comparison src/fftw-3.3.3/dft/scalar/codelets/q1_5.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:36:23 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include q.h */
29
30 /*
31 * This function contains 200 FP additions, 170 FP multiplications,
32 * (or, 70 additions, 40 multiplications, 130 fused multiply/add),
33 * 104 stack variables, 4 constants, and 100 memory accesses
34 */
35 #include "q.h"
36
37 static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43 {
44 INT m;
45 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
46 E T1x, T1w, T1v;
47 {
48 E T1, Tn, TM, Tw, Tb, T8, Ta, TV, Tq, Ts, TH, Tj, Tr, T1h, T1q;
49 E T1G, T12, T15, T1P, T14, T1k, T1m, T1B, T1d, T1l, T2b, T2k, T2A, T1W, T1Z;
50 E T3Z, T1Y, T2e, T2g, T2v, T27, T2f, T3D, T42, T44, T4j, T3V, T43, T2J, T48;
51 E T4o, T3K, T3N, T35, T3M, T2V, T3e, T3u, T2Q, T2T, T37, T30, T2S, T2W;
52 {
53 E T1Q, T2j, T1V, T1R;
54 {
55 E Tp, Ti, Td, Te;
56 {
57 E T5, T6, T2, T3, T7, Tv;
58 T1 = rio[0];
59 T5 = rio[WS(rs, 2)];
60 T6 = rio[WS(rs, 3)];
61 T2 = rio[WS(rs, 1)];
62 T3 = rio[WS(rs, 4)];
63 Tn = iio[0];
64 T7 = T5 + T6;
65 Tv = T5 - T6;
66 {
67 E T4, Tu, Tg, Th;
68 T4 = T2 + T3;
69 Tu = T2 - T3;
70 Tg = iio[WS(rs, 2)];
71 Th = iio[WS(rs, 3)];
72 TM = FNMS(KP618033988, Tu, Tv);
73 Tw = FMA(KP618033988, Tv, Tu);
74 Tb = T4 - T7;
75 T8 = T4 + T7;
76 Tp = Tg + Th;
77 Ti = Tg - Th;
78 Ta = FNMS(KP250000000, T8, T1);
79 Td = iio[WS(rs, 1)];
80 Te = iio[WS(rs, 4)];
81 }
82 }
83 {
84 E TW, T1p, T11, TX;
85 TV = rio[WS(vs, 1)];
86 {
87 E TZ, T10, Tf, To;
88 TZ = rio[WS(vs, 1) + WS(rs, 2)];
89 T10 = rio[WS(vs, 1) + WS(rs, 3)];
90 Tf = Td - Te;
91 To = Td + Te;
92 TW = rio[WS(vs, 1) + WS(rs, 1)];
93 T1p = TZ - T10;
94 T11 = TZ + T10;
95 Tq = To + Tp;
96 Ts = To - Tp;
97 TH = FNMS(KP618033988, Tf, Ti);
98 Tj = FMA(KP618033988, Ti, Tf);
99 Tr = FNMS(KP250000000, Tq, Tn);
100 TX = rio[WS(vs, 1) + WS(rs, 4)];
101 }
102 {
103 E T17, T1j, T1c, T18;
104 T1h = iio[WS(vs, 1)];
105 {
106 E T1a, T1b, TY, T1o;
107 T1a = iio[WS(vs, 1) + WS(rs, 2)];
108 T1b = iio[WS(vs, 1) + WS(rs, 3)];
109 TY = TW + TX;
110 T1o = TW - TX;
111 T17 = iio[WS(vs, 1) + WS(rs, 1)];
112 T1j = T1a + T1b;
113 T1c = T1a - T1b;
114 T1q = FMA(KP618033988, T1p, T1o);
115 T1G = FNMS(KP618033988, T1o, T1p);
116 T12 = TY + T11;
117 T15 = TY - T11;
118 T18 = iio[WS(vs, 1) + WS(rs, 4)];
119 }
120 T1P = rio[WS(vs, 2)];
121 T14 = FNMS(KP250000000, T12, TV);
122 {
123 E T1T, T1i, T19, T1U;
124 T1T = rio[WS(vs, 2) + WS(rs, 2)];
125 T1i = T17 + T18;
126 T19 = T17 - T18;
127 T1U = rio[WS(vs, 2) + WS(rs, 3)];
128 T1Q = rio[WS(vs, 2) + WS(rs, 1)];
