(TP, TO, TN * TQ); | |
1201 } | |
1202 { | |
1203 E TU, TW, TT, TV; | |
1204 TU = ri[WS(rs, 10)]; | |
1205 TW = ii[WS(rs, 10)]; | |
1206 TT = W[18]; | |
1207 TV = W[19]; | |
1208 TX = FMA(TT, TU, TV * TW); | |
1209 T3o = FNMS(TV, TU, TT * TW); | |
1210 } | |
1211 { | |
1212 E TS, T13, T5K, T5L; | |
1213 TS = TM + TR; | |
1214 T13 = TX + T12; | |
1215 T14 = TS + T13; | |
1216 T5N = TS - T13; | |
1217 T5K = T3i + T3j; | |
1218 T5L = T3o + T3p; | |
1219 T5M = T5K - T5L; | |
1220 T6E = T5K + T5L; | |
1221 } | |
1222 { | |
1223 E T3k, T3l, T3n, T3q; | |
1224 T3k = T3i - T3j; | |
1225 T3l = TX - T12; | |
1226 T3m = T3k + T3l; | |
1227 T4Y = T3k - T3l; | |
1228 T3n = TM - TR; | |
1229 T3q = T3o - T3p; | |
1230 T3r = T3n - T3q; | |
1231 T4Z = T3n + T3q; | |
1232 } | |
1233 } | |
1234 { | |
1235 E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z; | |
1236 { | |
1237 E T16, T18, T15, T17; | |
1238 T16 = ri[WS(rs, 30)]; | |
1239 T18 = ii[WS(rs, 30)]; | |
1240 T15 = W[58]; | |
1241 T17 = W[59]; | |
1242 T19 = FMA(T15, T16, T17 * T18); | |
1243 T3t = FNMS(T17, T16, T15 * T18); | |
1244 } | |
1245 { | |
1246 E T1m, T1o, T1l, T1n; | |
1247 T1m = ri[WS(rs, 22)]; | |
1248 T1o = ii[WS(rs, 22)]; | |
1249 T1l = W[42]; | |
1250 T1n = W[43]; | |
1251 T1p = FMA(T1l, T1m, T1n * T1o); | |
1252 T3A = FNMS(T1n, T1m, T1l * T1o); | |
1253 } | |
1254 { | |
1255 E T1b, T1d, T1a, T1c; | |
1256 T1b = ri[WS(rs, 14)]; | |
1257 T1d = ii[WS(rs, 14)]; | |
1258 T1a = W[26]; | |
1259 T1c = W[27]; | |
1260 T1e = FMA(T1a, T1b, T1c * T1d); | |
1261 T3u = FNMS(T1c, T1b, T1a * T1d); | |
1262 } | |
1263 { | |
1264 E T1h, T1j, T1g, T1i; | |
1265 T1h = ri[WS(rs, 6)]; | |
1266 T1j = ii[WS(rs, 6)]; | |
1267 T1g = W[10]; | |
1268 T1i = W[11]; | |
1269 T1k = FMA(T1g, T1h, T1i * T1j); | |
1270 T3z = FNMS(T1i, T1h, T1g * T1j); | |
1271 } | |
1272 { | |
1273 E T1f, T1q, T5Q, T5R; | |
1274 T1f = T19 + T1e; | |
1275 T1q = T1k + T1p; | |
1276 T1r = T1f + T1q; | |
1277 T5P = T1f - T1q; | |
1278 T5Q = T3t + T3u; | |
1279 T5R = T3z + T3A; | |
1280 T5S = T5Q - T5R; | |
1281 T6F = T5Q + T5R; | |
1282 } | |
1283 { | |
1284 E T3v, T3w, T3y, T3B; | |
1285 T3v = T3t - T3u; | |
1286 T3w = T1k - T1p; | |
1287 T3x = T3v + T3w; | |
1288 T51 = T3v - T3w; | |
1289 T3y = T19 - T1e; | |
1290 T3B = T3z - T3A; | |
1291 T3C = T3y - T3B; | |
