Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t1_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:53 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 246 FP additions, 148 FP multiplications, | |
32 * (or, 136 additions, 38 multiplications, 110 fused multiply/add), | |
33 * 97 stack variables, 4 constants, and 80 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { | |
46 E T4P, T4Y, T50, T4U, T4S, T4T, T4Z, T4V; | |
47 { | |
48 E T4N, T4r, T8, T2i, T4n, T2n, T4O, Tl, T2v, T3v, T40, T4b, TN, T2b, T3F; | |
49 E T3i, T2R, T3z, T3W, T4f, T27, T2f, T3J, T3a, T2K, T3y, T3T, T4e, T1G, T2e; | |
50 E T3I, T33, T2C, T3w, T43, T4c, T1e, T2c, T3G, T3p; | |
51 { | |
52 E T1, T4q, T3, T6, T2, T5; | |
53 T1 = ri[0]; | |
54 T4q = ii[0]; | |
55 T3 = ri[WS(rs, 10)]; | |
56 T6 = ii[WS(rs, 10)]; | |
57 T2 = W[18]; | |
58 T5 = W[19]; | |
59 { | |
60 E Ta, Td, Tg, T2j, Tb, Tj, Tf, Tc, Ti; | |
61 { | |
62 E T4o, T4, T9, T4p, T7; | |
63 Ta = ri[WS(rs, 5)]; | |
64 Td = ii[WS(rs, 5)]; | |
65 T4o = T2 * T6; | |
66 T4 = T2 * T3; | |
67 T9 = W[8]; | |
68 Tg = ri[WS(rs, 15)]; | |
69 T4p = FNMS(T5, T3, T4o); | |
70 T7 = FMA(T5, T6, T4); | |
71 T2j = T9 * Td; | |
72 Tb = T9 * Ta; | |
73 T4N = T4q - T4p; | |
74 T4r = T4p + T4q; | |
75 T8 = T1 + T7; | |
76 T2i = T1 - T7; | |
77 Tj = ii[WS(rs, 15)]; | |
78 Tf = W[28]; | |
79 } | |
80 Tc = W[9]; | |
81 Ti = W[29]; | |
82 { | |
83 E T3d, Ts, T2t, TL, TB, TE, TD, T3f, Ty, T2q, TC; | |
84 { | |
85 E TH, TK, TJ, T2s, TI; | |
86 { | |
87 E To, Tr, Tp, T3c, Tq, TG; | |
88 { | |
89 E T2k, Te, T2m, Tk, T2l, Th, Tn; | |
90 To = ri[WS(rs, 4)]; | |
91 T2l = Tf * Tj; | |
92 Th = Tf * Tg; | |
93 T2k = FNMS(Tc, Ta, T2j); | |
94 Te = FMA(Tc, Td, Tb); | |
95 T2m = FNMS(Ti, Tg, T2l); | |
96 Tk = FMA(Ti, Tj, Th); | |
97 Tr = ii[WS(rs, 4)]; | |
98 Tn = W[6]; | |
99 T4n = T2k + T2m; | |
100 T2n = T2k - T2m; | |
101 T4O = Te - Tk; | |
102 Tl = Te + Tk; | |
103 Tp = Tn * To; | |
104 T3c = Tn * Tr; | |
105 } | |
106 Tq = W[7]; | |
107 TH = ri[WS(rs, 19)]; | |
108 TK = ii[WS(rs, 19)]; | |
109 TG = W[36]; | |
110 T3d = FNMS(Tq, To, T3c); | |
111 Ts = FMA(Tq, Tr, Tp); | |
112 TJ = W[37]; | |
113 T2s = TG * TK; | |
114 TI = TG * TH; | |
115 } | |
116 { | |
117 E Tu, Tx, Tt, Tw, T3e, Tv, TA; | |
118 Tu = ri[WS(rs, 14)]; | |
119 Tx = ii[WS(rs, 14)]; | |
120 T2t = FNMS(TJ, TH, T2s); | |
121 TL = FMA(TJ, TK, TI); | |
122 Tt = W[26]; | |
123 Tw = W[27]; | |
124 TB = ri[WS(rs, 9)]; | |
125 TE = ii[WS(rs, 9)]; | |
126 T3e = Tt * Tx; | |
127 Tv = Tt * Tu; | |
128 TA = W[16]; | |
129 TD = W[17]; | |
130 T3f = FNMS(Tw, Tu, T3e); | |
131 Ty = FMA(Tw, Tx, Tv); | |
132 T2q = TA * TE; | |
133 TC = TA * TB; | |
134 } | |
135 } | |
136 { | |
137 E T3g, T3Y, Tz, T2p, T2r, TF; | |
138 T3g = T3d - T3f; | |
139 T3Y = T3d + T3f; | |
140 Tz = Ts + Ty; | |
141 T2p = Ts - Ty; | |
142 T2r = FNMS(TD, TB, T2q); | |
143 TF = FMA(TD, TE, TC); | |
144 { | |
145 E T3Z, T2u, T3h, TM; | |
146 T3Z = T2r + T2t; | |
147 T2u = T2r - T2t; | |
148 T3h = TF - TL; | |
149 TM = TF + TL; | |
150 T2v = T2p - T2u; | |
151 T3v = T2p + T2u; | |
152 T40 = T3Y - T3Z; | |
153 T4b = T3Y + T3Z; | |
154 TN = Tz - TM; | |
155 T2b = Tz + TM; | |
156 T3F = T3g - T3h; | |
157 T3i = T3g + T3h; | |
158 } | |
159 } | |
160 } | |
161 } | |
162 } | |
163 { | |
164 E T35, T1M, T2P, T25, T1V, T1Y, T1X, T37, T1S, T2M, T1W; | |
165 { | |
166 E T21, T24, T23, T2O, T22; | |
167 { | |
168 E T1I, T1L, T1H, T1K, T34, T1J, T20; | |
169 T1I = ri[WS(rs, 12)]; | |
170 T1L = ii[WS(rs, 12)]; | |