129 T1k = T1i + T1j;
130 T1m = T1i - T1j;
131 T1B = FNMS(KP618033988, T19, T1c);
132 T1d = FMA(KP618033988, T1c, T19);
133 T2j = T1T - T1U;
134 T1V = T1T + T1U;
135 T1l = FNMS(KP250000000, T1k, T1h);
136 T1R = rio[WS(vs, 2) + WS(rs, 4)];
137 }
138 }
139 }
140 }
141 {
142 E T3P, T41, T3U, T3Q;
143 {
144 E T21, T2d, T26, T22;
145 T2b = iio[WS(vs, 2)];
146 {
147 E T24, T25, T1S, T2i;
148 T24 = iio[WS(vs, 2) + WS(rs, 2)];
149 T25 = iio[WS(vs, 2) + WS(rs, 3)];
150 T1S = T1Q + T1R;
151 T2i = T1Q - T1R;
152 T21 = iio[WS(vs, 2) + WS(rs, 1)];
153 T2d = T24 + T25;
154 T26 = T24 - T25;
155 T2k = FMA(KP618033988, T2j, T2i);
156 T2A = FNMS(KP618033988, T2i, T2j);
157 T1W = T1S + T1V;
158 T1Z = T1S - T1V;
159 T22 = iio[WS(vs, 2) + WS(rs, 4)];
160 }
161 T3Z = iio[WS(vs, 4)];
162 T1Y = FNMS(KP250000000, T1W, T1P);
163 {
164 E T3S, T2c, T23, T3T;
165 T3S = iio[WS(vs, 4) + WS(rs, 2)];
166 T2c = T21 + T22;
167 T23 = T21 - T22;
168 T3T = iio[WS(vs, 4) + WS(rs, 3)];
169 T3P = iio[WS(vs, 4) + WS(rs, 1)];
170 T2e = T2c + T2d;
171 T2g = T2c - T2d;
172 T2v = FNMS(KP618033988, T23, T26);
173 T27 = FMA(KP618033988, T26, T23);
174 T41 = T3S + T3T;
175 T3U = T3S - T3T;
176 T2f = FNMS(KP250000000, T2e, T2b);
177 T3Q = iio[WS(vs, 4) + WS(rs, 4)];
178 }
179 }
180 {
181 E T3E, T47, T3J, T3F;
182 T3D = rio[WS(vs, 4)];
183 {
184 E T3H, T3I, T3R, T40;
185 T3H = rio[WS(vs, 4) + WS(rs, 2)];
186 T3I = rio[WS(vs, 4) + WS(rs, 3)];
187 T3R = T3P - T3Q;
188 T40 = T3P + T3Q;
189 T3E = rio[WS(vs, 4) + WS(rs, 1)];
190 T47 = T3H - T3I;
191 T3J = T3H + T3I;
192 T42 = T40 + T41;
193 T44 = T40 - T41;
194 T4j = FNMS(KP618033988, T3R, T3U);
195 T3V = FMA(KP618033988, T3U, T3R);
196 T43 = FNMS(KP250000000, T42, T3Z);
197 T3F = rio[WS(vs, 4) + WS(rs, 4)];
198 }
199 {
200 E T2K, T3d, T2P, T2L;
201 T2J = rio[WS(vs, 3)];
202 {
203 E T2N, T2O, T3G, T46;
204 T2N = rio[WS(vs, 3) + WS(rs, 2)];
205 T2O = rio[WS(vs, 3) + WS(rs, 3)];
206 T3G = T3E + T3F;
207 T46 = T3E - T3F;
208 T2K = rio[WS(vs, 3) + WS(rs, 1)];
209 T3d = T2N - T2O;
210 T2P = T2N + T2O;
211 T48 = FMA(KP618033988, T47, T46);
212 T4o = FNMS(KP618033988, T46, T47);
213 T3K = T3G + T3J;
214 T3N = T3G - T3J;
215 T2L = rio[WS(vs, 3) + WS(rs, 4)];
216 }
217 T35 = iio[WS(vs, 3)];
218 T3M = FNMS(KP250000000, T3K, T3D);
219 {
220 E T2Y, T3c, T2M, T2Z;
221 T2Y = iio[WS(vs, 3) + WS(rs, 2)];
222 T3c = T2K - T2L;
223 T2M = T2K + T2L;
224 T2Z = iio[WS(vs, 3) + WS(rs, 3)];
225 T2V = iio[WS(vs, 3) + WS(rs, 1)];
226 T3e = FMA(KP618033988, T3d, T3c);
227 T3u = FNMS(KP618033988, T3c, T3d);
228 T2Q = T2M + T2P;
229 T2T = T2M - T2P;
230 T37 = T2Y + T2Z;