1292 T52 = T3y + T3B; | |
1293 } | |
1294 } | |
1295 { | |
1296 E T1V, T3R, T20, T3S, T3Q, T3T, T26, T3M, T2b, T3N, T3L, T3O; | |
1297 { | |
1298 E T1S, T1U, T1R, T1T; | |
1299 T1S = ri[WS(rs, 5)]; | |
1300 T1U = ii[WS(rs, 5)]; | |
1301 T1R = W[8]; | |
1302 T1T = W[9]; | |
1303 T1V = FMA(T1R, T1S, T1T * T1U); | |
1304 T3R = FNMS(T1T, T1S, T1R * T1U); | |
1305 } | |
1306 { | |
1307 E T1X, T1Z, T1W, T1Y; | |
1308 T1X = ri[WS(rs, 21)]; | |
1309 T1Z = ii[WS(rs, 21)]; | |
1310 T1W = W[40]; | |
1311 T1Y = W[41]; | |
1312 T20 = FMA(T1W, T1X, T1Y * T1Z); | |
1313 T3S = FNMS(T1Y, T1X, T1W * T1Z); | |
1314 } | |
1315 T3Q = T1V - T20; | |
1316 T3T = T3R - T3S; | |
1317 { | |
1318 E T23, T25, T22, T24; | |
1319 T23 = ri[WS(rs, 29)]; | |
1320 T25 = ii[WS(rs, 29)]; | |
1321 T22 = W[56]; | |
1322 T24 = W[57]; | |
1323 T26 = FMA(T22, T23, T24 * T25); | |
1324 T3M = FNMS(T24, T23, T22 * T25); | |
1325 } | |
1326 { | |
1327 E T28, T2a, T27, T29; | |
1328 T28 = ri[WS(rs, 13)]; | |
1329 T2a = ii[WS(rs, 13)]; | |
1330 T27 = W[24]; | |
1331 T29 = W[25]; | |
1332 T2b = FMA(T27, T28, T29 * T2a); | |
1333 T3N = FNMS(T29, T28, T27 * T2a); | |
1334 } | |
1335 T3L = T26 - T2b; | |
1336 T3O = T3M - T3N; | |
1337 { | |
1338 E T21, T2c, T62, T63; | |
1339 T21 = T1V + T20; | |
1340 T2c = T26 + T2b; | |
1341 T2d = T21 + T2c; | |
1342 T5Z = T2c - T21; | |
1343 T62 = T3R + T3S; | |
1344 T63 = T3M + T3N; | |
1345 T64 = T62 - T63; | |
1346 T6K = T62 + T63; | |
1347 } | |
1348 { | |
1349 E T3P, T3U, T42, T43; | |
1350 T3P = T3L - T3O; | |
1351 T3U = T3Q + T3T; | |
1352 T3V = KP707106781 * (T3P - T3U); | |
1353 T57 = KP707106781 * (T3U + T3P); | |
1354 T42 = T3T - T3Q; | |
1355 T43 = T3L + T3O; | |
1356 T44 = KP707106781 * (T42 - T43); | |
1357 T5a = KP707106781 * (T42 + T43); | |
1358 } | |
1359 } | |
1360 { | |
1361 E T2G, T4c, T2L, T4d, T4e, T4f, T2R, T4i, T2W, T4j, T4h, T4k; | |
1362 { | |
1363 E T2D, T2F, T2C, T2E; | |
1364 T2D = ri[WS(rs, 3)]; | |
1365 T2F = ii[WS(rs, 3)]; | |
1366 T2C = W[4]; | |
1367 T2E = W[5]; | |
1368 T2G = FMA(T2C, T2D, T2E * T2F); | |
1369 T4c = FNMS(T2E, T2D, T2C * T2F); | |
1370 } | |
1371 { | |
1372 E T2I, T2K, T2H, T2J; | |
1373 T2I = ri[WS(rs, 19)]; | |
1374 T2K = ii[WS(rs, 19)]; | |
1375 T2H = W[36]; | |
1376 T2J = W[37]; | |
1377 T2L = FMA(T2H, T2I, T2J * T2K); | |
