Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/q1_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:17 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include q.h */ | |
29 | |
30 /* | |
31 * This function contains 528 FP additions, 288 FP multiplications, | |
32 * (or, 352 additions, 112 multiplications, 176 fused multiply/add), | |
33 * 190 stack variables, 1 constants, and 256 memory accesses | |
34 */ | |
35 #include "q.h" | |
36 | |
37 static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT m; | |
42 for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
43 E T9C, T9N, T9l, T9E, T9D, T9O; | |
44 { | |
45 E TV, Tk, T1d, T7, T18, T1t, TQ, TD, T5t, T4S, T5L, T4F, T5G, T61, T5o; | |
46 E T5b, T6Z, T6o, T7h, T6b, T7c, T7x, T6U, T6H, Tbx, TaW, TbP, TaJ, TbK, Tc5; | |
47 E Tbs, Tbf, T2r, T1Q, T2J, T1D, T2E, T2Z, T2m, T29, T3X, T3m, T4f, T39, T4a; | |
48 E T4v, T3S, T3F, T8v, T7U, T8N, T7H, T8I, T93, T8q, T8d, Ta1, T9q, Taj, T9d; | |
49 E Tae, Taz, T9W, T9J, Te, T19, T1u, T1g, Tv, TR, TG, TW, T5H, T4M, T5O; | |
50 E T62, T5p, T53, T5u, T5e, T6i, T7d, T7y, T7k, T6z, T6V, T6K, T70, TbL, TaQ; | |
51 E TbS, Tc6, Tbt, Tb7, Tby, Tbi, T1K, T2F, T30, T2M, T21, T2n, T2c, T2s, T4b; | |
52 E T3g, T4i, T4w, T3T, T3x, T3Y, T3I, T7O, T8J, T94, T8Q, T85, T8r, T8g, T8w; | |
53 E Tak, T9r, T9K, T9A, Taf, T9k, Tal, T9u; | |
54 { | |
55 E T9a, T9F, T99, Tac, T9p, T9b, T9G, T9H; | |
56 { | |
57 E TaG, Tbb, TaF, TbI, TaV, TaH, Tbc, Tbd; | |
58 { | |
59 E T4C, T57, T4B, T5E, T4R, T4D, T58, T59; | |
60 { | |
61 E T4, Tz, T3, T16, Tj, T5, TA, TB; | |
62 { | |
63 E T1, T2, Th, Ti; | |
64 T1 = rio[0]; | |
65 T2 = rio[WS(rs, 4)]; | |
66 Th = iio[0]; | |
67 Ti = iio[WS(rs, 4)]; | |
68 T4 = rio[WS(rs, 2)]; | |
69 Tz = T1 - T2; | |
70 T3 = T1 + T2; | |
71 T16 = Th + Ti; | |
72 Tj = Th - Ti; | |
73 T5 = rio[WS(rs, 6)]; | |
74 TA = iio[WS(rs, 2)]; | |
75 TB = iio[WS(rs, 6)]; | |
76 } | |
77 { | |
78 E T4z, T4A, T4P, T4Q; | |
79 T4z = rio[WS(vs, 3)]; | |
80 { | |
81 E Tg, T6, T17, TC; | |
82 Tg = T4 - T5; | |
83 T6 = T4 + T5; | |
84 T17 = TA + TB; | |
85 TC = TA - TB; | |
86 TV = Tj - Tg; | |
87 Tk = Tg + Tj; | |
88 T1d = T3 - T6; | |
89 T7 = T3 + T6; | |
90 T18 = T16 - T17; | |
91 T1t = T16 + T17; | |
92 TQ = Tz + TC; | |
93 TD = Tz - TC; | |
94 T4A = rio[WS(vs, 3) + WS(rs, 4)]; | |
95 } | |
96 T4P = iio[WS(vs, 3)]; | |
97 T4Q = iio[WS(vs, 3) + WS(rs, 4)]; | |
98 T4C = rio[WS(vs, 3) + WS(rs, 2)]; | |
99 T57 = T4z - T4A; | |
100 T4B = T4z + T4A; | |
101 T5E = T4P + T4Q; | |
102 T4R = T4P - T4Q; | |
103 T4D = rio[WS(vs, 3) + WS(rs, 6)]; | |
104 T58 = iio[WS(vs, 3) + WS(rs, 2)]; | |
105 T59 = iio[WS(vs, 3) + WS(rs, 6)]; | |
106 } | |
107 } | |
108 { | |
109 E T68, T6D, T67, T7a, T6n, T69, T6E, T6F; | |
110 { | |
111 E T65, T66, T6l, T6m; | |
112 T65 = rio[WS(vs, 4)]; | |
113 { | |
114 E T4O, T4E, T5F, T5a; | |
115 T4O = T4C - T4D; | |
116 T4E = T4C + T4D; | |
117 T5F = T58 + T59; | |
118 T5a = T58 - T59; | |
119 T5t = T4R - T4O; | |
120 T4S = T4O + T4R; | |
121 T5L = T4B - T4E; | |
122 T4F = T4B + T4E; | |
123 T5G = T5E - T5F; | |
124 T61 = T5E + T5F; | |
125 T5o = T57 + T5a; | |
126 T5b = T57 - T5a; | |
127 T66 = rio[WS(vs, 4) + WS(rs, 4)]; | |
128 } | |
129 T6l = iio[WS(vs, 4)]; | |
130 T6m = iio[WS(vs, 4) + WS(rs, 4)]; | |
131 T68 = rio[WS(vs, 4) + WS(rs, 2)]; | |
132 T6D = T65 - T66; | |
133 T67 = T65 + T66; | |
134 T7a = T6l + T6m; | |
135 T6n = T6l - T6m; | |
136 T69 = rio[WS(vs, 4) + WS(rs, 6)]; | |
137 T6E = iio[WS(vs, 4) + WS(rs, 2)]; | |
138 T6F = iio[WS(vs, 4) + WS(rs, 6)]; | |
139 } | |
140 { | |
141 E TaD, TaE, TaT, TaU; | |
142 TaD = rio[WS(vs, 7)]; | |
143 { | |
144 E T6k, T6a, T7b, T6G; | |
145 T6k = T68 - T69; | |
146 T6a = T68 + T69; | |
147 T7b = T6E + T6F; | |
148 T6G = T6E - T6F; | |
149 T6Z = T6n - T6k; | |
150 T6o = T6k + T6n; | |
151 T7h = T67 - T6a; | |
152 T6b = T67 + T6a; | |
153 T7c = T7a - T7b; | |
154 T7x = T7a + T7b; | |
155 T6U = T6D + T6G; | |
156 T6H = T6D - T6G; | |
157 TaE = rio[WS(vs, 7) + WS(rs, 4)]; | |
158 } | |
159 TaT = iio[WS(vs, 7)]; | |
160 TaU = iio[WS(vs, 7) + WS(rs, 4)]; | |
161 TaG = rio[WS(vs, 7) + WS(rs, 2)]; | |
162 Tbb = TaD - TaE; | |
163 TaF = TaD + TaE; | |
164 TbI = TaT + TaU; | |
165 TaV = TaT - TaU; | |
166 TaH = rio[WS(vs, 7) + WS(rs, 6)]; | |
167 Tbc = iio[WS(vs, 7) + WS(rs, 2)]; | |
168 Tbd = iio[WS(vs, 7) + WS(rs, 6)]; | |
169 } | |
170 } | |
171 } | |
172 { | |
173 E T36, T3B, T35, T48, T3l, T37, T3C, T3D; | |
174 { | |
175 E T1A, T25, T1z, T2C, T1P, T1B, T26, T27; | |
176 { | |
177 E T1x, T1y, T1N, T1O; | |
178 T1x = rio[WS(vs, 1)]; | |
179 { | |
180 E TaS, TaI, TbJ, Tbe; | |
181 TaS = TaG - TaH; | |
182 TaI = TaG + TaH; | |
183 TbJ = Tbc + Tbd; | |
184 Tbe = Tbc - Tbd; | |
185 Tbx = TaV - TaS; | |
186 TaW = TaS + TaV; | |
187 TbP = TaF - TaI; | |
188 TaJ = TaF + TaI; | |
189 TbK = TbI - TbJ; | |
190 Tc5 = TbI + TbJ; | |
191 Tbs = Tbb + Tbe; | |
192 Tbf = Tbb - Tbe; | |
193 T1y = rio[WS(vs, 1) + WS(rs, 4)]; | |
194 } | |
195 T1N = iio[WS(vs, 1)]; | |
196 T1O = iio[WS(vs, 1) + WS(rs, 4)]; | |
197 T1A = rio[WS(vs, 1) + WS(rs, 2)]; | |
198 T25 = T1x - T1y; | |
199 T1z = T1x + T1y; | |
200 T2C = T1N + T1O; | |
201 T1P = T1N - T1O; | |
202 T1B = rio[WS(vs, 1) + WS(rs, 6)]; | |
203 T26 = iio[WS(vs, 1) + WS(rs, 2)]; | |
204 T27 = iio[WS(vs, 1) + WS(rs, 6)]; | |
205 } | |
206 { | |
207 E T33, T34, T3j, T3k; | |
208 T33 = rio[WS(vs, 2)]; | |
209 { | |
210 E T1M, T1C, T2D, T28; | |
211 T1M = T1A - T1B; | |
212 T1C = T1A + T1B; | |
213 T2D = T26 + T27; | |
214 T28 = T26 - T27; | |
215 T2r = T1P - T1M; | |
216 T1Q = T1M + T1P; | |
217 T2J = T1z - T1C; | |
218 T1D = T1z + T1C; | |
219 T2E = T2C - T2D; | |
220 T2Z = T2C + T2D; | |
221 T2m = T25 + T28; | |
222 T29 = T25 - T28; | |
223 T34 = rio[WS(vs, 2) + WS(rs, 4)]; | |
224 } | |
225 T3j = iio[WS(vs, 2)]; | |
226 T3k = iio[WS(vs, 2) + WS(rs, 4)]; | |
227 T36 = rio[WS(vs, 2) + WS(rs, 2)]; | |
228 T3B = T33 - T34; | |
229 T35 = T33 + T34; | |
230 T48 = T3j + T3k; | |
231 T3l = T3j - T3k; | |
232 T37 = rio[WS(vs, 2) + WS(rs, 6)]; | |
233 T3C = iio[WS(vs, 2) + WS(rs, 2)]; | |
234 T3D = iio[WS(vs, 2) + WS(rs, 6)]; | |
235 } | |
236 } | |
237 { | |
238 E T7E, T89, T7D, T8G, T7T, T7F, T8a, T8b; | |
239 { | |
240 E T7B, T7C, T7R, T7S; | |
241 T7B = rio[WS(vs, 5)]; | |
242 { | |
243 E T3i, T38, T49, T3E; | |
244 T3i = T36 - T37; | |
245 T38 = T36 + T37; | |
246 T49 = T3C + T3D; | |
247 T3E = T3C - T3D; | |
248 T3X = T3l - T3i; | |
249 T3m = T3i + T3l; | |
250 T4f = T35 - T38; | |
251 T39 = T35 + T38; | |
252 T4a = T48 - T49; | |
253 T4v = T48 + T49; | |
254 T3S = T3B + T3E; | |
255 T3F = T3B - T3E; | |
256 T7C = rio[WS(vs, 5) + WS(rs, 4)]; | |
257 } | |
258 T7R = iio[WS(vs, 5)]; | |
259 T7S = iio[WS(vs, 5) + WS(rs, 4)]; | |
260 T7E = rio[WS(vs, 5) + WS(rs, 2)]; | |
261 T89 = T7B - T7C; | |
262 T7D = T7B + T7C; | |
263 T8G = T7R + T7S; | |
264 T7T = T7R - T7S; | |
265 T7F = rio[WS(vs, 5) + WS(rs, 6)]; | |
266 T8a = iio[WS(vs, 5) + WS(rs, 2)]; | |
267 T8b = iio[WS(vs, 5) + WS(rs, 6)]; | |
268 } | |
269 { | |
270 E T97, T98, T9n, T9o; | |
271 T97 = rio[WS(vs, 6)]; | |
272 { | |
273 E T7Q, T7G, T8H, T8c; | |
274 T7Q = T7E - T7F; | |
275 T7G = T7E + T7F; | |
276 T8H = T8a + T8b; | |
277 T8c = T8a - T8b; | |
278 T8v = T7T - T7Q; | |
279 T7U = T7Q + T7T; | |
280 T8N = T7D - T7G; | |
281 T7H = T7D + T7G; | |
282 T8I = T8G - T8H; | |
283 T93 = T8G + T8H; | |
284 T8q = T89 + T8c; | |
285 T8d = T89 - T8c; | |
286 T98 = rio[WS(vs, 6) + WS(rs, 4)]; | |
287 } | |
288 T9n = iio[WS(vs, 6)]; | |
289 T9o = iio[WS(vs, 6) + WS(rs, 4)]; | |
290 T9a = rio[WS(vs, 6) + WS(rs, 2)]; | |
291 T9F = T97 - T98; | |
292 T99 = T97 + T98; | |
293 Tac = T9n + T9o; | |
294 T9p = T9n - T9o; | |
295 T9b = rio[WS(vs, 6) + WS(rs, 6)]; | |
296 T9G = iio[WS(vs, 6) + WS(rs, 2)]; | |
297 T9H = iio[WS(vs, 6) + WS(rs, 6)]; | |
298 } | |
299 } | |
300 } | |
301 } | |
302 { | |
303 E TbQ, TaX, Tbg, Tb6, TbR, Tb0; | |
304 { | |
305 E T5M, T4T, T5c, T52, T5N, T4W; | |
306 { | |
307 E Tu, TE, TF, Tp; | |
308 { | |
309 E Tb, Tq, Ta, T1e, Tt, Tc, Tm, Tn; | |
310 { | |
311 E T8, T9, Tr, Ts; | |
312 T8 = rio[WS(rs, 1)]; | |
313 { | |
314 E T9m, T9c, Tad, T9I; | |
315 T9m = T9a - T9b; | |
316 T9c = T9a + T9b; | |
317 Tad = T9G + T9H; | |
318 T9I = T9G - T9H; | |
319 Ta1 = T9p - T9m; | |
320 T9q = T9m + T9p; | |
321 Taj = T99 - T9c; | |
322 T9d = T99 + T9c; | |
323 Tae = Tac - Tad; | |
324 Taz = Tac + Tad; | |
325 T9W = T9F + T9I; | |
326 T9J = T9F - T9I; | |
327 T9 = rio[WS(rs, 5)]; | |
328 } | |
329 Tr = iio[WS(rs, 1)]; | |
330 Ts = iio[WS(rs, 5)]; | |
331 Tb = rio[WS(rs, 7)]; | |
332 Tq = T8 - T9; | |
333 Ta = T8 + T9; | |
334 T1e = Tr + Ts; | |
335 Tt = Tr - Ts; | |
336 Tc = rio[WS(rs, 3)]; | |
337 Tm = iio[WS(rs, 7)]; | |
338 Tn = iio[WS(rs, 3)]; | |
339 } | |
340 { | |
341 E Tl, Td, T1f, To; | |
342 Tu = Tq + Tt; | |
343 TE = Tt - Tq; | |
344 Tl = Tb - Tc; | |
345 Td = Tb + Tc; | |
346 T1f = Tm + Tn; | |
347 To = Tm - Tn; | |
348 Te = Ta + Td; | |