171 T1H = W[22]; | |
172 T1K = W[23]; | |
173 T21 = ri[WS(rs, 7)]; | |
174 T24 = ii[WS(rs, 7)]; | |
175 T34 = T1H * T1L; | |
176 T1J = T1H * T1I; | |
177 T20 = W[12]; | |
178 T23 = W[13]; | |
179 T35 = FNMS(T1K, T1I, T34); | |
180 T1M = FMA(T1K, T1L, T1J); | |
181 T2O = T20 * T24; | |
182 T22 = T20 * T21; | |
183 } | |
184 { | |
185 E T1O, T1R, T1N, T1Q, T36, T1P, T1U; | |
186 T1O = ri[WS(rs, 2)]; | |
187 T1R = ii[WS(rs, 2)]; | |
188 T2P = FNMS(T23, T21, T2O); | |
189 T25 = FMA(T23, T24, T22); | |
190 T1N = W[2]; | |
191 T1Q = W[3]; | |
192 T1V = ri[WS(rs, 17)]; | |
193 T1Y = ii[WS(rs, 17)]; | |
194 T36 = T1N * T1R; | |
195 T1P = T1N * T1O; | |
196 T1U = W[32]; | |
197 T1X = W[33]; | |
198 T37 = FNMS(T1Q, T1O, T36); | |
199 T1S = FMA(T1Q, T1R, T1P); | |
200 T2M = T1U * T1Y; | |
201 T1W = T1U * T1V; | |
202 } | |
203 } | |
204 { | |
205 E T38, T3U, T1T, T2L, T2N, T1Z; | |
206 T38 = T35 - T37; | |
207 T3U = T35 + T37; | |
208 T1T = T1M + T1S; | |
209 T2L = T1M - T1S; | |
210 T2N = FNMS(T1X, T1V, T2M); | |
211 T1Z = FMA(T1X, T1Y, T1W); | |
212 { | |
213 E T3V, T2Q, T39, T26; | |
214 T3V = T2N + T2P; | |
215 T2Q = T2N - T2P; | |
216 T39 = T1Z - T25; | |
217 T26 = T1Z + T25; | |
218 T2R = T2L - T2Q; | |
219 T3z = T2L + T2Q; | |
220 T3W = T3U - T3V; | |
221 T4f = T3U + T3V; | |
222 T27 = T1T - T26; | |
223 T2f = T1T + T26; | |
224 T3J = T38 - T39; | |
225 T3a = T38 + T39; | |
226 } | |
227 } | |
228 } | |
229 { | |
230 E T2Y, T1l, T2I, T1E, T1u, T1x, T1w, T30, T1r, T2F, T1v; | |
231 { | |
232 E T1A, T1D, T1C, T2H, T1B; | |
233 { | |
234 E T1h, T1k, T1g, T1j, T2X, T1i, T1z; | |
235 T1h = ri[WS(rs, 8)]; | |
236 T1k = ii[WS(rs, 8)]; | |
237 T1g = W[14]; | |
238 T1j = W[15]; | |
239 T1A = ri[WS(rs, 3)]; | |
240 T1D = ii[WS(rs, 3)]; | |
241 T2X = T1g * T1k; | |
242 T1i = T1g * T1h; | |
243 T1z = W[4]; | |
244 T1C = W[5]; | |
245 T2Y = FNMS(T1j, T1h, T2X); | |
246 T1l = FMA(T1j, T1k, T1i); | |
247 T2H = T1z * T1D; | |
248 T1B = T1z * T1A; | |
249 } | |
250 { | |
251 E T1n, T1q, T1m, T1p, T2Z, T1o, T1t; | |
252 T1n = ri[WS(rs, 18)]; | |
253 T1q = ii[WS(rs, 18)]; | |
254 T2I = FNMS(T1C, T1A, T2H); | |
255 T1E = FMA(T1C, T1D, T1B); | |
256 T1m = W[34]; | |
257 T1p = W[35]; | |
258 T1u = ri[WS(rs, 13)]; | |
259 T1x = ii[WS(rs, 13)]; | |
260 T2Z = T1m * T1q; | |
261 T1o = T1m * T1n; | |
262 T1t = W[24]; | |
263 T1w = W[25]; | |
264 T30 = FNMS(T1p, T1n, T2Z); | |
265 T1r = FMA(T1p, T1q, T1o); | |
266 T2F = T1t * T1x; | |
267 T1v = T1t * T1u; | |
268 } | |
269 } | |
270 { | |
271 E T31, T3R, T1s, T2E, T2G, T1y; | |
272 T31 = T2Y - T30; | |
273 T3R = T2Y + T30; | |
274 T1s = T1l + T1r; | |
275 T2E = T1l - T1r; | |
276 T2G = FNMS(T1w, T1u, T2F); | |
277 T1y = FMA(T1w, T1x, T1v); | |
278 { | |
279 E T3S, T2J, T32, T1F; | |
280 T3S = T2G + T2I; | |
281 T2J = T2G - T2I; | |
282 T32 = T1y - T1E; | |
283 T1F = T1y + T1E; | |
284 T2K = T2E - T2J; | |
285 T3y = T2E + T2J; | |
286 T3T = T3R - T3S; | |
287 T4e = T3R + T3S; | |
288 T1G = T1s - T1F; | |
289 T2e = T1s + T1F; | |
290 T3I = T31 - T32; | |
291 T33 = T31 + T32; | |
292 } | |
293 } | |
294 } | |
295 { | |
296 E T3k, TT, T2A, T1c, T12, T15, T14, T3m, TZ, T2x, T13; | |
297 { | |
298 E T18, T1b, T1a, T2z, T19; | |
299 { | |
300 E TP, TS, TO, TR, T3j, TQ, T17; | |
301 TP = ri[WS(rs, 16)]; | |
302 TS = ii[WS(rs, 16)]; | |
303 TO = W[30]; | |
304 TR = W[31]; | |
305 T18 = ri[WS(rs, 11)]; | |
306 T1b = ii[WS(rs, 11)]; | |
307 T3j = TO * TS; | |
308 TQ = TO * TP; | |
309 T17 = W[20]; | |
310 T1a = W[21]; | |
311 T3k = FNMS(TR, TP, T3j); | |