231 T30 = T2Y - T2Z;
232 T2S = FNMS(KP250000000, T2Q, T2J);
233 T2W = iio[WS(vs, 3) + WS(rs, 4)];
234 }
235 }
236 }
237 }
238 }
239 {
240 E T3a, T31, T3p, T39, T2X, T36, T38;
241 rio[0] = T1 + T8;
242 iio[0] = Tn + Tq;
243 rio[WS(rs, 1)] = TV + T12;
244 T2X = T2V - T2W;
245 T36 = T2V + T2W;
246 iio[WS(rs, 1)] = T1h + T1k;
247 rio[WS(rs, 2)] = T1P + T1W;
248 T3a = T36 - T37;
249 T38 = T36 + T37;
250 T31 = FMA(KP618033988, T30, T2X);
251 T3p = FNMS(KP618033988, T2X, T30);
252 T39 = FNMS(KP250000000, T38, T35);
253 iio[WS(rs, 2)] = T2b + T2e;
254 iio[WS(rs, 4)] = T3Z + T42;
255 rio[WS(rs, 4)] = T3D + T3K;
256 rio[WS(rs, 3)] = T2J + T2Q;
257 iio[WS(rs, 3)] = T35 + T38;
258 {
259 E T3O, T45, T2r, T2q, T2p, TT, TS, TR;
260 {
261 E TG, TL, TD, TC, TB, Tc, Tt;
262 TG = FNMS(KP559016994, Tb, Ta);
263 Tc = FMA(KP559016994, Tb, Ta);
264 Tt = FMA(KP559016994, Ts, Tr);
265 TL = FNMS(KP559016994, Ts, Tr);
266 {
267 E T9, Tm, Tk, TA, Tx;
268 T9 = W[0];
269 Tm = W[1];
270 Tk = FMA(KP951056516, Tj, Tc);
271 TA = FNMS(KP951056516, Tj, Tc);
272 Tx = FNMS(KP951056516, Tw, Tt);
273 TD = FMA(KP951056516, Tw, Tt);
274 {
275 E Tz, Tl, Ty, TE;
276 Tz = W[6];
277 Tl = T9 * Tk;
278 TC = W[7];
279 Ty = T9 * Tx;
280 TE = Tz * TD;
281 TB = Tz * TA;
282 rio[WS(vs, 1)] = FMA(Tm, Tx, Tl);
283 iio[WS(vs, 1)] = FNMS(Tm, Tk, Ty);
284 iio[WS(vs, 4)] = FNMS(TC, TA, TE);
285 }
286 }
287 rio[WS(vs, 4)] = FMA(TC, TD, TB);
288 {
289 E TF, TK, TI, TQ, TN;
290 TF = W[2];
291 TK = W[3];
292 TI = FNMS(KP951056516, TH, TG);
293 TQ = FMA(KP951056516, TH, TG);
294 TN = FMA(KP951056516, TM, TL);
295 TT = FNMS(KP951056516, TM, TL);
296 {
297 E TP, TJ, TO, TU;
298 TP = W[4];
299 TJ = TF * TI;
300 TS = W[5];
301 TO = TF * TN;
302 TU = TP * TT;
303 TR = TP * TQ;
304 rio[WS(vs, 2)] = FMA(TK, TN, TJ);
305 iio[WS(vs, 2)] = FNMS(TK, TI, TO);
306 iio[WS(vs, 3)] = FNMS(TS, TQ, TU);
307 }
308 }
309 }
310 rio[WS(vs, 3)] = FMA(TS, TT, TR);
311 {
312 E T20, T2h, T2H, T2G, T2F, T2u, T2z;
313 T20 = FMA(KP559016994, T1Z, T1Y);
314 T2u = FNMS(KP559016994, T1Z, T1Y);
315 T2z = FNMS(KP559016994, T2g, T2f);
316 T2h = FMA(KP559016994, T2g, T2f);
317 {
318 E T2t, T2y, T2w, T2E, T2B;
319 T2t = W[2];
320 T2y = W[3];
321 T2w = FNMS(KP951056516, T2v, T2u);
322 T2E = FMA(KP951056516, T2v, T2u);
323 T2B = FMA(KP951056516, T2A, T2z);
324 T2H = FNMS(KP951056516, T2A, T2z);
325 {
326 E T2D, T2x, T2C, T2I;
327 T2D = W[4];
328 T2x = T2t * T2w;
329 T2G = W[5];
330 T2C = T2t * T2B;
331 T2I = T2D * T2H;
332 T2F = T2D * T2E;
333 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2y, T2B, T2x);
334 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2y, T2w, T2C);