349 T19 = Td - Ta; | |
350 T1u = T1e + T1f; | |
351 T1g = T1e - T1f; | |
352 TF = Tl + To; | |
353 Tp = Tl - To; | |
354 } | |
355 } | |
356 { | |
357 E T4I, T4Y, T4U, T51, T4L, T4V; | |
358 { | |
359 E T4Z, T50, T4G, T4H, T4J, T4K; | |
360 T4G = rio[WS(vs, 3) + WS(rs, 1)]; | |
361 T4H = rio[WS(vs, 3) + WS(rs, 5)]; | |
362 Tv = Tp - Tu; | |
363 TR = Tu + Tp; | |
364 TG = TE - TF; | |
365 TW = TE + TF; | |
366 T4I = T4G + T4H; | |
367 T4Y = T4G - T4H; | |
368 T4Z = iio[WS(vs, 3) + WS(rs, 1)]; | |
369 T50 = iio[WS(vs, 3) + WS(rs, 5)]; | |
370 T4J = rio[WS(vs, 3) + WS(rs, 7)]; | |
371 T4K = rio[WS(vs, 3) + WS(rs, 3)]; | |
372 T4U = iio[WS(vs, 3) + WS(rs, 7)]; | |
373 T51 = T4Z - T50; | |
374 T5M = T4Z + T50; | |
375 T4L = T4J + T4K; | |
376 T4T = T4J - T4K; | |
377 T4V = iio[WS(vs, 3) + WS(rs, 3)]; | |
378 } | |
379 T5c = T51 - T4Y; | |
380 T52 = T4Y + T51; | |
381 T5H = T4L - T4I; | |
382 T4M = T4I + T4L; | |
383 T5N = T4U + T4V; | |
384 T4W = T4U - T4V; | |
385 } | |
386 } | |
387 { | |
388 E T7i, T6p, T6y, T6I, T6s, T7j; | |
389 { | |
390 E T6e, T6u, T6q, T6x, T6h, T6r; | |
391 { | |
392 E T6v, T6w, T6f, T6g; | |
393 { | |
394 E T4X, T5d, T6c, T6d; | |
395 T6c = rio[WS(vs, 4) + WS(rs, 1)]; | |
396 T6d = rio[WS(vs, 4) + WS(rs, 5)]; | |
397 T5O = T5M - T5N; | |
398 T62 = T5M + T5N; | |
399 T4X = T4T - T4W; | |
400 T5d = T4T + T4W; | |
401 T6e = T6c + T6d; | |
402 T6u = T6c - T6d; | |
403 T5p = T52 + T4X; | |
404 T53 = T4X - T52; | |
405 T5u = T5c + T5d; | |
406 T5e = T5c - T5d; | |
407 T6v = iio[WS(vs, 4) + WS(rs, 1)]; | |
408 T6w = iio[WS(vs, 4) + WS(rs, 5)]; | |
409 } | |
410 T6f = rio[WS(vs, 4) + WS(rs, 7)]; | |
411 T6g = rio[WS(vs, 4) + WS(rs, 3)]; | |
412 T6q = iio[WS(vs, 4) + WS(rs, 7)]; | |
413 T7i = T6v + T6w; | |
414 T6x = T6v - T6w; | |
415 T6p = T6f - T6g; | |
416 T6h = T6f + T6g; | |
417 T6r = iio[WS(vs, 4) + WS(rs, 3)]; | |
418 } | |
419 T6y = T6u + T6x; | |
420 T6I = T6x - T6u; | |
421 T6i = T6e + T6h; | |
422 T7d = T6h - T6e; | |
423 T6s = T6q - T6r; | |
424 T7j = T6q + T6r; | |
425 } | |
426 { | |
427 E Tb2, TaM, TaY, Tb5, TaP, TaZ; | |
428 { | |
429 E Tb3, Tb4, TaN, TaO; | |
430 { | |
431 E T6J, T6t, TaK, TaL; | |
432 TaK = rio[WS(vs, 7) + WS(rs, 1)]; | |
433 TaL = rio[WS(vs, 7) + WS(rs, 5)]; | |
434 T7y = T7i + T7j; | |
435 T7k = T7i - T7j; | |
436 T6J = T6p + T6s; | |
437 T6t = T6p - T6s; | |
438 Tb2 = TaK - TaL; | |
439 TaM = TaK + TaL; | |
440 T6z = T6t - T6y; | |
441 T6V = T6y + T6t; | |
442 T6K = T6I - T6J; | |
443 T70 = T6I + T6J; | |
444 Tb3 = iio[WS(vs, 7) + WS(rs, 1)]; | |
445 Tb4 = iio[WS(vs, 7) + WS(rs, 5)]; | |
446 } | |
447 TaN = rio[WS(vs, 7) + WS(rs, 7)]; | |
448 TaO = rio[WS(vs, 7) + WS(rs, 3)]; | |
449 TaY = iio[WS(vs, 7) + WS(rs, 7)]; | |
450 Tb5 = Tb3 - Tb4; | |
451 TbQ = Tb3 + Tb4; | |
452 TaP = TaN + TaO; | |
453 TaX = TaN - TaO; | |
454 TaZ = iio[WS(vs, 7) + WS(rs, 3)]; | |
455 } | |
456 Tbg = Tb5 - Tb2; | |
457 Tb6 = Tb2 + Tb5; | |
458 TbL = TaP - TaM; | |
459 TaQ = TaM + TaP; | |
460 TbR = TaY + TaZ; | |
461 Tb0 = TaY - TaZ; | |
462 } | |
463 } | |
464 } | |
465 { | |
466 E T4g, T3n, T3G, T3w, T4h, T3q; | |
467 { | |
468 E T2K, T1R, T20, T2a, T1U, T2L; | |
469 { | |
470 E T1G, T1W, T1S, T1Z, T1J, T1T; | |
471 { | |
472 E T1X, T1Y, T1H, T1I; | |
473 { | |
474 E Tb1, Tbh, T1E, T1F; | |
475 T1E = rio[WS(vs, 1) + WS(rs, 1)]; | |
476 T1F = rio[WS(vs, 1) + WS(rs, 5)]; | |
477 TbS = TbQ - TbR; | |
478 Tc6 = TbQ + TbR; | |
479 Tb1 = TaX - Tb0; | |
480 Tbh = TaX + Tb0; | |
481 T1G = T1E + T1F; | |
482 T1W = T1E - T1F; | |
483 Tbt = Tb6 + Tb1; | |
484 Tb7 = Tb1 - Tb6; | |
485 Tby = Tbg + Tbh; | |
486 Tbi = Tbg - Tbh; | |
487 T1X = iio[WS(vs, 1) + WS(rs, 1)]; | |
488 T1Y = iio[WS(vs, 1) + WS(rs, 5)]; | |
489 } | |
490 T1H = rio[WS(vs, 1) + WS(rs, 7)]; | |
491 T1I = rio[WS(vs, 1) + WS(rs, 3)]; | |
492 T1S = iio[WS(vs, 1) + WS(rs, 7)]; | |
493 T2K = T1X + T1Y; | |
494 T1Z = T1X - T1Y; | |
495 T1R = T1H - T1I; | |
496 T1J = T1H + T1I; | |
497 T1T = iio[WS(vs, 1) + WS(rs, 3)]; | |
498 } | |
499 T20 = T1W + T1Z; | |
500 T2a = T1Z - T1W; | |
501 T1K = T1G + T1J; | |
502 T2F = T1J - T1G; | |
503 T1U = T1S - T1T; | |
504 T2L = T1S + T1T; | |
505 } | |
506 { | |
507 E T3s, T3c, T3o, T3v, T3f, T3p; | |
508 { | |
509 E T3t, T3u, T3d, T3e; | |
510 { | |
511 E T2b, T1V, T3a, T3b; | |
512 T3a = rio[WS(vs, 2) + WS(rs, 1)]; | |
513 T3b = rio[WS(vs, 2) + WS(rs, 5)]; | |
514 T30 = T2K + T2L; | |
515 T2M = T2K - T2L; | |
516 T2b = T1R + T1U; | |
517 T1V = T1R - T1U; | |
518 T3s = T3a - T3b; | |
519 T3c = T3a + T3b; | |
520 T21 = T1V - T20; | |
521 T2n = T20 + T1V; | |
522 T2c = T2a - T2b; | |
523 T2s = T2a + T2b; | |
524 T3t = iio[WS(vs, 2) + WS(rs, 1)]; | |
525 T3u = iio[WS(vs, 2) + WS(rs, 5)]; | |
526 } | |
527 T3d = rio[WS(vs, 2) + WS(rs, 7)]; | |
528 T3e = rio[WS(vs, 2) + WS(rs, 3)]; | |
529 T3o = iio[WS(vs, 2) + WS(rs, 7)]; | |
530 T3v = T3t - T3u; | |
531 T4g = T3t + T3u; | |
532 T3f = T3d + T3e; | |
533 T3n = T3d - T3e; | |
534 T3p = iio[WS(vs, 2) + WS(rs, 3)]; | |
535 } | |
536 T3G = T3v - T3s; | |
537 T3w = T3s + T3v; | |
538 T4b = T3f - T3c; | |
539 T3g = T3c + T3f; | |
540 T4h = T3o + T3p; | |
541 T3q = T3o - T3p; | |
542 } | |
543 } | |
544 { | |
545 E T8O, T7V, T84, T8e, T7Y, T8P; | |
546 { | |
547 E T7K, T80, T7W, T83, T7N, T7X; | |
548 { | |
549 E T81, T82, T7L, T7M; | |
550 { | |
551 E T3r, T3H, T7I, T7J; | |
552 T7I = rio[WS(vs, 5) + WS(rs, 1)]; | |
553 T7J = rio[WS(vs, 5) + WS(rs, 5)]; | |
554 T4i = T4g - T4h; | |
555 T4w = T4g + T4h; | |
556 T3r = T3n - T3q; | |
557 T3H = T3n + T3q; | |
558 T7K = T7I + T7J; | |
559 T80 = T7I - T7J; | |
560 T3T = T3w + T3r; | |
561 T3x = T3r - T3w; | |
562 T3Y = T3G + T3H; | |
563 T3I = T3G - T3H; | |
564 T81 = iio[WS(vs, 5) + WS(rs, 1)]; | |
565 T82 = iio[WS(vs, 5) + WS(rs, 5)]; | |
566 } | |
567 T7L = rio[WS(vs, 5) + WS(rs, 7)]; | |
568 T7M = rio[WS(vs, 5) + WS(rs, 3)]; | |
569 T7W = iio[WS(vs, 5) + WS(rs, 7)]; | |
570 T8O = T81 + T82; | |
571 T83 = T81 - T82; | |
572 T7V = T7L - T7M; | |
573 T7N = T7L + T7M; | |
574 T7X = iio[WS(vs, 5) + WS(rs, 3)]; | |
575 } | |
576 T84 = T80 + T83; | |
577 T8e = T83 - T80; | |
578 T7O = T7K + T7N; | |
579 T8J = T7N - T7K; | |
580 T7Y = T7W - T7X; | |
581 T8P = T7W + T7X; | |
582 } | |
583 { | |
584 E T9w, T9g, T9s, T9z, T9j, T9t; | |
585 { | |
586 E T9x, T9y, T9h, T9i; | |
587 { | |
588 E T8f, T7Z, T9e, T9f; | |
589 T9e = rio[WS(vs, 6) + WS(rs, 1)]; | |
590 T9f = rio[WS(vs, 6) + WS(rs, 5)]; | |
591 T94 = T8O + T8P; | |
592 T8Q = T8O - T8P; | |
593 T8f = T7V + T7Y; | |
594 T7Z = T7V - T7Y; | |
595 T9w = T9e - T9f; | |
596 T9g = T9e + T9f; | |
597 T85 = T7Z - T84; | |
598 T8r = T84 + T7Z; | |
599 T8g = T8e - T8f; | |
600 T8w = T8e + T8f; | |
601 T9x = iio[WS(vs, 6) + WS(rs, 1)]; | |
602 T9y = iio[WS(vs, 6) + WS(rs, 5)]; | |
603 } | |
604 T9h = rio[WS(vs, 6) + WS(rs, 7)]; | |
605 T9i = rio[WS(vs, 6) + WS(rs, 3)]; | |
606 T9s = iio[WS(vs, 6) + WS(rs, 7)]; | |
607 T9z = T9x - T9y; | |
608 Tak = T9x + T9y; | |
609 T9j = T9h + T9i; | |
610 T9r = T9h - T9i; | |
611 T9t = iio[WS(vs, 6) + WS(rs, 3)]; | |
612 } | |
613 T9K = T9z - T9w; | |
614 T9A = T9w + T9z; | |
615 Taf = T9j - T9g; | |
616 T9k = T9g + T9j; | |
617 Tal = T9s + T9t; | |
618 T9u = T9s - T9t; | |
619 } | |
620 } | |
621 } | |
622 } | |
623 } | |
624 { | |
625 E T9X, T9B, Ta2, T9M, T2T, T2Q, TbT, TbH, TbO, TbN, TbU; | |
626 { | |
627 E Tam, TaA, T9v, T9L; | |
628 rio[0] = T7 + Te; | |
629 iio[0] = T1t + T1u; | |
630 Tam = Tak - Tal; | |
631 TaA = Tak + Tal; | |
632 T9v = T9r - T9u; | |
633 T9L = T9r + T9u; | |
634 rio[WS(rs, 1)] = T1D + T1K; | |
635 iio[WS(rs, 1)] = T2Z + T30; | |
636 T9X = T9A + T9v; | |
637 T9B = T9v - T9A; | |
638 Ta2 = T9K + T9L; | |
639 T9M = T9K - T9L; | |
640 rio[WS(rs, 2)] = T39 + T3g; | |
641 iio[WS(rs, 2)] = T4v + T4w; | |
642 rio[WS(rs, 3)] = T4F + T4M; | |
643 iio[WS(rs, 3)] = T61 + T62; | |
644 rio[WS(rs, 4)] = T6b + T6i; | |
645 iio[WS(rs, 4)] = T7x + T7y; | |
646 rio[WS(rs, 5)] = T7H + T7O; | |
647 iio[WS(rs, 5)] = T93 + T94; | |
648 rio[WS(rs, 6)] = T9d + T9k; | |
649 iio[WS(rs, 6)] = Taz + TaA; | |
650 rio[WS(rs, 7)] = TaJ + TaQ; | |
651 iio[WS(rs, 7)] = Tc5 + Tc6; | |
652 { | |
653 E T10, T13, T1h, T1a, Tat, Taq, TbC, TbF, TbE, TbG, TbD; | |
654 { | |
655 E T1q, T1v, T1s, T1w, T1r; | |
656 { | |
657 E T2N, T2B, T2I, T2H, T2O; | |
658 { | |
659 E TS, TX, TP, TU, T2G, TY, TT; | |
660 T10 = FMA(KP707106781, TR, TQ); | |
661 TS = FNMS(KP707106781, TR, TQ); | |
662 TX = FNMS(KP707106781, TW, TV); | |
663 T13 = FMA(KP707106781, TW, TV); | |
664 TP = W[8]; | |
665 TU = W[9]; | |
666 T2T = T2J + T2M; | |
667 T2N = T2J - T2M; | |
668 T2G = T2E - T2F; | |
669 T2Q = T2F + T2E; | |
670 TY = TP * TX; | |
671 TT = TP * TS; | |
672 T2B = W[10]; | |
673 T2I = W[11]; | |
674 iio[WS(vs, 5)] = FNMS(TU, TS, TY); | |
675 rio[WS(vs, 5)] = FMA(TU, TX, TT); | |
676 T2H = T2B * T2G; | |
677 T2O = T2I * T2G; | |
678 } | |
679 { | |
680 E T1n, T1k, T1j, T1m, T1l, T1o, T1p; | |
681 T1h = T1d - T1g; | |
682 T1n = T1d + T1g; | |