312 TT = FMA(TR, TS, TQ); | |
313 T2z = T17 * T1b; | |
314 T19 = T17 * T18; | |
315 } | |
316 { | |
317 E TV, TY, TU, TX, T3l, TW, T11; | |
318 TV = ri[WS(rs, 6)]; | |
319 TY = ii[WS(rs, 6)]; | |
320 T2A = FNMS(T1a, T18, T2z); | |
321 T1c = FMA(T1a, T1b, T19); | |
322 TU = W[10]; | |
323 TX = W[11]; | |
324 T12 = ri[WS(rs, 1)]; | |
325 T15 = ii[WS(rs, 1)]; | |
326 T3l = TU * TY; | |
327 TW = TU * TV; | |
328 T11 = W[0]; | |
329 T14 = W[1]; | |
330 T3m = FNMS(TX, TV, T3l); | |
331 TZ = FMA(TX, TY, TW); | |
332 T2x = T11 * T15; | |
333 T13 = T11 * T12; | |
334 } | |
335 } | |
336 { | |
337 E T3n, T41, T10, T2w, T2y, T16; | |
338 T3n = T3k - T3m; | |
339 T41 = T3k + T3m; | |
340 T10 = TT + TZ; | |
341 T2w = TT - TZ; | |
342 T2y = FNMS(T14, T12, T2x); | |
343 T16 = FMA(T14, T15, T13); | |
344 { | |
345 E T42, T2B, T3o, T1d; | |
346 T42 = T2y + T2A; | |
347 T2B = T2y - T2A; | |
348 T3o = T16 - T1c; | |
349 T1d = T16 + T1c; | |
350 T2C = T2w - T2B; | |
351 T3w = T2w + T2B; | |
352 T43 = T41 - T42; | |
353 T4c = T41 + T42; | |
354 T1e = T10 - T1d; | |
355 T2c = T10 + T1d; | |
356 T3G = T3n - T3o; | |
357 T3p = T3n + T3o; | |
358 } | |
359 } | |
360 } | |
361 { | |
362 E T4s, T4k, T4l, T4h, T4j, T49, T4y, T4A, T48; | |
363 { | |
364 E T4D, T4C, T2a, T47, T45, T4B, T4M, T4K, T46, T3Q; | |
365 { | |
366 E Tm, T1f, T4J, T4I, T28, T3X, T44, T29, T3P, T3O; | |
367 T4D = T3T + T3W; | |
368 T3X = T3T - T3W; | |
369 T44 = T40 - T43; | |
370 T4C = T40 + T43; | |
371 T2a = T8 + Tl; | |
372 Tm = T8 - Tl; | |
373 T1f = TN + T1e; | |
374 T4J = TN - T1e; | |
375 T4I = T1G - T27; | |
376 T28 = T1G + T27; | |
377 T47 = FMA(KP618033988, T3X, T44); | |
378 T45 = FNMS(KP618033988, T44, T3X); | |
379 T29 = T1f + T28; | |
380 T3P = T1f - T28; | |
381 T4B = T4r - T4n; | |
382 T4s = T4n + T4r; | |
383 ri[WS(rs, 10)] = Tm + T29; | |
384 T3O = FNMS(KP250000000, T29, Tm); | |
385 T4M = FMA(KP618033988, T4I, T4J); | |
386 T4K = FNMS(KP618033988, T4J, T4I); | |
387 T46 = FMA(KP559016994, T3P, T3O); | |
388 T3Q = FNMS(KP559016994, T3P, T3O); | |
389 } | |
390 { | |
391 E T2d, T4w, T4x, T2g, T2h; | |
392 { | |
393 E T4d, T4G, T4F, T4g, T4E, T4L, T4H; | |
394 T4k = T4b + T4c; | |
395 T4d = T4b - T4c; | |
396 T4G = T4C - T4D; | |
397 T4E = T4C + T4D; | |
398 ri[WS(rs, 18)] = FMA(KP951056516, T45, T3Q); | |
399 ri[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q); | |
400 ri[WS(rs, 6)] = FMA(KP951056516, T47, T46); | |
401 ri[WS(rs, 14)] = FNMS(KP951056516, T47, T46); | |
402 ii[WS(rs, 10)] = T4E + T4B; | |
403 T4F = FNMS(KP250000000, T4E, T4B); | |
404 T4g = T4e - T4f; | |
405 T4l = T4e + T4f; | |
406 T2d = T2b + T2c; | |
407 T4w = T2b - T2c; | |
408 T4L = FMA(KP559016994, T4G, T4F); | |
409 T4H = FNMS(KP559016994, T4G, T4F); | |
410 T4h = FMA(KP618033988, T4g, T4d); | |
411 T4j = FNMS(KP618033988, T4d, T4g); | |
412 ii[WS(rs, 18)] = FNMS(KP951056516, T4K, T4H); | |
413 ii[WS(rs, 2)] = FMA(KP951056516, T4K, T4H); | |
414 ii[WS(rs, 14)] = FMA(KP951056516, T4M, T4L); | |
415 ii[WS(rs, 6)] = FNMS(KP951056516, T4M, T4L); | |
416 T4x = T2e - T2f; | |
417 T2g = T2e + T2f; | |
418 } | |
419 T2h = T2d + T2g; | |
420 T49 = T2d - T2g; | |
421 T4y = FMA(KP618033988, T4x, T4w); | |
422 T4A = FNMS(KP618033988, T4w, T4x); | |
423 ri[0] = T2a + T2h; | |
424 T48 = FNMS(KP250000000, T2h, T2a); | |
425 } | |
426 } | |
427 { | |
428 E T3u, T51, T5a, T5c, T56, T54; | |
429 { | |
430 E T53, T52, T3t, T3r, T2o, T59, T58, T2T, T2V, T4u, T4t, T2U, T3s, T2W; | |
431 { | |