1378 T4d = FNMS(T2J, T2I, T2H * T2K); | |
1379 } | |
1380 T4e = T4c - T4d; | |
1381 T4f = T2G - T2L; | |
1382 { | |
1383 E T2O, T2Q, T2N, T2P; | |
1384 T2O = ri[WS(rs, 27)]; | |
1385 T2Q = ii[WS(rs, 27)]; | |
1386 T2N = W[52]; | |
1387 T2P = W[53]; | |
1388 T2R = FMA(T2N, T2O, T2P * T2Q); | |
1389 T4i = FNMS(T2P, T2O, T2N * T2Q); | |
1390 } | |
1391 { | |
1392 E T2T, T2V, T2S, T2U; | |
1393 T2T = ri[WS(rs, 11)]; | |
1394 T2V = ii[WS(rs, 11)]; | |
1395 T2S = W[20]; | |
1396 T2U = W[21]; | |
1397 T2W = FMA(T2S, T2T, T2U * T2V); | |
1398 T4j = FNMS(T2U, T2T, T2S * T2V); | |
1399 } | |
1400 T4h = T2R - T2W; | |
1401 T4k = T4i - T4j; | |
1402 { | |
1403 E T2M, T2X, T68, T69; | |
1404 T2M = T2G + T2L; | |
1405 T2X = T2R + T2W; | |
1406 T2Y = T2M + T2X; | |
1407 T6f = T2X - T2M; | |
1408 T68 = T4c + T4d; | |
1409 T69 = T4i + T4j; | |
1410 T6a = T68 - T69; | |
1411 T6P = T68 + T69; | |
1412 } | |
1413 { | |
1414 E T4g, T4l, T4t, T4u; | |
1415 T4g = T4e - T4f; | |
1416 T4l = T4h + T4k; | |
1417 T4m = KP707106781 * (T4g - T4l); | |
1418 T5h = KP707106781 * (T4g + T4l); | |
1419 T4t = T4h - T4k; | |
1420 T4u = T4f + T4e; | |
1421 T4v = KP707106781 * (T4t - T4u); | |
1422 T5e = KP707106781 * (T4u + T4t); | |
1423 } | |
1424 } | |
1425 { | |
1426 E T1t, T6X, T7a, T7c, T30, T7b, T70, T71; | |
1427 { | |
1428 E TH, T1s, T72, T79; | |
1429 TH = Tj + TG; | |
1430 T1s = T14 + T1r; | |
1431 T1t = TH + T1s; | |
1432 T6X = TH - T1s; | |
1433 T72 = T6E + T6F; | |
1434 T79 = T73 + T78; | |
1435 T7a = T72 + T79; | |
1436 T7c = T79 - T72; | |
1437 } | |
1438 { | |
1439 E T2e, T2Z, T6Y, T6Z; | |
1440 T2e = T1Q + T2d; | |
1441 T2Z = T2B + T2Y; | |
1442 T30 = T2e + T2Z; | |
1443 T7b = T2Z - T2e; | |
1444 T6Y = T6J + T6K; | |
1445 T6Z = T6O + T6P; | |
1446 T70 = T6Y - T6Z; | |
1447 T71 = T6Y + T6Z; | |
1448 } | |
1449 ri[WS(rs, 16)] = T1t - T30; | |
1450 ii[WS(rs, 16)] = T7a - T71; | |
1451 ri[0] = T1t + T30; | |
1452 ii[0] = T71 + T7a; | |
1453 ri[WS(rs, 24)] = T6X - T70; | |
1454 ii[WS(rs, 24)] = T7c - T7b; | |
1455 ri[WS(rs, 8)] = T6X + T70; | |
1456 ii[WS(rs, 8)] = T7b + T7c; | |
1457 } | |
1458 { | |
1459 E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V; | |
1460 { | |
1461 E T6D, T6G, T7e, T7f; | |
1462 T6D = Tj - TG; | |
1463 T6G = T6E - T6F; | |
1464 T6H = T6D + T6G; | |