683 T1k = T19 + T18; | |
684 T1a = T18 - T19; | |
685 iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2I, T2N, T2H); | |
686 rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2B, T2N, T2O); | |
687 T1j = W[2]; | |
688 T1m = W[3]; | |
689 T1q = T7 - Te; | |
690 T1v = T1t - T1u; | |
691 T1l = T1j * T1k; | |
692 T1o = T1m * T1k; | |
693 T1p = W[6]; | |
694 T1s = W[7]; | |
695 iio[WS(vs, 2)] = FNMS(T1m, T1n, T1l); | |
696 rio[WS(vs, 2)] = FMA(T1j, T1n, T1o); | |
697 T1w = T1p * T1v; | |
698 T1r = T1p * T1q; | |
699 } | |
700 } | |
701 { | |
702 E Tc2, Tc7, Tc4, Tc8, Tc3; | |
703 { | |
704 E Tan, Tag, Tab, Tai, Tah, Tao, Tc1; | |
705 Tat = Taj + Tam; | |
706 Tan = Taj - Tam; | |
707 Tag = Tae - Taf; | |
708 Taq = Taf + Tae; | |
709 iio[WS(vs, 4)] = FNMS(T1s, T1q, T1w); | |
710 rio[WS(vs, 4)] = FMA(T1s, T1v, T1r); | |
711 Tab = W[10]; | |
712 Tai = W[11]; | |
713 Tc2 = TaJ - TaQ; | |
714 Tc7 = Tc5 - Tc6; | |
715 Tah = Tab * Tag; | |
716 Tao = Tai * Tag; | |
717 Tc1 = W[6]; | |
718 Tc4 = W[7]; | |
719 iio[WS(vs, 6) + WS(rs, 6)] = FNMS(Tai, Tan, Tah); | |
720 rio[WS(vs, 6) + WS(rs, 6)] = FMA(Tab, Tan, Tao); | |
721 Tc8 = Tc1 * Tc7; | |
722 Tc3 = Tc1 * Tc2; | |
723 } | |
724 { | |
725 E Tbu, Tbz, Tbr, Tbw, TbA, Tbv, TbB; | |
726 TbC = FMA(KP707106781, Tbt, Tbs); | |
727 Tbu = FNMS(KP707106781, Tbt, Tbs); | |
728 Tbz = FNMS(KP707106781, Tby, Tbx); | |
729 TbF = FMA(KP707106781, Tby, Tbx); | |
730 iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tc4, Tc2, Tc8); | |
731 rio[WS(vs, 4) + WS(rs, 7)] = FMA(Tc4, Tc7, Tc3); | |
732 Tbr = W[8]; | |
733 Tbw = W[9]; | |
734 TbA = Tbr * Tbz; | |
735 Tbv = Tbr * Tbu; | |
736 TbB = W[0]; | |
737 TbE = W[1]; | |
738 iio[WS(vs, 5) + WS(rs, 7)] = FNMS(Tbw, Tbu, TbA); | |
739 rio[WS(vs, 5) + WS(rs, 7)] = FMA(Tbw, Tbz, Tbv); | |
740 TbG = TbB * TbF; | |
741 TbD = TbB * TbC; | |
742 } | |
743 } | |
744 } | |
745 { | |
746 E T2o, T2t, T2q, T2u, T2p; | |
747 { | |
748 E T2w, T2z, T2y, T2A, T2x; | |
749 { | |
750 E TZ, T12, T14, T11, T2v; | |
751 iio[WS(vs, 1) + WS(rs, 7)] = FNMS(TbE, TbC, TbG); | |
752 rio[WS(vs, 1) + WS(rs, 7)] = FMA(TbE, TbF, TbD); | |
753 TZ = W[0]; | |
754 T12 = W[1]; | |
755 T2o = FNMS(KP707106781, T2n, T2m); | |
756 T2w = FMA(KP707106781, T2n, T2m); | |
757 T2z = FMA(KP707106781, T2s, T2r); | |
758 T2t = FNMS(KP707106781, T2s, T2r); | |
759 T14 = TZ * T13; | |
760 T11 = TZ * T10; | |
761 T2v = W[0]; | |
762 T2y = W[1]; | |
763 iio[WS(vs, 1)] = FNMS(T12, T10, T14); | |
764 rio[WS(vs, 1)] = FMA(T12, T13, T11); | |
765 T2A = T2v * T2z; | |
766 T2x = T2v * T2w; | |
767 } | |
768 { | |
769 E T15, T1c, T1b, T1i, T2l; | |
770 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2y, T2w, T2A); | |
771 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2y, T2z, T2x); | |
772 T15 = W[10]; | |
773 T1c = W[11]; | |
774 T1b = T15 * T1a; | |
775 T1i = T1c * T1a; | |
776 T2l = W[8]; | |
777 T2q = W[9]; | |
778 iio[WS(vs, 6)] = FNMS(T1c, T1h, T1b); | |
779 rio[WS(vs, 6)] = FMA(T15, T1h, T1i); | |
780 T2u = T2l * T2t; | |
781 T2p = T2l * T2o; | |
782 } | |
783 } | |
784 { | |
785 E TbZ, TbM, TbV, TbY, TbX, Tc0; | |
786 { | |
787 E Tap, Tas, TbW, Tar, Tau; | |
788 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T2q, T2o, T2u); | |
789 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T2q, T2t, T2p); | |
790 Tap = W[2]; | |
791 Tas = W[3]; | |
792 TbT = TbP - TbS; | |
793 TbZ = TbP + TbS; | |
794 TbW = TbL + TbK; | |
795 TbM = TbK - TbL; | |
796 Tar = Tap * Taq; | |
797 Tau = Tas * Taq; | |
798 TbV = W[2]; | |
799 TbY = W[3]; | |
800 iio[WS(vs, 2) + WS(rs, 6)] = FNMS(Tas, Tat, Tar); | |
801 rio[WS(vs, 2) + WS(rs, 6)] = FMA(Tap, Tat, Tau); | |
802 TbX = TbV * TbW; | |
803 Tc0 = TbY * TbW; | |
804 } | |
805 { | |
806 E Taw, TaB, Tav, Tay, TaC, Tax; | |
807 Taw = T9d - T9k; | |
808 TaB = Taz - TaA; | |
809 iio[WS(vs, 2) + WS(rs, 7)] = FNMS(TbY, TbZ, TbX); | |
810 rio[WS(vs, 2) + WS(rs, 7)] = FMA(TbV, TbZ, Tc0); | |
811 Tav = W[6]; | |
812 Tay = W[7]; | |
813 TaC = Tav * TaB; | |
814 Tax = Tav * Taw; | |
815 TbH = W[10]; | |
816 TbO = W[11]; | |
817 iio[WS(vs, 4) + WS(rs, 6)] = FNMS(Tay, Taw, TaC); | |
818 rio[WS(vs, 4) + WS(rs, 6)] = FMA(Tay, TaB, Tax); | |
819 TbN = TbH * TbM; | |
820 TbU = TbO * TbM; | |
821 } | |
822 } | |
823 } | |
824 } | |
825 } | |
826 { | |
827 E T5q, T5v, T8R, T8K, T90, T95, T92, T96, T91; | |
828 { | |
829 E T3U, T3Z, T74, T77, T9Y, Ta3, T7l, T7e, T8X, T8T, T8W, T8V, T8Y; | |
830 { | |
831 E T5y, T5B, T5A, T5C, T5z; | |
832 { | |
833 E T5Y, T63, T60, T64, T5Z; | |
834 { | |
835 E T2P, T2S, T2R, T2U, T5X; | |
836 iio[WS(vs, 6) + WS(rs, 7)] = FNMS(TbO, TbT, TbN); | |
837 rio[WS(vs, 6) + WS(rs, 7)] = FMA(TbH, TbT, TbU); | |
838 T2P = W[2]; | |
839 T2S = W[3]; | |
840 T5Y = T4F - T4M; | |
841 T63 = T61 - T62; | |
842 T2R = T2P * T2Q; | |
843 T2U = T2S * T2Q; | |
844 T5X = W[6]; | |
845 T60 = W[7]; | |
846 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2S, T2T, T2R); | |
847 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2P, T2T, T2U); | |
848 T64 = T5X * T63; | |
849 T5Z = T5X * T5Y; | |
850 } | |
851 { | |
852 E T42, T45, T41, T44, T46, T43, T5x; | |
853 T3U = FNMS(KP707106781, T3T, T3S); | |
854 T42 = FMA(KP707106781, T3T, T3S); | |
855 T45 = FMA(KP707106781, T3Y, T3X); | |
856 T3Z = FNMS(KP707106781, T3Y, T3X); | |
857 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T60, T5Y, T64); | |
858 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T60, T63, T5Z); | |
859 T41 = W[0]; | |
860 T44 = W[1]; | |
861 T5q = FNMS(KP707106781, T5p, T5o); | |
862 T5y = FMA(KP707106781, T5p, T5o); | |
863 T5B = FMA(KP707106781, T5u, T5t); | |
864 T5v = FNMS(KP707106781, T5u, T5t); | |
865 T46 = T41 * T45; | |
866 T43 = T41 * T42; | |
867 T5x = W[0]; | |
868 T5A = W[1]; | |
869 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T44, T42, T46); | |
870 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T44, T45, T43); | |
871 T5C = T5x * T5B; | |
872 T5z = T5x * T5y; | |
873 } | |
874 } | |
875 { | |
876 E Ta6, Ta9, Ta8, Taa, Ta7; | |
877 { | |
878 E T6W, T71, T6T, T6Y, T72, T6X, Ta5; | |
879 T74 = FMA(KP707106781, T6V, T6U); | |
880 T6W = FNMS(KP707106781, T6V, T6U); | |
881 T71 = FNMS(KP707106781, T70, T6Z); | |
882 T77 = FMA(KP707106781, T70, T6Z); | |
883 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T5A, T5y, T5C); | |
884 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T5A, T5B, T5z); | |
885 T6T = W[8]; | |
886 T6Y = W[9]; | |
887 T9Y = FNMS(KP707106781, T9X, T9W); | |
888 Ta6 = FMA(KP707106781, T9X, T9W); | |
889 Ta9 = FMA(KP707106781, Ta2, Ta1); | |
890 Ta3 = FNMS(KP707106781, Ta2, Ta1); | |
891 T72 = T6T * T71; | |
892 T6X = T6T * T6W; | |
893 Ta5 = W[0]; | |
894 Ta8 = W[1]; | |
895 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T6Y, T6W, T72); | |
896 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T6Y, T71, T6X); | |
897 Taa = Ta5 * Ta9; | |
898 Ta7 = Ta5 * Ta6; | |
899 } | |
900 { | |
901 E T7r, T7o, T7n, T7q, T8U, T7p, T7s; | |
902 T7l = T7h - T7k; | |
903 T7r = T7h + T7k; | |
904 T7o = T7d + T7c; | |
905 T7e = T7c - T7d; | |
906 iio[WS(vs, 1) + WS(rs, 6)] = FNMS(Ta8, Ta6, Taa); | |
907 rio[WS(vs, 1) + WS(rs, 6)] = FMA(Ta8, Ta9, Ta7); | |
908 T7n = W[2]; | |
909 T7q = W[3]; | |
910 T8R = T8N - T8Q; | |
911 T8X = T8N + T8Q; | |
912 T8U = T8J + T8I; | |
913 T8K = T8I - T8J; | |
914 T7p = T7n * T7o; | |
915 T7s = T7q * T7o; | |
916 T8T = W[2]; | |
917 T8W = W[3]; | |
918 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T7q, T7r, T7p); | |
919 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T7n, T7r, T7s); | |
920 T8V = T8T * T8U; | |
921 T8Y = T8W * T8U; | |
922 } | |
923 } | |
924 } | |
925 { | |
926 E T5P, T5D, T5K, T5J, T5Q, Ta0, Ta4, T9Z; | |
927 { | |
928 E T5V, T5I, T5R, T5U, T5T, T5W; | |
929 { | |
930 E T2W, T31, T2V, T2Y, T5S, T32, T2X; | |
931 T2W = T1D - T1K; | |
932 T31 = T2Z - T30; | |
933 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T8W, T8X, T8V); | |
934 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T8T, T8X, T8Y); | |
935 T2V = W[6]; | |
936 T2Y = W[7]; | |
937 T5P = T5L - T5O; | |
938 T5V = T5L + T5O; | |
939 T5S = T5H + T5G; | |
940 T5I = T5G - T5H; | |
941 T32 = T2V * T31; | |
942 T2X = T2V * T2W; | |
943 T5R = W[2]; | |
944 T5U = W[3]; | |
945 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2Y, T2W, T32); | |
946 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2Y, T31, T2X); | |
947 T5T = T5R * T5S; | |
948 T5W = T5U * T5S; | |
949 } | |
950 { | |
951 E T3R, T3W, T40, T3V; | |
952 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T5U, T5V, T5T); | |
953 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T5R, T5V, T5W); | |
954 T3R = W[8]; | |
955 T3W = W[9]; | |
956 T40 = T3R * T3Z; | |
957 T3V = T3R * T3U; | |
958 T5D = W[10]; | |
959 T5K = W[11]; | |
960 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3W, T3U, T40); | |
961 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3W, T3Z, T3V); | |
962 T5J = T5D * T5I; | |