432 E T3b, T3q, T4i, T4a, T4m; | |
433 T53 = T33 + T3a; | |
434 T3b = T33 - T3a; | |
435 T3q = T3i - T3p; | |
436 T52 = T3i + T3p; | |
437 T4i = FNMS(KP559016994, T49, T48); | |
438 T4a = FMA(KP559016994, T49, T48); | |
439 T4m = T4k + T4l; | |
440 T4u = T4k - T4l; | |
441 ri[WS(rs, 16)] = FMA(KP951056516, T4h, T4a); | |
442 ri[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a); | |
443 ri[WS(rs, 8)] = FMA(KP951056516, T4j, T4i); | |
444 ri[WS(rs, 12)] = FNMS(KP951056516, T4j, T4i); | |
445 ii[0] = T4m + T4s; | |
446 T4t = FNMS(KP250000000, T4m, T4s); | |
447 T3t = FMA(KP618033988, T3b, T3q); | |
448 T3r = FNMS(KP618033988, T3q, T3b); | |
449 } | |
450 T3u = T2i + T2n; | |
451 T2o = T2i - T2n; | |
452 { | |
453 E T4v, T4z, T2D, T2S; | |
454 T4v = FMA(KP559016994, T4u, T4t); | |
455 T4z = FNMS(KP559016994, T4u, T4t); | |
456 T2D = T2v + T2C; | |
457 T59 = T2v - T2C; | |
458 T58 = T2K - T2R; | |
459 T2S = T2K + T2R; | |
460 ii[WS(rs, 16)] = FNMS(KP951056516, T4y, T4v); | |
461 ii[WS(rs, 4)] = FMA(KP951056516, T4y, T4v); | |
462 ii[WS(rs, 12)] = FMA(KP951056516, T4A, T4z); | |
463 ii[WS(rs, 8)] = FNMS(KP951056516, T4A, T4z); | |
464 T2T = T2D + T2S; | |
465 T2V = T2D - T2S; | |
466 } | |
467 ri[WS(rs, 15)] = T2o + T2T; | |
468 T2U = FNMS(KP250000000, T2T, T2o); | |
469 T51 = T4O + T4N; | |
470 T4P = T4N - T4O; | |
471 T5a = FNMS(KP618033988, T59, T58); | |
472 T5c = FMA(KP618033988, T58, T59); | |
473 T3s = FMA(KP559016994, T2V, T2U); | |
474 T2W = FNMS(KP559016994, T2V, T2U); | |
475 ri[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W); | |
476 ri[WS(rs, 3)] = FMA(KP951056516, T3r, T2W); | |
477 ri[WS(rs, 19)] = FNMS(KP951056516, T3t, T3s); | |
478 ri[WS(rs, 11)] = FMA(KP951056516, T3t, T3s); | |
479 T56 = T52 - T53; | |
480 T54 = T52 + T53; | |
481 } | |
482 { | |
483 E T4Q, T4R, T3N, T3L, T4W, T4X, T3B, T3D, T3H, T3K, T55, T3C, T3M, T3E; | |
484 T4Q = T3F + T3G; | |
485 T3H = T3F - T3G; | |
486 T3K = T3I - T3J; | |
487 T4R = T3I + T3J; | |
488 ii[WS(rs, 15)] = T54 + T51; | |
489 T55 = FNMS(KP250000000, T54, T51); | |
490 T3N = FNMS(KP618033988, T3H, T3K); | |
491 T3L = FMA(KP618033988, T3K, T3H); | |
492 { | |
493 E T57, T5b, T3x, T3A; | |
494 T57 = FNMS(KP559016994, T56, T55); | |
495 T5b = FMA(KP559016994, T56, T55); | |
496 T3x = T3v + T3w; | |
497 T4W = T3v - T3w; | |
498 T4X = T3y - T3z; | |
499 T3A = T3y + T3z; | |
500 ii[WS(rs, 7)] = FMA(KP951056516, T5a, T57); | |
501 ii[WS(rs, 3)] = FNMS(KP951056516, T5a, T57); | |
502 ii[WS(rs, 19)] = FMA(KP951056516, T5c, T5b); | |
503 ii[WS(rs, 11)] = FNMS(KP951056516, T5c, T5b); | |
504 T3B = T3x + T3A; | |
505 T3D = T3x - T3A; | |
506 } | |
507 ri[WS(rs, 5)] = T3u + T3B; | |
508 T3C = FNMS(KP250000000, T3B, T3u); | |
509 T4Y = FMA(KP618033988, T4X, T4W); | |
510 T50 = FNMS(KP618033988, T4W, T4X); | |
511 T3M = FNMS(KP559016994, T3D, T3C); | |
512 T3E = FMA(KP559016994, T3D, T3C); | |
513 ri[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E); | |
514 ri[WS(rs, 1)] = FMA(KP951056516, T3L, T3E); | |
515 ri[WS(rs, 17)] = FNMS(KP951056516, T3N, T3M); | |
516 ri[WS(rs, 13)] = FMA(KP951056516, T3N, T3M); | |
517 T4U = T4Q - T4R; | |
518 T4S = T4Q + T4R; | |
519 } | |
520 } | |
521 } | |
522 } | |
523 ii[WS(rs, 5)] = T4S + T4P; | |
524 T4T = FNMS(KP250000000, T4S, T4P); | |
525 T4Z = FNMS(KP559016994, T4U, T4T); | |
526 T4V = FMA(KP559016994, T4U, T4T); | |
527 ii[WS(rs, 9)] = FMA(KP951056516, T4Y, T4V); | |
528 ii[WS(rs, 1)] = FNMS(KP951056516, T4Y, T4V); | |
529 ii[WS(rs, 17)] = FMA(KP951056516, T50, T4Z); | |