335 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2G, T2E, T2I);
336 }
337 }
338 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2G, T2H, T2F);
339 {
340 E T4v, T4u, T4t, T4i, T4n;
341 T3O = FMA(KP559016994, T3N, T3M);
342 T4i = FNMS(KP559016994, T3N, T3M);
343 T4n = FNMS(KP559016994, T44, T43);
344 T45 = FMA(KP559016994, T44, T43);
345 {
346 E T4h, T4m, T4k, T4s, T4p;
347 T4h = W[2];
348 T4m = W[3];
349 T4k = FNMS(KP951056516, T4j, T4i);
350 T4s = FMA(KP951056516, T4j, T4i);
351 T4p = FMA(KP951056516, T4o, T4n);
352 T4v = FNMS(KP951056516, T4o, T4n);
353 {
354 E T4r, T4l, T4q, T4w;
355 T4r = W[4];
356 T4l = T4h * T4k;
357 T4u = W[5];
358 T4q = T4h * T4p;
359 T4w = T4r * T4v;
360 T4t = T4r * T4s;
361 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4m, T4p, T4l);
362 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4m, T4k, T4q);
363 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4u, T4s, T4w);
364 }
365 }
366 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4u, T4v, T4t);
367 {
368 E T1X, T2a, T28, T2o, T2l;
369 T1X = W[0];
370 T2a = W[1];
371 T28 = FMA(KP951056516, T27, T20);
372 T2o = FNMS(KP951056516, T27, T20);
373 T2l = FNMS(KP951056516, T2k, T2h);
374 T2r = FMA(KP951056516, T2k, T2h);
375 {
376 E T2n, T29, T2m, T2s;
377 T2n = W[6];
378 T29 = T1X * T28;
379 T2q = W[7];
380 T2m = T1X * T2l;
381 T2s = T2n * T2r;
382 T2p = T2n * T2o;
383 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2a, T2l, T29);
384 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2a, T28, T2m);
385 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2q, T2o, T2s);
386 }
387 }
388 }
389 }
390 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2q, T2r, T2p);
391 {
392 E T3B, T3A, T3z, T4f, T4e, T4d;
393 {
394 E T3o, T3t, T3l, T3k, T3j, T2U, T3b;
395 T3o = FNMS(KP559016994, T2T, T2S);
396 T2U = FMA(KP559016994, T2T, T2S);
397 T3b = FMA(KP559016994, T3a, T39);
398 T3t = FNMS(KP559016994, T3a, T39);
399 {
400 E T2R, T34, T32, T3i, T3f;
401 T2R = W[0];
402 T34 = W[1];
403 T32 = FMA(KP951056516, T31, T2U);
404 T3i = FNMS(KP951056516, T31, T2U);
405 T3f = FNMS(KP951056516, T3e, T3b);
406 T3l = FMA(KP951056516, T3e, T3b);
407 {
408 E T3h, T33, T3g, T3m;
409 T3h = W[6];
410 T33 = T2R * T32;
411 T3k = W[7];
412 T3g = T2R * T3f;
413 T3m = T3h * T3l;
414 T3j = T3h * T3i;
415 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T34, T3f, T33);
416 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T34, T32, T3g);
417 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3k, T3i, T3m);
418 }
419 }