963 T5Q = T5K * T5I; | |
964 } | |
965 } | |
966 { | |
967 E T73, T76, T78, T75, T9V; | |
968 iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T5K, T5P, T5J); | |
969 rio[WS(vs, 6) + WS(rs, 3)] = FMA(T5D, T5P, T5Q); | |
970 T73 = W[0]; | |
971 T76 = W[1]; | |
972 T78 = T73 * T77; | |
973 T75 = T73 * T74; | |
974 T9V = W[8]; | |
975 Ta0 = W[9]; | |
976 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T76, T74, T78); | |
977 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T76, T77, T75); | |
978 Ta4 = T9V * Ta3; | |
979 T9Z = T9V * T9Y; | |
980 } | |
981 { | |
982 E T79, T7g, T7f, T7m, T8Z; | |
983 iio[WS(vs, 5) + WS(rs, 6)] = FNMS(Ta0, T9Y, Ta4); | |
984 rio[WS(vs, 5) + WS(rs, 6)] = FMA(Ta0, Ta3, T9Z); | |
985 T79 = W[10]; | |
986 T7g = W[11]; | |
987 T90 = T7H - T7O; | |
988 T95 = T93 - T94; | |
989 T7f = T79 * T7e; | |
990 T7m = T7g * T7e; | |
991 T8Z = W[6]; | |
992 T92 = W[7]; | |
993 iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T7g, T7l, T7f); | |
994 rio[WS(vs, 6) + WS(rs, 4)] = FMA(T79, T7l, T7m); | |
995 T96 = T8Z * T95; | |
996 T91 = T8Z * T90; | |
997 } | |
998 } | |
999 } | |
1000 { | |
1001 E T8A, T8D, T8C, T8E, T8B; | |
1002 { | |
1003 E T4s, T4x, T4u, T4y, T4t; | |
1004 { | |
1005 E T4p, T4m, T5s, T5w, T5r; | |
1006 { | |
1007 E T4j, T4c, T47, T4e, T4d, T4k, T5n; | |
1008 T4p = T4f + T4i; | |
1009 T4j = T4f - T4i; | |
1010 T4c = T4a - T4b; | |
1011 T4m = T4b + T4a; | |
1012 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T92, T90, T96); | |
1013 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T92, T95, T91); | |
1014 T47 = W[10]; | |
1015 T4e = W[11]; | |
1016 T4d = T47 * T4c; | |
1017 T4k = T4e * T4c; | |
1018 T5n = W[8]; | |
1019 T5s = W[9]; | |
1020 iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T4e, T4j, T4d); | |
1021 rio[WS(vs, 6) + WS(rs, 2)] = FMA(T47, T4j, T4k); | |
1022 T5w = T5n * T5v; | |
1023 T5r = T5n * T5q; | |
1024 } | |
1025 { | |
1026 E T4l, T4o, T4n, T4q, T4r; | |
1027 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T5s, T5q, T5w); | |
1028 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T5s, T5v, T5r); | |
1029 T4l = W[2]; | |
1030 T4o = W[3]; | |
1031 T4s = T39 - T3g; | |
1032 T4x = T4v - T4w; | |
1033 T4n = T4l * T4m; | |
1034 T4q = T4o * T4m; | |
1035 T4r = W[6]; | |
1036 T4u = W[7]; | |
1037 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T4o, T4p, T4n); | |
1038 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T4l, T4p, T4q); | |
1039 T4y = T4r * T4x; | |
1040 T4t = T4r * T4s; | |
1041 } | |
1042 } | |
1043 { | |
1044 E T8F, T8M, T8L, T8S; | |
1045 { | |
1046 E T7u, T7z, T7t, T7w, T7A, T7v; | |
1047 T7u = T6b - T6i; | |
1048 T7z = T7x - T7y; | |
1049 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T4u, T4s, T4y); | |
1050 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T4u, T4x, T4t); | |
1051 T7t = W[6]; | |
1052 T7w = W[7]; | |
1053 T7A = T7t * T7z; | |
1054 T7v = T7t * T7u; | |
1055 T8F = W[10]; | |
1056 T8M = W[11]; | |
1057 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T7w, T7u, T7A); | |
1058 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T7w, T7z, T7v); | |
1059 T8L = T8F * T8K; | |
1060 T8S = T8M * T8K; | |
1061 } | |
1062 { | |
1063 E T8s, T8x, T8p, T8u, T8y, T8t, T8z; | |
1064 T8A = FMA(KP707106781, T8r, T8q); | |
1065 T8s = FNMS(KP707106781, T8r, T8q); | |
1066 T8x = FNMS(KP707106781, T8w, T8v); | |
1067 T8D = FMA(KP707106781, T8w, T8v); | |
1068 iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T8M, T8R, T8L); | |
1069 rio[WS(vs, 6) + WS(rs, 5)] = FMA(T8F, T8R, T8S); | |
1070 T8p = W[8]; | |
1071 T8u = W[9]; | |
1072 T8y = T8p * T8x; | |
1073 T8t = T8p * T8s; | |
1074 T8z = W[0]; | |
1075 T8C = W[1]; | |
1076 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T8u, T8s, T8y); | |
1077 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T8u, T8x, T8t); | |
1078 T8E = T8z * T8D; | |
1079 T8B = T8z * T8A; | |
1080 } | |
1081 } | |
1082 } | |
1083 { | |
1084 E T3y, T3J, T3h, T3A, T3z, T3K; | |
1085 { | |
1086 E T54, T5f, T4N, T56, T55, T5g; | |
1087 { | |
1088 E Tw, TH, Tf, Ty, Tx, TI; | |
1089 { | |
1090 E TN, TJ, TM, TL, TO, TK; | |
1091 TK = FMA(KP707106781, Tv, Tk); | |
1092 Tw = FNMS(KP707106781, Tv, Tk); | |
1093 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T8C, T8A, T8E); | |
1094 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T8C, T8D, T8B); | |
1095 TH = FNMS(KP707106781, TG, TD); | |
1096 TN = FMA(KP707106781, TG, TD); | |
1097 TJ = W[4]; | |
1098 TM = W[5]; | |
1099 Tf = W[12]; | |
1100 TL = TJ * TK; | |
1101 TO = TM * TK; | |
1102 Ty = W[13]; | |
1103 Tx = Tf * Tw; | |
1104 iio[WS(vs, 3)] = FNMS(TM, TN, TL); | |
1105 rio[WS(vs, 3)] = FMA(TJ, TN, TO); | |
1106 } | |
1107 TI = Ty * Tw; | |
1108 iio[WS(vs, 7)] = FNMS(Ty, TH, Tx); | |
1109 { | |
1110 E T5h, T5l, T5k, T5j, T5m, T5i; | |
1111 T5i = FMA(KP707106781, T53, T4S); | |
1112 T54 = FNMS(KP707106781, T53, T4S); | |
1113 rio[WS(vs, 7)] = FMA(Tf, TH, TI); | |
1114 T5h = W[4]; | |
1115 T5f = FNMS(KP707106781, T5e, T5b); | |
1116 T5l = FMA(KP707106781, T5e, T5b); | |
1117 T5k = W[5]; | |
1118 T5j = T5h * T5i; | |
1119 T4N = W[12]; | |
1120 T5m = T5k * T5i; | |
1121 T56 = W[13]; | |
1122 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T5k, T5l, T5j); | |
1123 T55 = T4N * T54; | |
1124 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T5h, T5l, T5m); | |
1125 } | |
1126 } | |
1127 T5g = T56 * T54; | |
1128 { | |
1129 E T22, T2d, T1L, T24, T23, T2e; | |
1130 { | |
1131 E T2j, T2f, T2i, T2h, T2k, T2g; | |
1132 iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T56, T5f, T55); | |
1133 T22 = FNMS(KP707106781, T21, T1Q); | |
1134 T2g = FMA(KP707106781, T21, T1Q); | |
1135 rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4N, T5f, T5g); | |
1136 T2d = FNMS(KP707106781, T2c, T29); | |
1137 T2j = FMA(KP707106781, T2c, T29); | |
1138 T2f = W[4]; | |
1139 T2i = W[5]; | |
1140 T1L = W[12]; | |
1141 T2h = T2f * T2g; | |
1142 T2k = T2i * T2g; | |
1143 T24 = W[13]; | |
1144 T23 = T1L * T22; | |
1145 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T2i, T2j, T2h); | |
1146 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T2f, T2j, T2k); | |
1147 } | |
1148 T2e = T24 * T22; | |
1149 iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T24, T2d, T23); | |
1150 { | |
1151 E T3L, T3P, T3O, T3N, T3Q, T3M; | |
1152 T3M = FMA(KP707106781, T3x, T3m); | |
1153 T3y = FNMS(KP707106781, T3x, T3m); | |
1154 rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1L, T2d, T2e); | |
1155 T3L = W[4]; | |
1156 T3J = FNMS(KP707106781, T3I, T3F); | |
1157 T3P = FMA(KP707106781, T3I, T3F); | |
1158 T3O = W[5]; | |
1159 T3N = T3L * T3M; | |
1160 T3h = W[12]; | |
1161 T3Q = T3O * T3M; | |
1162 T3A = W[13]; | |
1163 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3O, T3P, T3N); | |
1164 T3z = T3h * T3y; | |
1165 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3L, T3P, T3Q); | |
1166 } | |
1167 } | |
1168 } | |
1169 T3K = T3A * T3y; | |
1170 { | |
1171 E Tb8, Tbj, TaR, Tba, Tb9, Tbk; | |
1172 { | |
1173 E T6A, T6L, T6j, T6C, T6B, T6M; | |
1174 { | |
1175 E T6R, T6N, T6Q, T6P, T6S, T6O; | |
1176 iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T3A, T3J, T3z); | |
1177 T6A = FNMS(KP707106781, T6z, T6o); | |
1178 T6O = FMA(KP707106781, T6z, T6o); | |
1179 rio[WS(vs, 7) + WS(rs, 2)] = FMA(T3h, T3J, T3K); | |
1180 T6L = FNMS(KP707106781, T6K, T6H); | |
1181 T6R = FMA(KP707106781, T6K, T6H); | |
1182 T6N = W[4]; | |
1183 T6Q = W[5]; | |
1184 T6j = W[12]; | |
1185 T6P = T6N * T6O; | |
1186 T6S = T6Q * T6O; | |
1187 T6C = W[13]; | |
1188 T6B = T6j * T6A; | |
1189 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T6Q, T6R, T6P); | |
1190 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T6N, T6R, T6S); | |
1191 } | |
1192 T6M = T6C * T6A; | |
1193 iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T6C, T6L, T6B); | |
1194 { | |
1195 E Tbl, Tbp, Tbo, Tbn, Tbq, Tbm; | |
1196 Tbm = FMA(KP707106781, Tb7, TaW); | |
1197 Tb8 = FNMS(KP707106781, Tb7, TaW); | |
1198 rio[WS(vs, 7) + WS(rs, 4)] = FMA(T6j, T6L, T6M); | |
1199 Tbl = W[4]; | |
1200 Tbj = FNMS(KP707106781, Tbi, Tbf); | |
1201 Tbp = FMA(KP707106781, Tbi, Tbf); | |
1202 Tbo = W[5]; | |
1203 Tbn = Tbl * Tbm; | |
1204 TaR = W[12]; | |
1205 Tbq = Tbo * Tbm; | |
1206 Tba = W[13]; | |
1207 iio[WS(vs, 3) + WS(rs, 7)] = FNMS(Tbo, Tbp, Tbn); | |
1208 Tb9 = TaR * Tb8; | |
1209 rio[WS(vs, 3) + WS(rs, 7)] = FMA(Tbl, Tbp, Tbq); | |
1210 } | |
1211 } | |
1212 Tbk = Tba * Tb8; | |
1213 { | |
1214 E T86, T8h, T7P, T88, T87, T8i; | |
1215 { | |
1216 E T8n, T8j, T8m, T8l, T8o, T8k; | |
1217 iio[WS(vs, 7) + WS(rs, 7)] = FNMS(Tba, Tbj, Tb9); | |
1218 T86 = FNMS(KP707106781, T85, T7U); | |
1219 T8k = FMA(KP707106781, T85, T7U); | |
1220 rio[WS(vs, 7) + WS(rs, 7)] = FMA(TaR, Tbj, Tbk); | |
1221 T8h = FNMS(KP707106781, T8g, T8d); | |
1222 T8n = FMA(KP707106781, T8g, T8d); | |
1223 T8j = W[4]; | |
1224 T8m = W[5]; | |
1225 T7P = W[12]; | |