530 ii[WS(rs, 13)] = FNMS(KP951056516, T50, T4Z); | |
531 } | |
532 } | |
533 } | |
534 | |
535 static const tw_instr twinstr[] = { | |
536 {TW_FULL, 0, 20}, | |
537 {TW_NEXT, 1, 0} | |
538 }; | |
539 | |
540 static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {136, 38, 110, 0}, 0, 0, 0 }; | |
541 | |
542 void X(codelet_t1_20) (planner *p) { | |
543 X(kdft_dit_register) (p, t1_20, &desc); | |
544 } | |
545 #else /* HAVE_FMA */ | |
546 | |
547 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include t.h */ | |
548 | |
549 /* | |
550 * This function contains 246 FP additions, 124 FP multiplications, | |
551 * (or, 184 additions, 62 multiplications, 62 fused multiply/add), | |
552 * 85 stack variables, 4 constants, and 80 memory accesses | |
553 */ | |
554 #include "t.h" | |
555 | |
556 static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
557 { | |
558 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
559 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
560 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
561 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
562 { | |
563 INT m; | |
564 for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { | |
565 E Tj, T1R, T4g, T4p, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T44, T3D; | |
566 E T3E, T3K, T1V, T1W, T1X, T23, T28, T4r, T2W, T2X, T4c, T33, T34, T35, T2G; | |
567 E T2L, T2M, TG, T13, T14, T3p, T3s, T43, T3A, T3B, T3J, T1S, T1T, T1U, T2e; | |
568 E T2j, T4q, T2T, T2U, T4b, T30, T31, T32, T2v, T2A, T2B; | |
569 { | |
570 E T1, T3O, T6, T3N, Tc, T2n, Th, T2o; | |
571 T1 = ri[0]; | |
572 T3O = ii[0]; | |
573 { | |
574 E T3, T5, T2, T4; | |
575 T3 = ri[WS(rs, 10)]; | |
576 T5 = ii[WS(rs, 10)]; | |
577 T2 = W[18]; | |
578 T4 = W[19]; | |
579 T6 = FMA(T2, T3, T4 * T5); | |
580 T3N = FNMS(T4, T3, T2 * T5); | |
581 } | |
582 { | |
583 E T9, Tb, T8, Ta; | |
584 T9 = ri[WS(rs, 5)]; | |
585 Tb = ii[WS(rs, 5)]; | |
586 T8 = W[8]; | |
587 Ta = W[9]; | |
588 Tc = FMA(T8, T9, Ta * Tb); | |
589 T2n = FNMS(Ta, T9, T8 * Tb); | |
590 } | |
591 { | |
592 E Te, Tg, Td, Tf; | |
593 Te = ri[WS(rs, 15)]; | |
594 Tg = ii[WS(rs, 15)]; | |
595 Td = W[28]; | |
596 Tf = W[29]; | |
597 Th = FMA(Td, Te, Tf * Tg); | |
598 T2o = FNMS(Tf, Te, Td * Tg); | |
599 } | |
600 { | |
601 E T7, Ti, T4e, T4f; | |
602 T7 = T1 + T6; | |
603 Ti = Tc + Th; | |
604 Tj = T7 - Ti; | |
605 T1R = T7 + Ti; | |
606 T4e = T3O - T3N; | |
607 T4f = Tc - Th; | |
608 T4g = T4e - T4f; | |
609 T4p = T4f + T4e; | |
610 } | |
611 { | |
612 E T2m, T2p, T3M, T3P; | |
613 T2m = T1 - T6; | |
614 T2p = T2n - T2o; | |
615 T2q = T2m - T2p; | |
616 T37 = T2m + T2p; | |
617 T3M = T2n + T2o; | |
618 T3P = T3N + T3O; | |
619 T3Q = T3M + T3P; | |
620 T42 = T3P - T3M; | |
621 } | |
622 } | |
623 { | |
624 E T1f, T3g, T21, T2C, T1N, T3k, T27, T2K, T1q, T3h, T22, T2F, T1C, T3j, T26; | |
625 E T2H; | |
626 { | |
627 E T19, T1Z, T1e, T20; | |
628 { | |
629 E T16, T18, T15, T17; | |
630 T16 = ri[WS(rs, 8)]; | |
631 T18 = ii[WS(rs, 8)]; | |
632 T15 = W[14]; | |
633 T17 = W[15]; | |
634 T19 = FMA(T15, T16, T17 * T18); | |
635 T1Z = FNMS(T17, T16, T15 * T18); | |
636 } | |
637 { | |
638 E T1b, T1d, T1a, T1c; | |
639 T1b = ri[WS(rs, 18)]; | |
640 T1d = ii[WS(rs, 18)]; | |
641 T1a = W[34]; | |
642 T1c = W[35]; | |
643 T1e = FMA(T1a, T1b, T1c * T1d); | |
644 T20 = FNMS(T1c, T1b, T1a * T1d); | |
645 } | |
646 T1f = T19 + T1e; | |
647 T3g = T1Z + T20; | |
648 T21 = T1Z - T20; | |
649 T2C = T19 - T1e; | |
650 } | |