420 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3k, T3l, T3j);
421 {
422 E T3n, T3s, T3q, T3y, T3v;
423 T3n = W[2];
424 T3s = W[3];
425 T3q = FNMS(KP951056516, T3p, T3o);
426 T3y = FMA(KP951056516, T3p, T3o);
427 T3v = FMA(KP951056516, T3u, T3t);
428 T3B = FNMS(KP951056516, T3u, T3t);
429 {
430 E T3x, T3r, T3w, T3C;
431 T3x = W[4];
432 T3r = T3n * T3q;
433 T3A = W[5];
434 T3w = T3n * T3v;
435 T3C = T3x * T3B;
436 T3z = T3x * T3y;
437 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3s, T3v, T3r);
438 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3s, T3q, T3w);
439 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3A, T3y, T3C);
440 }
441 }
442 }
443 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3A, T3B, T3z);
444 {
445 E T3L, T3Y, T3W, T4c, T49;
446 T3L = W[0];
447 T3Y = W[1];
448 T3W = FMA(KP951056516, T3V, T3O);
449 T4c = FNMS(KP951056516, T3V, T3O);
450 T49 = FNMS(KP951056516, T48, T45);
451 T4f = FMA(KP951056516, T48, T45);
452 {
453 E T4b, T3X, T4a, T4g;
454 T4b = W[6];
455 T3X = T3L * T3W;
456 T4e = W[7];
457 T4a = T3L * T49;
458 T4g = T4b * T4f;
459 T4d = T4b * T4c;
460 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3Y, T49, T3X);
461 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3Y, T3W, T4a);
462 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4e, T4c, T4g);
463 }
464 }
465 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4e, T4f, T4d);
466 {
467 E T16, T1n, T1N, T1M, T1L, T1A, T1F;
468 T16 = FMA(KP559016994, T15, T14);
469 T1A = FNMS(KP559016994, T15, T14);
470 T1F = FNMS(KP559016994, T1m, T1l);
471 T1n = FMA(KP559016994, T1m, T1l);
472 {
473 E T1z, T1E, T1C, T1K, T1H;
474 T1z = W[2];
475 T1E = W[3];
476 T1C = FNMS(KP951056516, T1B, T1A);
477 T1K = FMA(KP951056516, T1B, T1A);
478 T1H = FMA(KP951056516, T1G, T1F);
479 T1N = FNMS(KP951056516, T1G, T1F);
480 {
481 E T1J, T1D, T1I, T1O;
482 T1J = W[4];
483 T1D = T1z * T1C;
484 T1M = W[5];
485 T1I = T1z * T1H;
486 T1O = T1J * T1N;
487 T1L = T1J * T1K;
488 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1E, T1H, T1D);
489 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1E, T1C, T1I);
490 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O);
491 }
492 }
493 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L);
494 {
495 E T13, T1g, T1e, T1u, T1r;
496 T13 = W[0];
497 T1g = W[1];
498 T1e = FMA(KP951056516, T1d, T16);
499 T1u = FNMS(KP951056516, T1d, T16);
500 T1r = FNMS(KP951056516, T1q, T1n);
501 T1x = FMA(KP951056516, T1q, T1n);
502 {
503 E T1t, T1f, T1s, T1y;
504 T1t = W[6];
505 T1f = T13 * T1e;
506 T1w = W[7];
507 T1s = T13 * T1r;
508 T1y = T1t * T1x;