1226 T8l = T8j * T8k; | |
1227 T8o = T8m * T8k; | |
1228 T88 = W[13]; | |
1229 T87 = T7P * T86; | |
1230 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T8m, T8n, T8l); | |
1231 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T8j, T8n, T8o); | |
1232 } | |
1233 T8i = T88 * T86; | |
1234 iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T88, T8h, T87); | |
1235 { | |
1236 E T9P, T9T, T9S, T9R, T9U, T9Q; | |
1237 T9Q = FMA(KP707106781, T9B, T9q); | |
1238 T9C = FNMS(KP707106781, T9B, T9q); | |
1239 rio[WS(vs, 7) + WS(rs, 5)] = FMA(T7P, T8h, T8i); | |
1240 T9P = W[4]; | |
1241 T9N = FNMS(KP707106781, T9M, T9J); | |
1242 T9T = FMA(KP707106781, T9M, T9J); | |
1243 T9S = W[5]; | |
1244 T9R = T9P * T9Q; | |
1245 T9l = W[12]; | |
1246 T9U = T9S * T9Q; | |
1247 T9E = W[13]; | |
1248 iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T9S, T9T, T9R); | |
1249 T9D = T9l * T9C; | |
1250 rio[WS(vs, 3) + WS(rs, 6)] = FMA(T9P, T9T, T9U); | |
1251 } | |
1252 } | |
1253 } | |
1254 } | |
1255 } | |
1256 } | |
1257 } | |
1258 } | |
1259 T9O = T9E * T9C; | |
1260 iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T9E, T9N, T9D); | |
1261 rio[WS(vs, 7) + WS(rs, 6)] = FMA(T9l, T9N, T9O); | |
1262 } | |
1263 } | |
1264 } | |
1265 | |
1266 static const tw_instr twinstr[] = { | |
1267 {TW_FULL, 0, 8}, | |
1268 {TW_NEXT, 1, 0} | |
1269 }; | |
1270 | |
1271 static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, {352, 112, 176, 0}, 0, 0, 0 }; | |
1272 | |
1273 void X(codelet_q1_8) (planner *p) { | |
1274 X(kdft_difsq_register) (p, q1_8, &desc); | |
1275 } | |
1276 #else /* HAVE_FMA */ | |
1277 | |
1278 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 8 -name q1_8 -include q.h */ | |
1279 | |
1280 /* | |
1281 * This function contains 528 FP additions, 256 FP multiplications, | |
1282 * (or, 416 additions, 144 multiplications, 112 fused multiply/add), | |
1283 * 142 stack variables, 1 constants, and 256 memory accesses | |
1284 */ | |
1285 #include "q.h" | |
1286 | |
1287 static void q1_8(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
1288 { | |
1289 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
1290 { | |
1291 INT m; | |
1292 for (m = mb, W = W + (mb * 14); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
1293 E T7, T14, T1g, Tk, TC, TQ, T10, TM, T1w, T2p, T2z, T1H, T1M, T1W, T2j; | |
1294 E T1V, T7R, T8O, T90, T84, T8m, T8A, T8K, T8w, T9g, Ta9, Taj, T9r, T9w, T9G; | |
1295 E Ta3, T9F, Te, T17, T1h, Tp, Tu, TE, T11, TD, T1p, T2m, T2y, T1C, T1U; | |
1296 E T28, T2i, T24, T7Y, T8R, T91, T89, T8e, T8o, T8L, T8n, T99, Ta6, Tai, T9m; | |
1297 E T9E, T9S, Ta2, T9O, T2H, T3E, T3Q, T2U, T3c, T3q, T3A, T3m, T46, T4Z, T59; | |
1298 E T4h, T4m, T4w, T4T, T4v, T5h, T6e, T6q, T5u, T5M, T60, T6a, T5W, T6G, T7z; | |
1299 E T7J, T6R, T6W, T76, T7t, T75, T2O, T3H, T3R, T2Z, T34, T3e, T3B, T3d, T3Z; | |
1300 E T4W, T58, T4c, T4u, T4I, T4S, T4E, T5o, T6h, T6r, T5z, T5E, T5O, T6b, T5N; | |
1301 E T6z, T7w, T7I, T6M, T74, T7i, T7s, T7e; | |
1302 { | |
1303 E T3, Ty, Tj, TY, T6, Tg, TB, TZ; | |
1304 { | |
1305 E T1, T2, Th, Ti; | |
1306 T1 = rio[0]; | |
1307 T2 = rio[WS(rs, 4)]; | |
1308 T3 = T1 + T2; | |
1309 Ty = T1 - T2; | |
1310 Th = iio[0]; | |
1311 Ti = iio[WS(rs, 4)]; | |
1312 Tj = Th - Ti; | |
1313 TY = Th + Ti; | |
1314 } | |
1315 { | |
1316 E T4, T5, Tz, TA; | |
1317 T4 = rio[WS(rs, 2)]; | |
1318 T5 = rio[WS(rs, 6)]; | |
1319 T6 = T4 + T5; | |
1320 Tg = T4 - T5; | |
1321 Tz = iio[WS(rs, 2)]; | |
1322 TA = iio[WS(rs, 6)]; | |
1323 TB = Tz - TA; | |
1324 TZ = Tz + TA; | |
1325 } | |
1326 T7 = T3 + T6; | |
1327 T14 = T3 - T6; | |
1328 T1g = TY + TZ; | |
1329 Tk = Tg + Tj; | |
1330 TC = Ty - TB; | |
1331 TQ = Tj - Tg; | |
1332 T10 = TY - TZ; | |
1333 TM = Ty + TB; | |
1334 } | |
1335 { | |
1336 E T1s, T1I, T1L, T2n, T1v, T1D, T1G, T2o; | |
1337 { | |
1338 E T1q, T1r, T1J, T1K; | |
1339 T1q = rio[WS(vs, 1) + WS(rs, 1)]; | |
1340 T1r = rio[WS(vs, 1) + WS(rs, 5)]; | |
1341 T1s = T1q + T1r; | |
1342 T1I = T1q - T1r; | |
1343 T1J = iio[WS(vs, 1) + WS(rs, 1)]; | |
1344 T1K = iio[WS(vs, 1) + WS(rs, 5)]; | |
1345 T1L = T1J - T1K; | |
1346 T2n = T1J + T1K; | |
1347 } | |
1348 { | |
1349 E T1t, T1u, T1E, T1F; | |
1350 T1t = rio[WS(vs, 1) + WS(rs, 7)]; | |
1351 T1u = rio[WS(vs, 1) + WS(rs, 3)]; | |
1352 T1v = T1t + T1u; | |
1353 T1D = T1t - T1u; | |
1354 T1E = iio[WS(vs, 1) + WS(rs, 7)]; | |
1355 T1F = iio[WS(vs, 1) + WS(rs, 3)]; | |
1356 T1G = T1E - T1F; | |
1357 T2o = T1E + T1F; | |
1358 } | |
1359 T1w = T1s + T1v; | |
1360 T2p = T2n - T2o; | |
1361 T2z = T2n + T2o; | |
1362 T1H = T1D - T1G; | |
1363 T1M = T1I + T1L; | |
1364 T1W = T1D + T1G; | |
1365 T2j = T1v - T1s; | |
1366 T1V = T1L - T1I; | |
1367 } | |
1368 { | |
1369 E T7N, T8i, T83, T8I, T7Q, T80, T8l, T8J; | |
1370 { | |
1371 E T7L, T7M, T81, T82; | |
1372 T7L = rio[WS(vs, 6)]; | |
1373 T7M = rio[WS(vs, 6) + WS(rs, 4)]; | |
1374 T7N = T7L + T7M; | |
1375 T8i = T7L - T7M; | |
1376 T81 = iio[WS(vs, 6)]; | |
1377 T82 = iio[WS(vs, 6) + WS(rs, 4)]; | |
1378 T83 = T81 - T82; | |
1379 T8I = T81 + T82; | |
1380 } | |
1381 { | |
1382 E T7O, T7P, T8j, T8k; | |
1383 T7O = rio[WS(vs, 6) + WS(rs, 2)]; | |
1384 T7P = rio[WS(vs, 6) + WS(rs, 6)]; | |
1385 T7Q = T7O + T7P; | |
1386 T80 = T7O - T7P; | |
1387 T8j = iio[WS(vs, 6) + WS(rs, 2)]; | |
1388 T8k = iio[WS(vs, 6) + WS(rs, 6)]; | |
1389 T8l = T8j - T8k; | |
1390 T8J = T8j + T8k; | |
1391 } | |
1392 T7R = T7N + T7Q; | |
1393 T8O = T7N - T7Q; | |
1394 T90 = T8I + T8J; | |
1395 T84 = T80 + T83; | |
1396 T8m = T8i - T8l; | |
1397 T8A = T83 - T80; | |
1398 T8K = T8I - T8J; | |
1399 T8w = T8i + T8l; | |
1400 } | |
1401 { | |
1402 E T9c, T9s, T9v, Ta7, T9f, T9n, T9q, Ta8; | |
1403 { | |
1404 E T9a, T9b, T9t, T9u; | |
1405 T9a = rio[WS(vs, 7) + WS(rs, 1)]; | |
1406 T9b = rio[WS(vs, 7) + WS(rs, 5)]; | |
1407 T9c = T9a + T9b; | |
1408 T9s = T9a - T9b; | |
1409 T9t = iio[WS(vs, 7) + WS(rs, 1)]; | |
1410 T9u = iio[WS(vs, 7) + WS(rs, 5)]; | |
1411 T9v = T9t - T9u; | |
1412 Ta7 = T9t + T9u; | |
1413 } | |
1414 { | |
1415 E T9d, T9e, T9o, T9p; | |
1416 T9d = rio[WS(vs, 7) + WS(rs, 7)]; | |
1417 T9e = rio[WS(vs, 7) + WS(rs, 3)]; | |
1418 T9f = T9d + T9e; | |
1419 T9n = T9d - T9e; | |
1420 T9o = iio[WS(vs, 7) + WS(rs, 7)]; | |
1421 T9p = iio[WS(vs, 7) + WS(rs, 3)]; | |
1422 T9q = T9o - T9p; | |
1423 Ta8 = T9o + T9p; | |
1424 } | |
1425 T9g = T9c + T9f; | |
1426 Ta9 = Ta7 - Ta8; | |
1427 Taj = Ta7 + Ta8; | |
1428 T9r = T9n - T9q; | |
1429 T9w = T9s + T9v; | |
1430 T9G = T9n + T9q; | |
1431 Ta3 = T9f - T9c; | |
1432 T9F = T9v - T9s; | |
1433 } | |
1434 { | |
1435 E Ta, Tq, Tt, T15, Td, Tl, To, T16; | |
1436 { | |
1437 E T8, T9, Tr, Ts; | |
1438 T8 = rio[WS(rs, 1)]; | |
1439 T9 = rio[WS(rs, 5)]; | |
1440 Ta = T8 + T9; | |
1441 Tq = T8 - T9; | |
1442 Tr = iio[WS(rs, 1)]; | |
1443 Ts = iio[WS(rs, 5)]; | |
1444 Tt = Tr - Ts; | |
1445 T15 = Tr + Ts; | |
1446 } | |
1447 { | |
1448 E Tb, Tc, Tm, Tn; | |
1449 Tb = rio[WS(rs, 7)]; | |
1450 Tc = rio[WS(rs, 3)]; | |
1451 Td = Tb + Tc; | |
1452 Tl = Tb - Tc; | |
1453 Tm = iio[WS(rs, 7)]; | |
1454 Tn = iio[WS(rs, 3)]; | |
1455 To = Tm - Tn; | |
1456 T16 = Tm + Tn; | |
1457 } | |
1458 Te = Ta + Td; | |
1459 T17 = T15 - T16; | |
1460 T1h = T15 + T16; | |
1461 Tp = Tl - To; | |
1462 Tu = Tq + Tt; | |
1463 TE = Tl + To; | |
1464 T11 = Td - Ta; | |
1465 TD = Tt - Tq; | |
1466 } | |
1467 { | |
1468 E T1l, T1Q, T1B, T2g, T1o, T1y, T1T, T2h; | |
1469 { | |
1470 E T1j, T1k, T1z, T1A; | |
1471 T1j = rio[WS(vs, 1)]; | |
1472 T1k = rio[WS(vs, 1) + WS(rs, 4)]; | |
1473 T1l = T1j + T1k; | |
1474 T1Q = T1j - T1k; | |
1475 T1z = iio[WS(vs, 1)]; | |
1476 T1A = iio[WS(vs, 1) + WS(rs, 4)]; | |
1477 T1B = T1z - T1A; | |
1478 T2g = T1z + T1A; | |
1479 } | |
1480 { | |
1481 E T1m, T1n, T1R, T1S; | |
1482 T1m = rio[WS(vs, 1) + WS(rs, 2)]; | |
1483 T1n = rio[WS(vs, 1) + WS(rs, 6)]; | |
1484 T1o = T1m + T1n; | |
1485 T1y = T1m - T1n; | |
1486 T1R = iio[WS(vs, 1) + WS(rs, 2)]; | |
1487 T1S = iio[WS(vs, 1) + WS(rs, 6)]; | |
1488 T1T = T1R - T1S; | |
1489 T2h = T1R + T1S; | |
1490 } | |
1491 T1p = T1l + T1o; | |
1492 T2m = T1l - T1o; | |
1493 T2y = T2g + T2h; | |
1494 T1C = T1y + T1B; | |
1495 T1U = T1Q - T1T; | |
1496 T28 = T1B - T1y; | |
1497 T2i = T2g - T2h; | |
1498 T24 = T1Q + T1T; | |
1499 } | |
1500 { | |
1501 E T7U, T8a, T8d, T8P, T7X, T85, T88, T8Q; | |
1502 { | |
1503 E T7S, T7T, T8b, T8c; | |
1504 T7S = rio[WS(vs, 6) + WS(rs, 1)]; | |
1505 T7T = rio[WS(vs, 6) + WS(rs, 5)]; | |
1506 T7U = T7S + T7T; | |
1507 T8a = T7S - T7T; | |
1508 T8b = iio[WS(vs, 6) + WS(rs, 1)]; | |
1509 T8c = iio[WS(vs, 6) + WS(rs, 5)]; | |
1510 T8d = T8b - T8c; | |
1511 T8P = T8b + T8c; | |
1512 } | |
1513 { | |
1514 E T7V, T7W, T86, T87; | |
1515 T7V = rio[WS(vs, 6) + WS(rs, 7)]; | |
1516 T7W = rio[WS(vs, 6) + WS(rs, 3)]; | |
1517 T7X = T7V + T7W; | |
1518 T85 = T7V - T7W; | |
1519 T86 = iio[WS(vs, 6) + WS(rs, 7)]; | |
1520 T87 = iio[WS(vs, 6) + WS(rs, 3)]; | |
1521 T88 = T86 - T87; | |
1522 T8Q = T86 + T87; | |
1523 } | |