651 { | |
652 E T1H, T2I, T1M, T2J; | |
653 { | |
654 E T1E, T1G, T1D, T1F; | |
655 T1E = ri[WS(rs, 17)]; | |
656 T1G = ii[WS(rs, 17)]; | |
657 T1D = W[32]; | |
658 T1F = W[33]; | |
659 T1H = FMA(T1D, T1E, T1F * T1G); | |
660 T2I = FNMS(T1F, T1E, T1D * T1G); | |
661 } | |
662 { | |
663 E T1J, T1L, T1I, T1K; | |
664 T1J = ri[WS(rs, 7)]; | |
665 T1L = ii[WS(rs, 7)]; | |
666 T1I = W[12]; | |
667 T1K = W[13]; | |
668 T1M = FMA(T1I, T1J, T1K * T1L); | |
669 T2J = FNMS(T1K, T1J, T1I * T1L); | |
670 } | |
671 T1N = T1H + T1M; | |
672 T3k = T2I + T2J; | |
673 T27 = T1H - T1M; | |
674 T2K = T2I - T2J; | |
675 } | |
676 { | |
677 E T1k, T2D, T1p, T2E; | |
678 { | |
679 E T1h, T1j, T1g, T1i; | |
680 T1h = ri[WS(rs, 13)]; | |
681 T1j = ii[WS(rs, 13)]; | |
682 T1g = W[24]; | |
683 T1i = W[25]; | |
684 T1k = FMA(T1g, T1h, T1i * T1j); | |
685 T2D = FNMS(T1i, T1h, T1g * T1j); | |
686 } | |
687 { | |
688 E T1m, T1o, T1l, T1n; | |
689 T1m = ri[WS(rs, 3)]; | |
690 T1o = ii[WS(rs, 3)]; | |
691 T1l = W[4]; | |
692 T1n = W[5]; | |
693 T1p = FMA(T1l, T1m, T1n * T1o); | |
694 T2E = FNMS(T1n, T1m, T1l * T1o); | |
695 } | |
696 T1q = T1k + T1p; | |
697 T3h = T2D + T2E; | |
698 T22 = T1k - T1p; | |
699 T2F = T2D - T2E; | |
700 } | |
701 { | |
702 E T1w, T24, T1B, T25; | |
703 { | |
704 E T1t, T1v, T1s, T1u; | |
705 T1t = ri[WS(rs, 12)]; | |
706 T1v = ii[WS(rs, 12)]; | |
707 T1s = W[22]; | |
708 T1u = W[23]; | |
709 T1w = FMA(T1s, T1t, T1u * T1v); | |
710 T24 = FNMS(T1u, T1t, T1s * T1v); | |
711 } | |
712 { | |
713 E T1y, T1A, T1x, T1z; | |
714 T1y = ri[WS(rs, 2)]; | |
715 T1A = ii[WS(rs, 2)]; | |
716 T1x = W[2]; | |
717 T1z = W[3]; | |
718 T1B = FMA(T1x, T1y, T1z * T1A); | |
719 T25 = FNMS(T1z, T1y, T1x * T1A); | |
720 } | |
721 T1C = T1w + T1B; | |
722 T3j = T24 + T25; | |
723 T26 = T24 - T25; | |
724 T2H = T1w - T1B; | |
725 } | |
726 T1r = T1f - T1q; | |
727 T1O = T1C - T1N; | |
728 T1P = T1r + T1O; | |
729 T3i = T3g - T3h; | |
730 T3l = T3j - T3k; | |
731 T44 = T3i + T3l; | |
732 T3D = T3g + T3h; | |
733 T3E = T3j + T3k; | |
734 T3K = T3D + T3E; | |
735 T1V = T1f + T1q; | |
736 T1W = T1C + T1N; | |
737 T1X = T1V + T1W; | |
738 T23 = T21 + T22; | |
739 T28 = T26 + T27; | |
740 T4r = T23 + T28; | |
741 T2W = T21 - T22; | |
742 T2X = T26 - T27; | |
743 T4c = T2W + T2X; | |
744 T33 = T2C + T2F; | |
745 T34 = T2H + T2K; | |
746 T35 = T33 + T34; | |
747 T2G = T2C - T2F; | |
748 T2L = T2H - T2K; | |
749 T2M = T2G + T2L; | |
750 } | |
751 { | |
752 E Tu, T3n, T2c, T2r, T12, T3r, T2i, T2z, TF, T3o, T2d, T2u, TR, T3q, T2h; | |
753 E T2w; | |
754 { | |
755 E To, T2a, Tt, T2b; | |
756 { | |
757 E Tl, Tn, Tk, Tm; | |
758 Tl = ri[WS(rs, 4)]; | |
759 Tn = ii[WS(rs, 4)]; | |
760 Tk = W[6]; | |
761 Tm = W[7]; | |
762 To = FMA(Tk, Tl, Tm * Tn); | |
763 T2a = FNMS(Tm, Tl, Tk * Tn); | |
764 } | |
765 { | |
766 E Tq, Ts, Tp, Tr; | |
767 Tq = ri[WS(rs, 14)]; | |
768 Ts = ii[WS(rs, 14)]; | |
769 Tp = W[26]; | |
770 Tr = W[27]; | |
771 Tt = FMA(Tp, Tq, Tr * Ts); | |
772 T2b = FNMS(Tr, Tq, Tp * Ts); | |
773 } | |
774 Tu = To + Tt; | |
775 T3n = T2a + T2b; | |
776 T2c = T2a - T2b; | |
777 T2r = To - Tt; | |
778 } | |
779 { | |
780 E TW, T2x, T11, T2y; | |
781 { | |
782 E TT, TV, TS, TU; | |
783 TT = ri[WS(rs, 1)]; | |
784 TV = ii[WS(rs, 1)]; | |
785 TS = W[0]; | |
786 TU = W[1]; | |
787 TW = FMA(TS, TT, TU * TV); | |
788 T2x = FNMS(TU, TT, TS * TV); | |
789 } | |
790 { | |
791 E TY, T10, TX, TZ; | |
792 TY = ri[WS(rs, 11)]; | |
793 T10 = ii[WS(rs, 11)]; | |
794 TX = W[20]; | |