509 T1v = T1t * T1u;
510 rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1g, T1r, T1f);
511 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1g, T1e, T1s);
512 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1w, T1u, T1y);
513 }
514 }
515 }
516 }
517 }
518 }
519 }
520 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1w, T1x, T1v);
521 }
522 }
523 }
524
525 static const tw_instr twinstr[] = {
526 {TW_FULL, 0, 5},
527 {TW_NEXT, 1, 0}
528 };
529
530 static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {70, 40, 130, 0}, 0, 0, 0 };
531
532 void X(codelet_q1_5) (planner *p) {
533 X(kdft_difsq_register) (p, q1_5, &desc);
534 }
535 #else /* HAVE_FMA */
536
537 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include q.h */
538
539 /*
540 * This function contains 200 FP additions, 140 FP multiplications,
541 * (or, 130 additions, 70 multiplications, 70 fused multiply/add),
542 * 75 stack variables, 4 constants, and 100 memory accesses
543 */
544 #include "q.h"
545
546 static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
547 {
548 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
549 DK(KP587785252, +0.587785252292473129168705954639072768597652438);
550 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
551 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
552 {
553 INT m;
554 for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) {
555 E T1, Ta, TG, Tv, T8, Tb, Tp, Tj, TD, To, Tq, Tr, TN, TW, T1s;
556 E T1h, TU, TX, T1b, T15, T1p, T1a, T1c, T1d, T1z, T1I, T2e, T23, T1G, T1J;
557 E T1X, T1R, T2b, T1W, T1Y, T1Z, T3v, T3p, T3J, T3u, T3w, T3x, T37, T3g, T3M;
558 E T3B, T3e, T3h, T2l, T2u, T30, T2P, T2s, T2v, T2J, T2D, T2X, T2I, T2K, T2L;
559 {
560 E T7, Tu, T4, Tt;
561 T1 = rio[0];
562 {
563 E T5, T6, T2, T3;
564 T5 = rio[WS(rs, 2)];
565 T6 = rio[WS(rs, 3)];
566 T7 = T5 + T6;
567 Tu = T5 - T6;
568 T2 = rio[WS(rs, 1)];
569 T3 = rio[WS(rs, 4)];
570 T4 = T2 + T3;
571 Tt = T2 - T3;
572 }
573 Ta = KP559016994 * (T4 - T7);
574 TG = FNMS(KP587785252, Tt, KP951056516 * Tu);
575 Tv = FMA(KP951056516, Tt, KP587785252 * Tu);
576 T8 = T4 + T7;
577 Tb = FNMS(KP250000000, T8, T1);
578 }
579 {
580 E Ti, Tn, Tf, Tm;
581 Tp = iio[0];
582 {
583 E Tg, Th, Td, Te;
584 Tg = iio[WS(rs, 2)];
585 Th = iio[WS(rs, 3)];
586 Ti = Tg - Th;
587 Tn = Tg + Th;
588 Td = iio[WS(rs, 1)];
589 Te = iio[WS(rs, 4)];
590 Tf = Td - Te;
591 Tm = Td + Te;
592 }
593 Tj = FMA(KP951056516, Tf, KP587785252 * Ti);
594 TD = FNMS(KP587785252, Tf, KP951056516 * Ti);
595 To = KP559016994 * (Tm - Tn);
596 Tq = Tm + Tn;
597 Tr = FNMS(KP250000000, Tq, Tp);
598 }
599 {