1465 T6T = T6D - T6G; | |
1466 T7e = T1r - T14; | |
1467 T7f = T78 - T73; | |
1468 T7g = T7e + T7f; | |
1469 T7i = T7f - T7e; | |
1470 } | |
1471 { | |
1472 E T6I, T6L, T6N, T6Q; | |
1473 T6I = T1Q - T2d; | |
1474 T6L = T6J - T6K; | |
1475 T6M = T6I + T6L; | |
1476 T6U = T6L - T6I; | |
1477 T6N = T2B - T2Y; | |
1478 T6Q = T6O - T6P; | |
1479 T6R = T6N - T6Q; | |
1480 T6V = T6N + T6Q; | |
1481 } | |
1482 { | |
1483 E T6S, T7d, T6W, T7h; | |
1484 T6S = KP707106781 * (T6M + T6R); | |
1485 ri[WS(rs, 20)] = T6H - T6S; | |
1486 ri[WS(rs, 4)] = T6H + T6S; | |
1487 T7d = KP707106781 * (T6U + T6V); | |
1488 ii[WS(rs, 4)] = T7d + T7g; | |
1489 ii[WS(rs, 20)] = T7g - T7d; | |
1490 T6W = KP707106781 * (T6U - T6V); | |
1491 ri[WS(rs, 28)] = T6T - T6W; | |
1492 ri[WS(rs, 12)] = T6T + T6W; | |
1493 T7h = KP707106781 * (T6R - T6M); | |
1494 ii[WS(rs, 12)] = T7h + T7i; | |
1495 ii[WS(rs, 28)] = T7i - T7h; | |
1496 } | |
1497 } | |
1498 { | |
1499 E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h; | |
1500 E T6l; | |
1501 { | |
1502 E T5O, T5T, T60, T65; | |
1503 T5J = T5F - T5I; | |
1504 T7n = T7l + T7m; | |
1505 T7t = T7m - T7l; | |
1506 T6n = T5F + T5I; | |
1507 T5O = T5M - T5N; | |
1508 T5T = T5P + T5S; | |
1509 T5U = KP707106781 * (T5O - T5T); | |
1510 T7k = KP707106781 * (T5O + T5T); | |
1511 { | |
1512 E T6v, T6w, T6o, T6p; | |
1513 T6v = T67 + T6a; | |
1514 T6w = T6e + T6f; | |
1515 T6x = FNMS(KP382683432, T6w, KP923879532 * T6v); | |
1516 T6B = FMA(KP923879532, T6w, KP382683432 * T6v); | |
1517 T6o = T5N + T5M; | |
1518 T6p = T5P - T5S; | |
1519 T6q = KP707106781 * (T6o + T6p); | |
1520 T7s = KP707106781 * (T6p - T6o); | |
1521 } | |
1522 T60 = T5Y - T5Z; | |
1523 T65 = T61 - T64; | |
1524 T66 = FMA(KP923879532, T60, KP382683432 * T65); | |
1525 T6k = FNMS(KP923879532, T65, KP382683432 * T60); | |
1526 { | |
1527 E T6s, T6t, T6b, T6g; | |
1528 T6s = T5Y + T5Z; | |
1529 T6t = T61 + T64; | |
1530 T6u = FMA(KP382683432, T6s, KP923879532 * T6t); | |
1531 T6A = FNMS(KP382683432, T6t, KP923879532 * T6s); | |
1532 T6b = T67 - T6a; | |
1533 T6g = T6e - T6f; | |
1534 T6h = FNMS(KP923879532, T6g, KP382683432 * T6b); | |
1535 T6l = FMA(KP382683432, T6g, KP923879532 * T6b); | |
1536 } | |
1537 } | |
1538 { | |
1539 E T5V, T6i, T7r, T7u; | |
1540 T5V = T5J + T5U; | |