795 TZ = W[21]; | |
796 T11 = FMA(TX, TY, TZ * T10); | |
797 T2y = FNMS(TZ, TY, TX * T10); | |
798 } | |
799 T12 = TW + T11; | |
800 T3r = T2x + T2y; | |
801 T2i = TW - T11; | |
802 T2z = T2x - T2y; | |
803 } | |
804 { | |
805 E Tz, T2s, TE, T2t; | |
806 { | |
807 E Tw, Ty, Tv, Tx; | |
808 Tw = ri[WS(rs, 9)]; | |
809 Ty = ii[WS(rs, 9)]; | |
810 Tv = W[16]; | |
811 Tx = W[17]; | |
812 Tz = FMA(Tv, Tw, Tx * Ty); | |
813 T2s = FNMS(Tx, Tw, Tv * Ty); | |
814 } | |
815 { | |
816 E TB, TD, TA, TC; | |
817 TB = ri[WS(rs, 19)]; | |
818 TD = ii[WS(rs, 19)]; | |
819 TA = W[36]; | |
820 TC = W[37]; | |
821 TE = FMA(TA, TB, TC * TD); | |
822 T2t = FNMS(TC, TB, TA * TD); | |
823 } | |
824 TF = Tz + TE; | |
825 T3o = T2s + T2t; | |
826 T2d = Tz - TE; | |
827 T2u = T2s - T2t; | |
828 } | |
829 { | |
830 E TL, T2f, TQ, T2g; | |
831 { | |
832 E TI, TK, TH, TJ; | |
833 TI = ri[WS(rs, 16)]; | |
834 TK = ii[WS(rs, 16)]; | |
835 TH = W[30]; | |
836 TJ = W[31]; | |
837 TL = FMA(TH, TI, TJ * TK); | |
838 T2f = FNMS(TJ, TI, TH * TK); | |
839 } | |
840 { | |
841 E TN, TP, TM, TO; | |
842 TN = ri[WS(rs, 6)]; | |
843 TP = ii[WS(rs, 6)]; | |
844 TM = W[10]; | |
845 TO = W[11]; | |
846 TQ = FMA(TM, TN, TO * TP); | |
847 T2g = FNMS(TO, TN, TM * TP); | |
848 } | |
849 TR = TL + TQ; | |
850 T3q = T2f + T2g; | |
851 T2h = T2f - T2g; | |
852 T2w = TL - TQ; | |
853 } | |
854 TG = Tu - TF; | |
855 T13 = TR - T12; | |
856 T14 = TG + T13; | |
857 T3p = T3n - T3o; | |
858 T3s = T3q - T3r; | |
859 T43 = T3p + T3s; | |
860 T3A = T3n + T3o; | |
861 T3B = T3q + T3r; | |
862 T3J = T3A + T3B; | |
863 T1S = Tu + TF; | |
864 T1T = TR + T12; | |
865 T1U = T1S + T1T; | |
866 T2e = T2c + T2d; | |
867 T2j = T2h + T2i; | |
868 T4q = T2e + T2j; | |
869 T2T = T2c - T2d; | |
870 T2U = T2h - T2i; | |
871 T4b = T2T + T2U; | |
872 T30 = T2r + T2u; | |
873 T31 = T2w + T2z; | |
874 T32 = T30 + T31; | |
875 T2v = T2r - T2u; | |
876 T2A = T2w - T2z; | |
877 T2B = T2v + T2A; | |
878 } | |
879 { | |
880 E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f; | |
881 T3e = KP559016994 * (T14 - T1P); | |
882 T1Q = T14 + T1P; | |
883 T3d = FNMS(KP250000000, T1Q, Tj); | |
884 T3m = T3i - T3l; | |
885 T3t = T3p - T3s; | |
886 T3u = FNMS(KP587785252, T3t, KP951056516 * T3m); | |
887 T3w = FMA(KP951056516, T3t, KP587785252 * T3m); | |
888 ri[WS(rs, 10)] = Tj + T1Q; | |
889 T3v = T3e + T3d; | |
890 ri[WS(rs, 14)] = T3v - T3w; | |
891 ri[WS(rs, 6)] = T3v + T3w; | |
892 T3f = T3d - T3e; | |
893 ri[WS(rs, 2)] = T3f - T3u; | |
894 ri[WS(rs, 18)] = T3f + T3u; | |
895 } | |
896 { | |
897 E T47, T45, T46, T41, T4a, T3Z, T40, T49, T48; | |
898 T47 = KP559016994 * (T43 - T44); | |
899 T45 = T43 + T44; | |
900 T46 = FNMS(KP250000000, T45, T42); | |
901 T3Z = T1r - T1O; | |
902 T40 = TG - T13; | |
903 T41 = FNMS(KP587785252, T40, KP951056516 * T3Z); | |
904 T4a = FMA(KP951056516, T40, KP587785252 * T3Z); | |
905 ii[WS(rs, 10)] = T45 + T42; | |
906 T49 = T47 + T46; | |
907 ii[WS(rs, 6)] = T49 - T4a; | |
908 ii[WS(rs, 14)] = T4a + T49; | |
909 T48 = T46 - T47; | |
910 ii[WS(rs, 2)] = T41 + T48; | |
911 ii[WS(rs, 18)] = T48 - T41; | |
912 } | |
913 { | |
914 E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z; | |
915 T3x = KP559016994 * (T1U - T1X); | |
916 T1Y = T1U + T1X; | |
917 T3y = FNMS(KP250000000, T1Y, T1R); | |
918 T3C = T3A - T3B; | |
919 T3F = T3D - T3E; | |
920 T3G = FMA(KP951056516, T3C, KP587785252 * T3F); | |
921 T3I = FNMS(KP587785252, T3C, KP951056516 * T3F); | |
922 ri[0] = T1R + T1Y; | |
923 T3H = T3y - T3x; | |