1524 T7Y = T7U + T7X; | |
1525 T8R = T8P - T8Q; | |
1526 T91 = T8P + T8Q; | |
1527 T89 = T85 - T88; | |
1528 T8e = T8a + T8d; | |
1529 T8o = T85 + T88; | |
1530 T8L = T7X - T7U; | |
1531 T8n = T8d - T8a; | |
1532 } | |
1533 { | |
1534 E T95, T9A, T9l, Ta0, T98, T9i, T9D, Ta1; | |
1535 { | |
1536 E T93, T94, T9j, T9k; | |
1537 T93 = rio[WS(vs, 7)]; | |
1538 T94 = rio[WS(vs, 7) + WS(rs, 4)]; | |
1539 T95 = T93 + T94; | |
1540 T9A = T93 - T94; | |
1541 T9j = iio[WS(vs, 7)]; | |
1542 T9k = iio[WS(vs, 7) + WS(rs, 4)]; | |
1543 T9l = T9j - T9k; | |
1544 Ta0 = T9j + T9k; | |
1545 } | |
1546 { | |
1547 E T96, T97, T9B, T9C; | |
1548 T96 = rio[WS(vs, 7) + WS(rs, 2)]; | |
1549 T97 = rio[WS(vs, 7) + WS(rs, 6)]; | |
1550 T98 = T96 + T97; | |
1551 T9i = T96 - T97; | |
1552 T9B = iio[WS(vs, 7) + WS(rs, 2)]; | |
1553 T9C = iio[WS(vs, 7) + WS(rs, 6)]; | |
1554 T9D = T9B - T9C; | |
1555 Ta1 = T9B + T9C; | |
1556 } | |
1557 T99 = T95 + T98; | |
1558 Ta6 = T95 - T98; | |
1559 Tai = Ta0 + Ta1; | |
1560 T9m = T9i + T9l; | |
1561 T9E = T9A - T9D; | |
1562 T9S = T9l - T9i; | |
1563 Ta2 = Ta0 - Ta1; | |
1564 T9O = T9A + T9D; | |
1565 } | |
1566 { | |
1567 E T2D, T38, T2T, T3y, T2G, T2Q, T3b, T3z; | |
1568 { | |
1569 E T2B, T2C, T2R, T2S; | |
1570 T2B = rio[WS(vs, 2)]; | |
1571 T2C = rio[WS(vs, 2) + WS(rs, 4)]; | |
1572 T2D = T2B + T2C; | |
1573 T38 = T2B - T2C; | |
1574 T2R = iio[WS(vs, 2)]; | |
1575 T2S = iio[WS(vs, 2) + WS(rs, 4)]; | |
1576 T2T = T2R - T2S; | |
1577 T3y = T2R + T2S; | |
1578 } | |
1579 { | |
1580 E T2E, T2F, T39, T3a; | |
1581 T2E = rio[WS(vs, 2) + WS(rs, 2)]; | |
1582 T2F = rio[WS(vs, 2) + WS(rs, 6)]; | |
1583 T2G = T2E + T2F; | |
1584 T2Q = T2E - T2F; | |
1585 T39 = iio[WS(vs, 2) + WS(rs, 2)]; | |
1586 T3a = iio[WS(vs, 2) + WS(rs, 6)]; | |
1587 T3b = T39 - T3a; | |
1588 T3z = T39 + T3a; | |
1589 } | |
1590 T2H = T2D + T2G; | |
1591 T3E = T2D - T2G; | |
1592 T3Q = T3y + T3z; | |
1593 T2U = T2Q + T2T; | |
1594 T3c = T38 - T3b; | |
1595 T3q = T2T - T2Q; | |
1596 T3A = T3y - T3z; | |
1597 T3m = T38 + T3b; | |
1598 } | |
1599 { | |
1600 E T42, T4i, T4l, T4X, T45, T4d, T4g, T4Y; | |
1601 { | |
1602 E T40, T41, T4j, T4k; | |
1603 T40 = rio[WS(vs, 3) + WS(rs, 1)]; | |
1604 T41 = rio[WS(vs, 3) + WS(rs, 5)]; | |
1605 T42 = T40 + T41; | |
1606 T4i = T40 - T41; | |
1607 T4j = iio[WS(vs, 3) + WS(rs, 1)]; | |
1608 T4k = iio[WS(vs, 3) + WS(rs, 5)]; | |
1609 T4l = T4j - T4k; | |
1610 T4X = T4j + T4k; | |
1611 } | |
1612 { | |
1613 E T43, T44, T4e, T4f; | |
1614 T43 = rio[WS(vs, 3) + WS(rs, 7)]; | |
1615 T44 = rio[WS(vs, 3) + WS(rs, 3)]; | |
1616 T45 = T43 + T44; | |
1617 T4d = T43 - T44; | |
1618 T4e = iio[WS(vs, 3) + WS(rs, 7)]; | |
1619 T4f = iio[WS(vs, 3) + WS(rs, 3)]; | |
1620 T4g = T4e - T4f; | |
1621 T4Y = T4e + T4f; | |
1622 } | |
1623 T46 = T42 + T45; | |
1624 T4Z = T4X - T4Y; | |
1625 T59 = T4X + T4Y; | |
1626 T4h = T4d - T4g; | |
1627 T4m = T4i + T4l; | |
1628 T4w = T4d + T4g; | |
1629 T4T = T45 - T42; | |
1630 T4v = T4l - T4i; | |
1631 } | |
1632 { | |
1633 E T5d, T5I, T5t, T68, T5g, T5q, T5L, T69; | |
1634 { | |
1635 E T5b, T5c, T5r, T5s; | |
1636 T5b = rio[WS(vs, 4)]; | |
1637 T5c = rio[WS(vs, 4) + WS(rs, 4)]; | |
1638 T5d = T5b + T5c; | |
1639 T5I = T5b - T5c; | |
1640 T5r = iio[WS(vs, 4)]; | |
1641 T5s = iio[WS(vs, 4) + WS(rs, 4)]; | |
1642 T5t = T5r - T5s; | |
1643 T68 = T5r + T5s; | |
1644 } | |
1645 { | |
1646 E T5e, T5f, T5J, T5K; | |
1647 T5e = rio[WS(vs, 4) + WS(rs, 2)]; | |
1648 T5f = rio[WS(vs, 4) + WS(rs, 6)]; | |
1649 T5g = T5e + T5f; | |
1650 T5q = T5e - T5f; | |
1651 T5J = iio[WS(vs, 4) + WS(rs, 2)]; | |
1652 T5K = iio[WS(vs, 4) + WS(rs, 6)]; | |
1653 T5L = T5J - T5K; | |
1654 T69 = T5J + T5K; | |
1655 } | |
1656 T5h = T5d + T5g; | |
1657 T6e = T5d - T5g; | |
1658 T6q = T68 + T69; | |
1659 T5u = T5q + T5t; | |
1660 T5M = T5I - T5L; | |
1661 T60 = T5t - T5q; | |
1662 T6a = T68 - T69; | |
1663 T5W = T5I + T5L; | |
1664 } | |
1665 { | |
1666 E T6C, T6S, T6V, T7x, T6F, T6N, T6Q, T7y; | |
1667 { | |
1668 E T6A, T6B, T6T, T6U; | |
1669 T6A = rio[WS(vs, 5) + WS(rs, 1)]; | |
1670 T6B = rio[WS(vs, 5) + WS(rs, 5)]; | |
1671 T6C = T6A + T6B; | |
1672 T6S = T6A - T6B; | |
1673 T6T = iio[WS(vs, 5) + WS(rs, 1)]; | |
1674 T6U = iio[WS(vs, 5) + WS(rs, 5)]; | |
1675 T6V = T6T - T6U; | |
1676 T7x = T6T + T6U; | |
1677 } | |
1678 { | |
1679 E T6D, T6E, T6O, T6P; | |
1680 T6D = rio[WS(vs, 5) + WS(rs, 7)]; | |
1681 T6E = rio[WS(vs, 5) + WS(rs, 3)]; | |
1682 T6F = T6D + T6E; | |
1683 T6N = T6D - T6E; | |
1684 T6O = iio[WS(vs, 5) + WS(rs, 7)]; | |
1685 T6P = iio[WS(vs, 5) + WS(rs, 3)]; | |
1686 T6Q = T6O - T6P; | |
1687 T7y = T6O + T6P; | |
1688 } | |
1689 T6G = T6C + T6F; | |
1690 T7z = T7x - T7y; | |
1691 T7J = T7x + T7y; | |
1692 T6R = T6N - T6Q; | |
1693 T6W = T6S + T6V; | |
1694 T76 = T6N + T6Q; | |
1695 T7t = T6F - T6C; | |
1696 T75 = T6V - T6S; | |
1697 } | |
1698 { | |
1699 E T2K, T30, T33, T3F, T2N, T2V, T2Y, T3G; | |
1700 { | |
1701 E T2I, T2J, T31, T32; | |
1702 T2I = rio[WS(vs, 2) + WS(rs, 1)]; | |
1703 T2J = rio[WS(vs, 2) + WS(rs, 5)]; | |
1704 T2K = T2I + T2J; | |
1705 T30 = T2I - T2J; | |
1706 T31 = iio[WS(vs, 2) + WS(rs, 1)]; | |
1707 T32 = iio[WS(vs, 2) + WS(rs, 5)]; | |
1708 T33 = T31 - T32; | |
1709 T3F = T31 + T32; | |
1710 } | |
1711 { | |
1712 E T2L, T2M, T2W, T2X; | |
1713 T2L = rio[WS(vs, 2) + WS(rs, 7)]; | |
1714 T2M = rio[WS(vs, 2) + WS(rs, 3)]; | |
1715 T2N = T2L + T2M; | |
1716 T2V = T2L - T2M; | |
1717 T2W = iio[WS(vs, 2) + WS(rs, 7)]; | |
1718 T2X = iio[WS(vs, 2) + WS(rs, 3)]; | |
1719 T2Y = T2W - T2X; | |
1720 T3G = T2W + T2X; | |
1721 } | |
1722 T2O = T2K + T2N; | |
1723 T3H = T3F - T3G; | |
1724 T3R = T3F + T3G; | |
1725 T2Z = T2V - T2Y; | |
1726 T34 = T30 + T33; | |
1727 T3e = T2V + T2Y; | |
1728 T3B = T2N - T2K; | |
1729 T3d = T33 - T30; | |
1730 } | |
1731 { | |
1732 E T3V, T4q, T4b, T4Q, T3Y, T48, T4t, T4R; | |
1733 { | |
1734 E T3T, T3U, T49, T4a; | |
1735 T3T = rio[WS(vs, 3)]; | |
1736 T3U = rio[WS(vs, 3) + WS(rs, 4)]; | |
1737 T3V = T3T + T3U; | |
1738 T4q = T3T - T3U; | |
1739 T49 = iio[WS(vs, 3)]; | |
1740 T4a = iio[WS(vs, 3) + WS(rs, 4)]; | |
1741 T4b = T49 - T4a; | |
1742 T4Q = T49 + T4a; | |
1743 } | |
1744 { | |
1745 E T3W, T3X, T4r, T4s; | |
1746 T3W = rio[WS(vs, 3) + WS(rs, 2)]; | |
1747 T3X = rio[WS(vs, 3) + WS(rs, 6)]; | |
1748 T3Y = T3W + T3X; | |
1749 T48 = T3W - T3X; | |
1750 T4r = iio[WS(vs, 3) + WS(rs, 2)]; | |
1751 T4s = iio[WS(vs, 3) + WS(rs, 6)]; | |
1752 T4t = T4r - T4s; | |
1753 T4R = T4r + T4s; | |
1754 } | |
1755 T3Z = T3V + T3Y; | |
1756 T4W = T3V - T3Y; | |
1757 T58 = T4Q + T4R; | |
1758 T4c = T48 + T4b; | |
1759 T4u = T4q - T4t; | |
1760 T4I = T4b - T48; | |
1761 T4S = T4Q - T4R; | |
1762 T4E = T4q + T4t; | |
1763 } | |
1764 { | |
1765 E T5k, T5A, T5D, T6f, T5n, T5v, T5y, T6g; | |
1766 { | |
1767 E T5i, T5j, T5B, T5C; | |
1768 T5i = rio[WS(vs, 4) + WS(rs, 1)]; | |
1769 T5j = rio[WS(vs, 4) + WS(rs, 5)]; | |
1770 T5k = T5i + T5j; | |
1771 T5A = T5i - T5j; | |
1772 T5B = iio[WS(vs, 4) + WS(rs, 1)]; | |
1773 T5C = iio[WS(vs, 4) + WS(rs, 5)]; | |
1774 T5D = T5B - T5C; | |
1775 T6f = T5B + T5C; | |
1776 } | |
1777 { | |
1778 E T5l, T5m, T5w, T5x; | |
1779 T5l = rio[WS(vs, 4) + WS(rs, 7)]; | |
1780 T5m = rio[WS(vs, 4) + WS(rs, 3)]; | |
1781 T5n = T5l + T5m; | |
1782 T5v = T5l - T5m; | |
1783 T5w = iio[WS(vs, 4) + WS(rs, 7)]; | |
1784 T5x = iio[WS(vs, 4) + WS(rs, 3)]; | |
1785 T5y = T5w - T5x; | |
1786 T6g = T5w + T5x; | |
1787 } | |
1788 T5o = T5k + T5n; | |
1789 T6h = T6f - T6g; | |
1790 T6r = T6f + T6g; | |
1791 T5z = T5v - T5y; | |
1792 T5E = T5A + T5D; | |
1793 T5O = T5v + T5y; | |
1794 T6b = T5n - T5k; | |
1795 T5N = T5D - T5A; | |
1796 } | |
1797 { | |
1798 E T6v, T70, T6L, T7q, T6y, T6I, T73, T7r; | |
1799 { | |
1800 E T6t, T6u, T6J, T6K; | |
1801 T6t = rio[WS(vs, 5)]; | |
1802 T6u = rio[WS(vs, 5) + WS(rs, 4)]; | |
1803 T6v = T6t + T6u; | |
1804 T70 = T6t - T6u; | |
1805 T6J = iio[WS(vs, 5)]; | |
1806 T6K = iio[WS(vs, 5) + WS(rs, 4)]; | |
1807 T6L = T6J - T6K; | |
1808 T7q = T6J + T6K; | |
1809 } | |
1810 { | |
1811 E T6w, T6x, T71, T72; | |
1812 T6w = rio[WS(vs, 5) + WS(rs, 2)]; | |
1813 T6x = rio[WS(vs, 5) + WS(rs, 6)]; | |
1814 T6y = T6w + T6x; | |
1815 T6I = T6w - T6x; | |
1816 T71 = iio[WS(vs, 5) + WS(rs, 2)]; | |
1817 T72 = iio[WS(vs, 5) + WS(rs, 6)]; | |
1818 T73 = T71 - T72; | |
1819 T7r = T71 + T72; | |
1820 } | |
1821 T6z = T6v + T6y; | |
1822 T7w = T6v - T6y; | |
1823 T7I = T7q + T7r; | |
1824 T6M = T6I + T6L; | |
1825 T74 = T70 - T73; | |
1826 T7i = T6L - T6I; | |
1827 T7s = T7q - T7r; | |
1828 T7e = T70 + T73; | |
1829 } | |
1830 rio[0] = T7 + Te; | |
1831 iio[0] = T1g + T1h; | |
1832 rio[WS(rs, 1)] = T1p + T1w; | |
1833 iio[WS(rs, 1)] = T2y + T2z; | |
1834 rio[WS(rs, 3)] = T3Z + T46; | |
1835 rio[WS(rs, 2)] = T2H + T2O; | |
1836 iio[WS(rs, 2)] = T3Q + T3R; | |
1837 iio[WS(rs, 3)] = T58 + T59; | |
1838 rio[WS(rs, 6)] = T7R + T7Y; | |
1839 iio[WS(rs, 6)] = T90 + T91; | |
1840 iio[WS(rs, 5)] = T7I + T7J; | |
1841 rio[WS(rs, 5)] = T6z + T6G; | |