1541 T6i = T66 + T6h; | |
1542 ri[WS(rs, 22)] = T5V - T6i; | |
1543 ri[WS(rs, 6)] = T5V + T6i; | |
1544 T7r = T6k + T6l; | |
1545 T7u = T7s + T7t; | |
1546 ii[WS(rs, 6)] = T7r + T7u; | |
1547 ii[WS(rs, 22)] = T7u - T7r; | |
1548 } | |
1549 { | |
1550 E T6j, T6m, T7v, T7w; | |
1551 T6j = T5J - T5U; | |
1552 T6m = T6k - T6l; | |
1553 ri[WS(rs, 30)] = T6j - T6m; | |
1554 ri[WS(rs, 14)] = T6j + T6m; | |
1555 T7v = T6h - T66; | |
1556 T7w = T7t - T7s; | |
1557 ii[WS(rs, 14)] = T7v + T7w; | |
1558 ii[WS(rs, 30)] = T7w - T7v; | |
1559 } | |
1560 { | |
1561 E T6r, T6y, T7j, T7o; | |
1562 T6r = T6n + T6q; | |
1563 T6y = T6u + T6x; | |
1564 ri[WS(rs, 18)] = T6r - T6y; | |
1565 ri[WS(rs, 2)] = T6r + T6y; | |
1566 T7j = T6A + T6B; | |
1567 T7o = T7k + T7n; | |
1568 ii[WS(rs, 2)] = T7j + T7o; | |
1569 ii[WS(rs, 18)] = T7o - T7j; | |
1570 } | |
1571 { | |
1572 E T6z, T6C, T7p, T7q; | |
1573 T6z = T6n - T6q; | |
1574 T6C = T6A - T6B; | |
1575 ri[WS(rs, 26)] = T6z - T6C; | |
1576 ri[WS(rs, 10)] = T6z + T6C; | |
1577 T7p = T6x - T6u; | |
1578 T7q = T7n - T7k; | |
1579 ii[WS(rs, 10)] = T7p + T7q; | |
1580 ii[WS(rs, 26)] = T7q - T7p; | |
1581 } | |
1582 } | |
1583 { | |
1584 E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x; | |
1585 E T4B, T3g, T7P; | |
1586 T3g = KP707106781 * (T3a - T3f); | |
1587 T3h = T35 - T3g; | |
1588 T4D = T35 + T3g; | |
1589 T7P = KP707106781 * (T4V - T4U); | |
1590 T7R = T7P + T7Q; | |
1591 T7X = T7Q - T7P; | |
1592 { | |
1593 E T3s, T3D, T4L, T4M; | |
1594 T3s = FNMS(KP923879532, T3r, KP382683432 * T3m); | |
1595 T3D = FMA(KP382683432, T3x, KP923879532 * T3C); | |
1596 T3E = T3s - T3D; | |
1597 T7O = T3s + T3D; | |
1598 T4L = T4b + T4m; | |
1599 T4M = T4s + T4v; | |
1600 T4N = FNMS(KP555570233, T4M, KP831469612 * T4L); | |
1601 T4R = FMA(KP831469612, T4M, KP555570233 * T4L); | |
1602 } | |
1603 { | |
1604 E T3W, T45, T4E, T4F; | |
1605 T3W = T3K - T3V; | |
1606 T45 = T41 - T44; | |
1607 T46 = FMA(KP980785280, T3W, KP195090322 * T45); | |
1608 T4A = FNMS(KP980785280, T45, KP195090322 * T3W); | |
1609 T4E = FMA(KP923879532, T3m, KP382683432 * T3r); | |
1610 T4F = FNMS(KP923879532, T3x, KP382683432 * T3C); | |
1611 T4G = T4E + T4F; | |
1612 T7W = T4F - T4E; | |
1613 } | |
1614 { | |
1615 E T4I, T4J, T4n, T4w; | |
1616 T4I = T3K + T3V; | |
1617 T4J = T41 + T44; | |