924 ri[WS(rs, 12)] = T3H - T3I; | |
925 ri[WS(rs, 8)] = T3H + T3I; | |
926 T3z = T3x + T3y; | |
927 ri[WS(rs, 4)] = T3z - T3G; | |
928 ri[WS(rs, 16)] = T3z + T3G; | |
929 } | |
930 { | |
931 E T3U, T3L, T3V, T3T, T3Y, T3R, T3S, T3X, T3W; | |
932 T3U = KP559016994 * (T3J - T3K); | |
933 T3L = T3J + T3K; | |
934 T3V = FNMS(KP250000000, T3L, T3Q); | |
935 T3R = T1S - T1T; | |
936 T3S = T1V - T1W; | |
937 T3T = FMA(KP951056516, T3R, KP587785252 * T3S); | |
938 T3Y = FNMS(KP587785252, T3R, KP951056516 * T3S); | |
939 ii[0] = T3L + T3Q; | |
940 T3X = T3V - T3U; | |
941 ii[WS(rs, 8)] = T3X - T3Y; | |
942 ii[WS(rs, 12)] = T3Y + T3X; | |
943 T3W = T3U + T3V; | |
944 ii[WS(rs, 4)] = T3T + T3W; | |
945 ii[WS(rs, 16)] = T3W - T3T; | |
946 } | |
947 { | |
948 E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q; | |
949 T2P = KP559016994 * (T2B - T2M); | |
950 T2N = T2B + T2M; | |
951 T2O = FNMS(KP250000000, T2N, T2q); | |
952 T29 = T23 - T28; | |
953 T2k = T2e - T2j; | |
954 T2l = FNMS(KP587785252, T2k, KP951056516 * T29); | |
955 T2R = FMA(KP951056516, T2k, KP587785252 * T29); | |
956 ri[WS(rs, 15)] = T2q + T2N; | |
957 T2S = T2P + T2O; | |
958 ri[WS(rs, 11)] = T2R + T2S; | |
959 ri[WS(rs, 19)] = T2S - T2R; | |
960 T2Q = T2O - T2P; | |
961 ri[WS(rs, 3)] = T2l + T2Q; | |
962 ri[WS(rs, 7)] = T2Q - T2l; | |
963 } | |
964 { | |
965 E T4u, T4s, T4t, T4y, T4A, T4w, T4x, T4z, T4v; | |
966 T4u = KP559016994 * (T4q - T4r); | |
967 T4s = T4q + T4r; | |
968 T4t = FNMS(KP250000000, T4s, T4p); | |
969 T4w = T2G - T2L; | |
970 T4x = T2v - T2A; | |
971 T4y = FNMS(KP587785252, T4x, KP951056516 * T4w); | |
972 T4A = FMA(KP951056516, T4x, KP587785252 * T4w); | |
973 ii[WS(rs, 15)] = T4s + T4p; | |
974 T4z = T4u + T4t; | |
975 ii[WS(rs, 11)] = T4z - T4A; | |
976 ii[WS(rs, 19)] = T4A + T4z; | |
977 T4v = T4t - T4u; | |
978 ii[WS(rs, 3)] = T4v - T4y; | |
979 ii[WS(rs, 7)] = T4y + T4v; | |
980 } | |
981 { | |
982 E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a; | |
983 T36 = KP559016994 * (T32 - T35); | |
984 T38 = T32 + T35; | |
985 T39 = FNMS(KP250000000, T38, T37); | |
986 T2V = T2T - T2U; | |
987 T2Y = T2W - T2X; | |
988 T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y); | |
989 T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y); | |
990 ri[WS(rs, 5)] = T37 + T38; | |
991 T3c = T39 - T36; | |
992 ri[WS(rs, 13)] = T3b + T3c; | |
993 ri[WS(rs, 17)] = T3c - T3b; | |
994 T3a = T36 + T39; | |
995 ri[WS(rs, 1)] = T2Z + T3a; | |
996 ri[WS(rs, 9)] = T3a - T2Z; | |
997 } | |
998 { | |
999 E T4d, T4h, T4i, T4m, T4o, T4k, T4l, T4n, T4j; | |
1000 T4d = KP559016994 * (T4b - T4c); | |
1001 T4h = T4b + T4c; | |
1002 T4i = FNMS(KP250000000, T4h, T4g); | |
1003 T4k = T30 - T31; | |
1004 T4l = T33 - T34; | |
1005 T4m = FMA(KP951056516, T4k, KP587785252 * T4l); | |
1006 T4o = FNMS(KP587785252, T4k, KP951056516 * T4l); | |
1007 ii[WS(rs, 5)] = T4h + T4g; | |
1008 T4n = T4i - T4d; | |
1009 ii[WS(rs, 13)] = T4n - T4o; | |
1010 ii[WS(rs, 17)] = T4o + T4n; | |
1011 T4j = T4d + T4i; | |
1012 ii[WS(rs, 1)] = T4j - T4m; | |
1013 ii[WS(rs, 9)] = T4m + T4j; | |
1014 } | |
1015 } | |
1016 } | |
1017 } | |
1018 | |
1019 static const tw_instr twinstr[] = { | |
1020 {TW_FULL, 0, 20}, | |
1021 {TW_NEXT, 1, 0} | |
1022 }; | |
1023 | |
1024 static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {184, 62, 62, 0}, 0, 0, 0 }; | |
1025 | |
1026 void X(codelet_t1_20) (planner *p) { | |
1027 X(kdft_dit_register) (p, t1_20, &desc); | |
1028 } | |
1029 #endif /* HAVE_FMA */ |