1842 iio[WS(rs, 4)] = T6q + T6r; | |
1843 rio[WS(rs, 4)] = T5h + T5o; | |
1844 rio[WS(rs, 7)] = T99 + T9g; | |
1845 iio[WS(rs, 7)] = Tai + Taj; | |
1846 { | |
1847 E T12, T18, TX, T13; | |
1848 T12 = T10 - T11; | |
1849 T18 = T14 - T17; | |
1850 TX = W[10]; | |
1851 T13 = W[11]; | |
1852 iio[WS(vs, 6)] = FNMS(T13, T18, TX * T12); | |
1853 rio[WS(vs, 6)] = FMA(T13, T12, TX * T18); | |
1854 } | |
1855 { | |
1856 E Tag, Tak, Taf, Tah; | |
1857 Tag = T99 - T9g; | |
1858 Tak = Tai - Taj; | |
1859 Taf = W[6]; | |
1860 Tah = W[7]; | |
1861 rio[WS(vs, 4) + WS(rs, 7)] = FMA(Taf, Tag, Tah * Tak); | |
1862 iio[WS(vs, 4) + WS(rs, 7)] = FNMS(Tah, Tag, Taf * Tak); | |
1863 } | |
1864 { | |
1865 E T8M, T8S, T8H, T8N; | |
1866 T8M = T8K - T8L; | |
1867 T8S = T8O - T8R; | |
1868 T8H = W[10]; | |
1869 T8N = W[11]; | |
1870 iio[WS(vs, 6) + WS(rs, 6)] = FNMS(T8N, T8S, T8H * T8M); | |
1871 rio[WS(vs, 6) + WS(rs, 6)] = FMA(T8N, T8M, T8H * T8S); | |
1872 } | |
1873 { | |
1874 E T2k, T2q, T2f, T2l; | |
1875 T2k = T2i - T2j; | |
1876 T2q = T2m - T2p; | |
1877 T2f = W[10]; | |
1878 T2l = W[11]; | |
1879 iio[WS(vs, 6) + WS(rs, 1)] = FNMS(T2l, T2q, T2f * T2k); | |
1880 rio[WS(vs, 6) + WS(rs, 1)] = FMA(T2l, T2k, T2f * T2q); | |
1881 } | |
1882 { | |
1883 E Ta4, Taa, T9Z, Ta5; | |
1884 Ta4 = Ta2 - Ta3; | |
1885 Taa = Ta6 - Ta9; | |
1886 T9Z = W[10]; | |
1887 Ta5 = W[11]; | |
1888 iio[WS(vs, 6) + WS(rs, 7)] = FNMS(Ta5, Taa, T9Z * Ta4); | |
1889 rio[WS(vs, 6) + WS(rs, 7)] = FMA(Ta5, Ta4, T9Z * Taa); | |
1890 } | |
1891 { | |
1892 E T8Y, T92, T8X, T8Z; | |
1893 T8Y = T7R - T7Y; | |
1894 T92 = T90 - T91; | |
1895 T8X = W[6]; | |
1896 T8Z = W[7]; | |
1897 rio[WS(vs, 4) + WS(rs, 6)] = FMA(T8X, T8Y, T8Z * T92); | |
1898 iio[WS(vs, 4) + WS(rs, 6)] = FNMS(T8Z, T8Y, T8X * T92); | |
1899 } | |
1900 { | |
1901 E T2w, T2A, T2v, T2x; | |
1902 T2w = T1p - T1w; | |
1903 T2A = T2y - T2z; | |
1904 T2v = W[6]; | |
1905 T2x = W[7]; | |
1906 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T2v, T2w, T2x * T2A); | |
1907 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T2x, T2w, T2v * T2A); | |
1908 } | |
1909 { | |
1910 E Tac, Tae, Tab, Tad; | |
1911 Tac = Ta3 + Ta2; | |
1912 Tae = Ta6 + Ta9; | |
1913 Tab = W[2]; | |
1914 Tad = W[3]; | |
1915 iio[WS(vs, 2) + WS(rs, 7)] = FNMS(Tad, Tae, Tab * Tac); | |
1916 rio[WS(vs, 2) + WS(rs, 7)] = FMA(Tad, Tac, Tab * Tae); | |
1917 } | |
1918 { | |
1919 E T8U, T8W, T8T, T8V; | |
1920 T8U = T8L + T8K; | |
1921 T8W = T8O + T8R; | |
1922 T8T = W[2]; | |
1923 T8V = W[3]; | |
1924 iio[WS(vs, 2) + WS(rs, 6)] = FNMS(T8V, T8W, T8T * T8U); | |
1925 rio[WS(vs, 2) + WS(rs, 6)] = FMA(T8V, T8U, T8T * T8W); | |
1926 } | |
1927 { | |
1928 E T1a, T1c, T19, T1b; | |
1929 T1a = T11 + T10; | |
1930 T1c = T14 + T17; | |
1931 T19 = W[2]; | |
1932 T1b = W[3]; | |
1933 iio[WS(vs, 2)] = FNMS(T1b, T1c, T19 * T1a); | |
1934 rio[WS(vs, 2)] = FMA(T1b, T1a, T19 * T1c); | |
1935 } | |
1936 { | |
1937 E T1e, T1i, T1d, T1f; | |
1938 T1e = T7 - Te; | |
1939 T1i = T1g - T1h; | |
1940 T1d = W[6]; | |
1941 T1f = W[7]; | |
1942 rio[WS(vs, 4)] = FMA(T1d, T1e, T1f * T1i); | |
1943 iio[WS(vs, 4)] = FNMS(T1f, T1e, T1d * T1i); | |
1944 } | |
1945 { | |
1946 E T2s, T2u, T2r, T2t; | |
1947 T2s = T2j + T2i; | |
1948 T2u = T2m + T2p; | |
1949 T2r = W[2]; | |
1950 T2t = W[3]; | |
1951 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T2t, T2u, T2r * T2s); | |
1952 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T2t, T2s, T2r * T2u); | |
1953 } | |
1954 { | |
1955 E T3C, T3I, T3x, T3D; | |
1956 T3C = T3A - T3B; | |
1957 T3I = T3E - T3H; | |
1958 T3x = W[10]; | |
1959 T3D = W[11]; | |
1960 iio[WS(vs, 6) + WS(rs, 2)] = FNMS(T3D, T3I, T3x * T3C); | |
1961 rio[WS(vs, 6) + WS(rs, 2)] = FMA(T3D, T3C, T3x * T3I); | |
1962 } | |
1963 { | |
1964 E T4U, T50, T4P, T4V; | |
1965 T4U = T4S - T4T; | |
1966 T50 = T4W - T4Z; | |
1967 T4P = W[10]; | |
1968 T4V = W[11]; | |
1969 iio[WS(vs, 6) + WS(rs, 3)] = FNMS(T4V, T50, T4P * T4U); | |
1970 rio[WS(vs, 6) + WS(rs, 3)] = FMA(T4V, T4U, T4P * T50); | |
1971 } | |
1972 { | |
1973 E T56, T5a, T55, T57; | |
1974 T56 = T3Z - T46; | |
1975 T5a = T58 - T59; | |
1976 T55 = W[6]; | |
1977 T57 = W[7]; | |
1978 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T55, T56, T57 * T5a); | |
1979 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T57, T56, T55 * T5a); | |
1980 } | |
1981 { | |
1982 E T6o, T6s, T6n, T6p; | |
1983 T6o = T5h - T5o; | |
1984 T6s = T6q - T6r; | |
1985 T6n = W[6]; | |
1986 T6p = W[7]; | |
1987 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T6n, T6o, T6p * T6s); | |
1988 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T6p, T6o, T6n * T6s); | |
1989 } | |
1990 { | |
1991 E T7u, T7A, T7p, T7v; | |
1992 T7u = T7s - T7t; | |
1993 T7A = T7w - T7z; | |
1994 T7p = W[10]; | |
1995 T7v = W[11]; | |
1996 iio[WS(vs, 6) + WS(rs, 5)] = FNMS(T7v, T7A, T7p * T7u); | |
1997 rio[WS(vs, 6) + WS(rs, 5)] = FMA(T7v, T7u, T7p * T7A); | |
1998 } | |
1999 { | |
2000 E T6c, T6i, T67, T6d; | |
2001 T6c = T6a - T6b; | |
2002 T6i = T6e - T6h; | |
2003 T67 = W[10]; | |
2004 T6d = W[11]; | |
2005 iio[WS(vs, 6) + WS(rs, 4)] = FNMS(T6d, T6i, T67 * T6c); | |
2006 rio[WS(vs, 6) + WS(rs, 4)] = FMA(T6d, T6c, T67 * T6i); | |
2007 } | |
2008 { | |
2009 E T7G, T7K, T7F, T7H; | |
2010 T7G = T6z - T6G; | |
2011 T7K = T7I - T7J; | |
2012 T7F = W[6]; | |
2013 T7H = W[7]; | |
2014 rio[WS(vs, 4) + WS(rs, 5)] = FMA(T7F, T7G, T7H * T7K); | |
2015 iio[WS(vs, 4) + WS(rs, 5)] = FNMS(T7H, T7G, T7F * T7K); | |
2016 } | |
2017 { | |
2018 E T3O, T3S, T3N, T3P; | |
2019 T3O = T2H - T2O; | |
2020 T3S = T3Q - T3R; | |
2021 T3N = W[6]; | |
2022 T3P = W[7]; | |
2023 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T3N, T3O, T3P * T3S); | |
2024 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T3P, T3O, T3N * T3S); | |
2025 } | |
2026 { | |
2027 E T3K, T3M, T3J, T3L; | |
2028 T3K = T3B + T3A; | |
2029 T3M = T3E + T3H; | |
2030 T3J = W[2]; | |
2031 T3L = W[3]; | |
2032 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T3L, T3M, T3J * T3K); | |
2033 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T3L, T3K, T3J * T3M); | |
2034 } | |
2035 { | |
2036 E T7C, T7E, T7B, T7D; | |
2037 T7C = T7t + T7s; | |
2038 T7E = T7w + T7z; | |
2039 T7B = W[2]; | |
2040 T7D = W[3]; | |
2041 iio[WS(vs, 2) + WS(rs, 5)] = FNMS(T7D, T7E, T7B * T7C); | |
2042 rio[WS(vs, 2) + WS(rs, 5)] = FMA(T7D, T7C, T7B * T7E); | |
2043 } | |
2044 { | |
2045 E T6k, T6m, T6j, T6l; | |
2046 T6k = T6b + T6a; | |
2047 T6m = T6e + T6h; | |
2048 T6j = W[2]; | |
2049 T6l = W[3]; | |
2050 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T6l, T6m, T6j * T6k); | |
2051 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T6l, T6k, T6j * T6m); | |
2052 } | |
2053 { | |
2054 E T52, T54, T51, T53; | |
2055 T52 = T4T + T4S; | |
2056 T54 = T4W + T4Z; | |
2057 T51 = W[2]; | |
2058 T53 = W[3]; | |
2059 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T53, T54, T51 * T52); | |
2060 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T53, T52, T51 * T54); | |
2061 } | |
2062 { | |
2063 E T5G, T5S, T5Q, T5U, T5F, T5P; | |
2064 T5F = KP707106781 * (T5z - T5E); | |
2065 T5G = T5u - T5F; | |
2066 T5S = T5u + T5F; | |
2067 T5P = KP707106781 * (T5N - T5O); | |
2068 T5Q = T5M - T5P; | |
2069 T5U = T5M + T5P; | |
2070 { | |
2071 E T5p, T5H, T5R, T5T; | |
2072 T5p = W[12]; | |
2073 T5H = W[13]; | |
2074 iio[WS(vs, 7) + WS(rs, 4)] = FNMS(T5H, T5Q, T5p * T5G); | |
2075 rio[WS(vs, 7) + WS(rs, 4)] = FMA(T5H, T5G, T5p * T5Q); | |
2076 T5R = W[4]; | |
2077 T5T = W[5]; | |
2078 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T5T, T5U, T5R * T5S); | |
2079 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T5T, T5S, T5R * T5U); | |
2080 } | |
2081 } | |
2082 { | |
2083 E Tw, TI, TG, TK, Tv, TF; | |
2084 Tv = KP707106781 * (Tp - Tu); | |
2085 Tw = Tk - Tv; | |
2086 TI = Tk + Tv; | |
2087 TF = KP707106781 * (TD - TE); | |
2088 TG = TC - TF; | |
2089 TK = TC + TF; | |
2090 { | |
2091 E Tf, Tx, TH, TJ; | |
2092 Tf = W[12]; | |
2093 Tx = W[13]; | |
2094 iio[WS(vs, 7)] = FNMS(Tx, TG, Tf * Tw); | |
2095 rio[WS(vs, 7)] = FMA(Tx, Tw, Tf * TG); | |
2096 TH = W[4]; | |
2097 TJ = W[5]; | |
2098 iio[WS(vs, 3)] = FNMS(TJ, TK, TH * TI); | |
2099 rio[WS(vs, 3)] = FMA(TJ, TI, TH * TK); | |
2100 } | |
2101 } | |
2102 { | |
2103 E T9Q, T9W, T9U, T9Y, T9P, T9T; | |
2104 T9P = KP707106781 * (T9w + T9r); | |
2105 T9Q = T9O - T9P; | |
2106 T9W = T9O + T9P; | |
2107 T9T = KP707106781 * (T9F + T9G); | |
2108 T9U = T9S - T9T; | |
2109 T9Y = T9S + T9T; | |
2110 { | |
2111 E T9N, T9R, T9V, T9X; | |
2112 T9N = W[8]; | |
2113 T9R = W[9]; | |
2114 rio[WS(vs, 5) + WS(rs, 7)] = FMA(T9N, T9Q, T9R * T9U); | |
2115 iio[WS(vs, 5) + WS(rs, 7)] = FNMS(T9R, T9Q, T9N * T9U); | |
2116 T9V = W[0]; | |
2117 T9X = W[1]; | |
2118 rio[WS(vs, 1) + WS(rs, 7)] = FMA(T9V, T9W, T9X * T9Y); | |
2119 iio[WS(vs, 1) + WS(rs, 7)] = FNMS(T9X, T9W, T9V * T9Y); | |
2120 } | |
2121 } | |
2122 { | |
2123 E T36, T3i, T3g, T3k, T35, T3f; | |