1618 T4K = FMA(KP555570233, T4I, KP831469612 * T4J); | |
1619 T4Q = FNMS(KP555570233, T4J, KP831469612 * T4I); | |
1620 T4n = T4b - T4m; | |
1621 T4w = T4s - T4v; | |
1622 T4x = FNMS(KP980785280, T4w, KP195090322 * T4n); | |
1623 T4B = FMA(KP195090322, T4w, KP980785280 * T4n); | |
1624 } | |
1625 { | |
1626 E T3F, T4y, T7V, T7Y; | |
1627 T3F = T3h + T3E; | |
1628 T4y = T46 + T4x; | |
1629 ri[WS(rs, 23)] = T3F - T4y; | |
1630 ri[WS(rs, 7)] = T3F + T4y; | |
1631 T7V = T4A + T4B; | |
1632 T7Y = T7W + T7X; | |
1633 ii[WS(rs, 7)] = T7V + T7Y; | |
1634 ii[WS(rs, 23)] = T7Y - T7V; | |
1635 } | |
1636 { | |
1637 E T4z, T4C, T7Z, T80; | |
1638 T4z = T3h - T3E; | |
1639 T4C = T4A - T4B; | |
1640 ri[WS(rs, 31)] = T4z - T4C; | |
1641 ri[WS(rs, 15)] = T4z + T4C; | |
1642 T7Z = T4x - T46; | |
1643 T80 = T7X - T7W; | |
1644 ii[WS(rs, 15)] = T7Z + T80; | |
1645 ii[WS(rs, 31)] = T80 - T7Z; | |
1646 } | |
1647 { | |
1648 E T4H, T4O, T7N, T7S; | |
1649 T4H = T4D + T4G; | |
1650 T4O = T4K + T4N; | |
1651 ri[WS(rs, 19)] = T4H - T4O; | |
1652 ri[WS(rs, 3)] = T4H + T4O; | |
1653 T7N = T4Q + T4R; | |
1654 T7S = T7O + T7R; | |
1655 ii[WS(rs, 3)] = T7N + T7S; | |
1656 ii[WS(rs, 19)] = T7S - T7N; | |
1657 } | |
1658 { | |
1659 E T4P, T4S, T7T, T7U; | |
1660 T4P = T4D - T4G; | |
1661 T4S = T4Q - T4R; | |
1662 ri[WS(rs, 27)] = T4P - T4S; | |
1663 ri[WS(rs, 11)] = T4P + T4S; | |
1664 T7T = T4N - T4K; | |
1665 T7U = T7R - T7O; | |
1666 ii[WS(rs, 11)] = T7T + T7U; | |
1667 ii[WS(rs, 27)] = T7U - T7T; | |
1668 } | |
1669 } | |
1670 { | |
1671 E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j; | |
1672 E T5n, T4W, T7z; | |
1673 T4W = KP707106781 * (T4U + T4V); | |
1674 T4X = T4T - T4W; | |
1675 T5p = T4T + T4W; | |
1676 T7z = KP707106781 * (T3a + T3f); | |
1677 T7D = T7z + T7C; | |
1678 T7J = T7C - T7z; | |
1679 { | |
1680 E T50, T53, T5x, T5y; | |
1681 T50 = FNMS(KP382683432, T4Z, KP923879532 * T4Y); | |
1682 T53 = FMA(KP923879532, T51, KP382683432 * T52); | |
1683 T54 = T50 - T53; | |
1684 T7y = T50 + T53; | |
1685 T5x = T5d + T5e; | |
1686 T5y = T5g + T5h; | |
1687 T5z = FNMS(KP195090322, T5y, KP980785280 * T5x); | |
1688 T5D = FMA(KP195090322, T5x, KP980785280 * T5y); | |
1689 } | |
1690 { | |
1691 E T58, T5b, T5q, T5r; | |
1692 T58 = T56 - T57; | |
1693 T5b = T59 - T5a; | |