2124 T35 = KP707106781 * (T2Z - T34); | |
2125 T36 = T2U - T35; | |
2126 T3i = T2U + T35; | |
2127 T3f = KP707106781 * (T3d - T3e); | |
2128 T3g = T3c - T3f; | |
2129 T3k = T3c + T3f; | |
2130 { | |
2131 E T2P, T37, T3h, T3j; | |
2132 T2P = W[12]; | |
2133 T37 = W[13]; | |
2134 iio[WS(vs, 7) + WS(rs, 2)] = FNMS(T37, T3g, T2P * T36); | |
2135 rio[WS(vs, 7) + WS(rs, 2)] = FMA(T37, T36, T2P * T3g); | |
2136 T3h = W[4]; | |
2137 T3j = W[5]; | |
2138 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T3j, T3k, T3h * T3i); | |
2139 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T3j, T3i, T3h * T3k); | |
2140 } | |
2141 } | |
2142 { | |
2143 E T5Y, T64, T62, T66, T5X, T61; | |
2144 T5X = KP707106781 * (T5E + T5z); | |
2145 T5Y = T5W - T5X; | |
2146 T64 = T5W + T5X; | |
2147 T61 = KP707106781 * (T5N + T5O); | |
2148 T62 = T60 - T61; | |
2149 T66 = T60 + T61; | |
2150 { | |
2151 E T5V, T5Z, T63, T65; | |
2152 T5V = W[8]; | |
2153 T5Z = W[9]; | |
2154 rio[WS(vs, 5) + WS(rs, 4)] = FMA(T5V, T5Y, T5Z * T62); | |
2155 iio[WS(vs, 5) + WS(rs, 4)] = FNMS(T5Z, T5Y, T5V * T62); | |
2156 T63 = W[0]; | |
2157 T65 = W[1]; | |
2158 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T63, T64, T65 * T66); | |
2159 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T65, T64, T63 * T66); | |
2160 } | |
2161 } | |
2162 { | |
2163 E T7g, T7m, T7k, T7o, T7f, T7j; | |
2164 T7f = KP707106781 * (T6W + T6R); | |
2165 T7g = T7e - T7f; | |
2166 T7m = T7e + T7f; | |
2167 T7j = KP707106781 * (T75 + T76); | |
2168 T7k = T7i - T7j; | |
2169 T7o = T7i + T7j; | |
2170 { | |
2171 E T7d, T7h, T7l, T7n; | |
2172 T7d = W[8]; | |
2173 T7h = W[9]; | |
2174 rio[WS(vs, 5) + WS(rs, 5)] = FMA(T7d, T7g, T7h * T7k); | |
2175 iio[WS(vs, 5) + WS(rs, 5)] = FNMS(T7h, T7g, T7d * T7k); | |
2176 T7l = W[0]; | |
2177 T7n = W[1]; | |
2178 rio[WS(vs, 1) + WS(rs, 5)] = FMA(T7l, T7m, T7n * T7o); | |
2179 iio[WS(vs, 1) + WS(rs, 5)] = FNMS(T7n, T7m, T7l * T7o); | |
2180 } | |
2181 } | |
2182 { | |
2183 E T8g, T8s, T8q, T8u, T8f, T8p; | |
2184 T8f = KP707106781 * (T89 - T8e); | |
2185 T8g = T84 - T8f; | |
2186 T8s = T84 + T8f; | |
2187 T8p = KP707106781 * (T8n - T8o); | |
2188 T8q = T8m - T8p; | |
2189 T8u = T8m + T8p; | |
2190 { | |
2191 E T7Z, T8h, T8r, T8t; | |
2192 T7Z = W[12]; | |
2193 T8h = W[13]; | |
2194 iio[WS(vs, 7) + WS(rs, 6)] = FNMS(T8h, T8q, T7Z * T8g); | |
2195 rio[WS(vs, 7) + WS(rs, 6)] = FMA(T8h, T8g, T7Z * T8q); | |
2196 T8r = W[4]; | |
2197 T8t = W[5]; | |
2198 iio[WS(vs, 3) + WS(rs, 6)] = FNMS(T8t, T8u, T8r * T8s); | |
2199 rio[WS(vs, 3) + WS(rs, 6)] = FMA(T8t, T8s, T8r * T8u); | |
2200 } | |
2201 } | |
2202 { | |
2203 E T4G, T4M, T4K, T4O, T4F, T4J; | |
2204 T4F = KP707106781 * (T4m + T4h); | |
2205 T4G = T4E - T4F; | |
2206 T4M = T4E + T4F; | |
2207 T4J = KP707106781 * (T4v + T4w); | |
2208 T4K = T4I - T4J; | |
2209 T4O = T4I + T4J; | |
2210 { | |
2211 E T4D, T4H, T4L, T4N; | |
2212 T4D = W[8]; | |
2213 T4H = W[9]; | |
2214 rio[WS(vs, 5) + WS(rs, 3)] = FMA(T4D, T4G, T4H * T4K); | |
2215 iio[WS(vs, 5) + WS(rs, 3)] = FNMS(T4H, T4G, T4D * T4K); | |
2216 T4L = W[0]; | |
2217 T4N = W[1]; | |
2218 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T4L, T4M, T4N * T4O); | |
2219 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T4N, T4M, T4L * T4O); | |
2220 } | |
2221 } | |
2222 { | |
2223 E TO, TU, TS, TW, TN, TR; | |
2224 TN = KP707106781 * (Tu + Tp); | |
2225 TO = TM - TN; | |
2226 TU = TM + TN; | |
2227 TR = KP707106781 * (TD + TE); | |
2228 TS = TQ - TR; | |
2229 TW = TQ + TR; | |
2230 { | |
2231 E TL, TP, TT, TV; | |
2232 TL = W[8]; | |
2233 TP = W[9]; | |
2234 rio[WS(vs, 5)] = FMA(TL, TO, TP * TS); | |
2235 iio[WS(vs, 5)] = FNMS(TP, TO, TL * TS); | |
2236 TT = W[0]; | |
2237 TV = W[1]; | |
2238 rio[WS(vs, 1)] = FMA(TT, TU, TV * TW); | |
2239 iio[WS(vs, 1)] = FNMS(TV, TU, TT * TW); | |
2240 } | |
2241 } | |
2242 { | |
2243 E T26, T2c, T2a, T2e, T25, T29; | |
2244 T25 = KP707106781 * (T1M + T1H); | |
2245 T26 = T24 - T25; | |
2246 T2c = T24 + T25; | |
2247 T29 = KP707106781 * (T1V + T1W); | |
2248 T2a = T28 - T29; | |
2249 T2e = T28 + T29; | |
2250 { | |
2251 E T23, T27, T2b, T2d; | |
2252 T23 = W[8]; | |
2253 T27 = W[9]; | |
2254 rio[WS(vs, 5) + WS(rs, 1)] = FMA(T23, T26, T27 * T2a); | |
2255 iio[WS(vs, 5) + WS(rs, 1)] = FNMS(T27, T26, T23 * T2a); | |
2256 T2b = W[0]; | |
2257 T2d = W[1]; | |
2258 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T2b, T2c, T2d * T2e); | |
2259 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T2d, T2c, T2b * T2e); | |
2260 } | |
2261 } | |
2262 { | |
2263 E T9y, T9K, T9I, T9M, T9x, T9H; | |
2264 T9x = KP707106781 * (T9r - T9w); | |
2265 T9y = T9m - T9x; | |
2266 T9K = T9m + T9x; | |
2267 T9H = KP707106781 * (T9F - T9G); | |
2268 T9I = T9E - T9H; | |
2269 T9M = T9E + T9H; | |
2270 { | |
2271 E T9h, T9z, T9J, T9L; | |
2272 T9h = W[12]; | |
2273 T9z = W[13]; | |
2274 iio[WS(vs, 7) + WS(rs, 7)] = FNMS(T9z, T9I, T9h * T9y); | |
2275 rio[WS(vs, 7) + WS(rs, 7)] = FMA(T9z, T9y, T9h * T9I); | |
2276 T9J = W[4]; | |
2277 T9L = W[5]; | |
2278 iio[WS(vs, 3) + WS(rs, 7)] = FNMS(T9L, T9M, T9J * T9K); | |
2279 rio[WS(vs, 3) + WS(rs, 7)] = FMA(T9L, T9K, T9J * T9M); | |
2280 } | |
2281 } | |
2282 { | |
2283 E T6Y, T7a, T78, T7c, T6X, T77; | |
2284 T6X = KP707106781 * (T6R - T6W); | |
2285 T6Y = T6M - T6X; | |
2286 T7a = T6M + T6X; | |
2287 T77 = KP707106781 * (T75 - T76); | |
2288 T78 = T74 - T77; | |
2289 T7c = T74 + T77; | |
2290 { | |
2291 E T6H, T6Z, T79, T7b; | |
2292 T6H = W[12]; | |
2293 T6Z = W[13]; | |
2294 iio[WS(vs, 7) + WS(rs, 5)] = FNMS(T6Z, T78, T6H * T6Y); | |
2295 rio[WS(vs, 7) + WS(rs, 5)] = FMA(T6Z, T6Y, T6H * T78); | |
2296 T79 = W[4]; | |
2297 T7b = W[5]; | |
2298 iio[WS(vs, 3) + WS(rs, 5)] = FNMS(T7b, T7c, T79 * T7a); | |
2299 rio[WS(vs, 3) + WS(rs, 5)] = FMA(T7b, T7a, T79 * T7c); | |
2300 } | |
2301 } | |
2302 { | |
2303 E T1O, T20, T1Y, T22, T1N, T1X; | |
2304 T1N = KP707106781 * (T1H - T1M); | |
2305 T1O = T1C - T1N; | |
2306 T20 = T1C + T1N; | |
2307 T1X = KP707106781 * (T1V - T1W); | |
2308 T1Y = T1U - T1X; | |
2309 T22 = T1U + T1X; | |
2310 { | |
2311 E T1x, T1P, T1Z, T21; | |
2312 T1x = W[12]; | |
2313 T1P = W[13]; | |
2314 iio[WS(vs, 7) + WS(rs, 1)] = FNMS(T1P, T1Y, T1x * T1O); | |
2315 rio[WS(vs, 7) + WS(rs, 1)] = FMA(T1P, T1O, T1x * T1Y); | |
2316 T1Z = W[4]; | |
2317 T21 = W[5]; | |
2318 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T21, T22, T1Z * T20); | |
2319 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T21, T20, T1Z * T22); | |
2320 } | |
2321 } | |
2322 { | |
2323 E T4o, T4A, T4y, T4C, T4n, T4x; | |
2324 T4n = KP707106781 * (T4h - T4m); | |
2325 T4o = T4c - T4n; | |
2326 T4A = T4c + T4n; | |
2327 T4x = KP707106781 * (T4v - T4w); | |
2328 T4y = T4u - T4x; | |
2329 T4C = T4u + T4x; | |
2330 { | |
2331 E T47, T4p, T4z, T4B; | |
2332 T47 = W[12]; | |
2333 T4p = W[13]; | |
2334 iio[WS(vs, 7) + WS(rs, 3)] = FNMS(T4p, T4y, T47 * T4o); | |
2335 rio[WS(vs, 7) + WS(rs, 3)] = FMA(T4p, T4o, T47 * T4y); | |
2336 T4z = W[4]; | |
2337 T4B = W[5]; | |
2338 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T4B, T4C, T4z * T4A); | |
2339 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T4B, T4A, T4z * T4C); | |
2340 } | |
2341 } | |
2342 { | |
2343 E T3o, T3u, T3s, T3w, T3n, T3r; | |
2344 T3n = KP707106781 * (T34 + T2Z); | |
2345 T3o = T3m - T3n; | |
2346 T3u = T3m + T3n; | |
2347 T3r = KP707106781 * (T3d + T3e); | |
2348 T3s = T3q - T3r; | |
2349 T3w = T3q + T3r; | |
2350 { | |
2351 E T3l, T3p, T3t, T3v; | |
2352 T3l = W[8]; | |
2353 T3p = W[9]; | |
2354 rio[WS(vs, 5) + WS(rs, 2)] = FMA(T3l, T3o, T3p * T3s); | |
2355 iio[WS(vs, 5) + WS(rs, 2)] = FNMS(T3p, T3o, T3l * T3s); | |
2356 T3t = W[0]; | |
2357 T3v = W[1]; | |
2358 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T3t, T3u, T3v * T3w); | |
2359 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T3v, T3u, T3t * T3w); | |
2360 } | |
2361 } | |
2362 { | |
2363 E T8y, T8E, T8C, T8G, T8x, T8B; | |
2364 T8x = KP707106781 * (T8e + T89); | |
2365 T8y = T8w - T8x; | |
2366 T8E = T8w + T8x; | |
2367 T8B = KP707106781 * (T8n + T8o); | |
2368 T8C = T8A - T8B; | |
2369 T8G = T8A + T8B; | |
2370 { | |
2371 E T8v, T8z, T8D, T8F; | |
2372 T8v = W[8]; | |
2373 T8z = W[9]; | |
2374 rio[WS(vs, 5) + WS(rs, 6)] = FMA(T8v, T8y, T8z * T8C); | |
2375 iio[WS(vs, 5) + WS(rs, 6)] = FNMS(T8z, T8y, T8v * T8C); | |
2376 T8D = W[0]; | |
2377 T8F = W[1]; | |
2378 rio[WS(vs, 1) + WS(rs, 6)] = FMA(T8D, T8E, T8F * T8G); | |
2379 iio[WS(vs, 1) + WS(rs, 6)] = FNMS(T8F, T8E, T8D * T8G); | |
2380 } | |
2381 } | |
2382 } | |
2383 } | |
2384 } | |
2385 | |
2386 static const tw_instr twinstr[] = { | |
2387 {TW_FULL, 0, 8}, | |
2388 {TW_NEXT, 1, 0} | |
2389 }; | |
2390 | |
2391 static const ct_desc desc = { 8, "q1_8", twinstr, &GENUS, {416, 144, 112, 0}, 0, 0, 0 }; | |
2392 | |
2393 void X(codelet_q1_8) (planner *p) { | |
2394 X(kdft_difsq_register) (p, q1_8, &desc); | |
2395 } | |
2396 #endif /* HAVE_FMA */ |