1694 T5c = FMA(KP555570233, T58, KP831469612 * T5b); | |
1695 T5m = FNMS(KP831469612, T58, KP555570233 * T5b); | |
1696 T5q = FMA(KP382683432, T4Y, KP923879532 * T4Z); | |
1697 T5r = FNMS(KP382683432, T51, KP923879532 * T52); | |
1698 T5s = T5q + T5r; | |
1699 T7I = T5r - T5q; | |
1700 } | |
1701 { | |
1702 E T5u, T5v, T5f, T5i; | |
1703 T5u = T56 + T57; | |
1704 T5v = T59 + T5a; | |
1705 T5w = FMA(KP980785280, T5u, KP195090322 * T5v); | |
1706 T5C = FNMS(KP195090322, T5u, KP980785280 * T5v); | |
1707 T5f = T5d - T5e; | |
1708 T5i = T5g - T5h; | |
1709 T5j = FNMS(KP831469612, T5i, KP555570233 * T5f); | |
1710 T5n = FMA(KP831469612, T5f, KP555570233 * T5i); | |
1711 } | |
1712 { | |
1713 E T55, T5k, T7H, T7K; | |
1714 T55 = T4X + T54; | |
1715 T5k = T5c + T5j; | |
1716 ri[WS(rs, 21)] = T55 - T5k; | |
1717 ri[WS(rs, 5)] = T55 + T5k; | |
1718 T7H = T5m + T5n; | |
1719 T7K = T7I + T7J; | |
1720 ii[WS(rs, 5)] = T7H + T7K; | |
1721 ii[WS(rs, 21)] = T7K - T7H; | |
1722 } | |
1723 { | |
1724 E T5l, T5o, T7L, T7M; | |
1725 T5l = T4X - T54; | |
1726 T5o = T5m - T5n; | |
1727 ri[WS(rs, 29)] = T5l - T5o; | |
1728 ri[WS(rs, 13)] = T5l + T5o; | |
1729 T7L = T5j - T5c; | |
1730 T7M = T7J - T7I; | |
1731 ii[WS(rs, 13)] = T7L + T7M; | |
1732 ii[WS(rs, 29)] = T7M - T7L; | |
1733 } | |
1734 { | |
1735 E T5t, T5A, T7x, T7E; | |
1736 T5t = T5p + T5s; | |
1737 T5A = T5w + T5z; | |
1738 ri[WS(rs, 17)] = T5t - T5A; | |
1739 ri[WS(rs, 1)] = T5t + T5A; | |
1740 T7x = T5C + T5D; | |
1741 T7E = T7y + T7D; | |
1742 ii[WS(rs, 1)] = T7x + T7E; | |
1743 ii[WS(rs, 17)] = T7E - T7x; | |
1744 } | |
1745 { | |
1746 E T5B, T5E, T7F, T7G; | |
1747 T5B = T5p - T5s; | |
1748 T5E = T5C - T5D; | |
1749 ri[WS(rs, 25)] = T5B - T5E; | |
1750 ri[WS(rs, 9)] = T5B + T5E; | |
1751 T7F = T5z - T5w; | |
1752 T7G = T7D - T7y; | |
1753 ii[WS(rs, 9)] = T7F + T7G; | |
1754 ii[WS(rs, 25)] = T7G - T7F; | |
1755 } | |
1756 } | |
1757 } | |
1758 } | |
1759 } | |
1760 | |
1761 static const tw_instr twinstr[] = { | |
1762 {TW_FULL, 0, 32}, | |
1763 {TW_NEXT, 1, 0} | |
1764 }; | |
1765 | |
1766 static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {340, 114, 94, 0}, 0, 0, 0 }; | |
1767 | |
1768 void X(codelet_t1_32) (planner *p) { | |
1769 X(kdft_dit_register) (p, t1_32, &desc); | |
1770 } | |
1771 #endif /* HAVE_FMA */ |