600 E TT, T1g, TQ, T1f;
601 TN = rio[WS(vs, 1)];
602 {
603 E TR, TS, TO, TP;
604 TR = rio[WS(vs, 1) + WS(rs, 2)];
605 TS = rio[WS(vs, 1) + WS(rs, 3)];
606 TT = TR + TS;
607 T1g = TR - TS;
608 TO = rio[WS(vs, 1) + WS(rs, 1)];
609 TP = rio[WS(vs, 1) + WS(rs, 4)];
610 TQ = TO + TP;
611 T1f = TO - TP;
612 }
613 TW = KP559016994 * (TQ - TT);
614 T1s = FNMS(KP587785252, T1f, KP951056516 * T1g);
615 T1h = FMA(KP951056516, T1f, KP587785252 * T1g);
616 TU = TQ + TT;
617 TX = FNMS(KP250000000, TU, TN);
618 }
619 {
620 E T14, T19, T11, T18;
621 T1b = iio[WS(vs, 1)];
622 {
623 E T12, T13, TZ, T10;
624 T12 = iio[WS(vs, 1) + WS(rs, 2)];
625 T13 = iio[WS(vs, 1) + WS(rs, 3)];
626 T14 = T12 - T13;
627 T19 = T12 + T13;
628 TZ = iio[WS(vs, 1) + WS(rs, 1)];
629 T10 = iio[WS(vs, 1) + WS(rs, 4)];
630 T11 = TZ - T10;
631 T18 = TZ + T10;
632 }
633 T15 = FMA(KP951056516, T11, KP587785252 * T14);
634 T1p = FNMS(KP587785252, T11, KP951056516 * T14);
635 T1a = KP559016994 * (T18 - T19);
636 T1c = T18 + T19;
637 T1d = FNMS(KP250000000, T1c, T1b);
638 }
639 {
640 E T1F, T22, T1C, T21;
641 T1z = rio[WS(vs, 2)];
642 {
643 E T1D, T1E, T1A, T1B;
644 T1D = rio[WS(vs, 2) + WS(rs, 2)];
645 T1E = rio[WS(vs, 2) + WS(rs, 3)];
646 T1F = T1D + T1E;
647 T22 = T1D - T1E;
648 T1A = rio[WS(vs, 2) + WS(rs, 1)];
649 T1B = rio[WS(vs, 2) + WS(rs, 4)];
650 T1C = T1A + T1B;
651 T21 = T1A - T1B;
652 }
653 T1I = KP559016994 * (T1C - T1F);
654 T2e = FNMS(KP587785252, T21, KP951056516 * T22);
655 T23 = FMA(KP951056516, T21, KP587785252 * T22);
656 T1G = T1C + T1F;
657 T1J = FNMS(KP250000000, T1G, T1z);
658 }
659 {
660 E T1Q, T1V, T1N, T1U;
661 T1X = iio[WS(vs, 2)];
662 {
663 E T1O, T1P, T1L, T1M;
664 T1O = iio[WS(vs, 2) + WS(rs, 2)];
665 T1P = iio[WS(vs, 2) + WS(rs, 3)];
666 T1Q = T1O - T1P;
667 T1V = T1O + T1P;
668 T1L = iio[WS(vs, 2) + WS(rs, 1)];
669 T1M = iio[WS(vs, 2) + WS(rs, 4)];
670 T1N = T1L - T1M;
671 T1U = T1L + T1M;
672 }
673 T1R = FMA(KP951056516, T1N, KP587785252 * T1Q);
674 T2b = FNMS(KP587785252, T1N, KP951056516 * T1Q);
675 T1W = KP559016994 * (T1U - T1V);
676 T1Y = T1U + T1V;
677 T1Z = FNMS(KP250000000, T1Y, T1X);
678 }
679 {
680 E T3o, T3t, T3l, T3s;
681 T3v = iio[WS(vs, 4)];
682 {
683 E T3m, T3n, T3j, T3k;
684 T3m = iio[WS(vs, 4) + WS(rs, 2)];
685 T3n = iio[WS(vs, 4) + WS(rs, 3)];
686 T3o = T3m - T3n;
687 T3t = T3m + T3n;
688 T3j = iio[WS(vs, 4) + WS(rs, 1)];
689 T3k = iio[WS(vs, 4) + WS(rs, 4)];
690 T3l = T3j - T3k;
691 T3s = T3j + T3k;
692 }
693 T3p = FMA(KP951056516, T3l, KP587785252 * T3o);
694 T3J = FNMS(KP587785252, T3l, KP951056516 * T3o);
695 T3u = KP559016994 * (T3s - T3t);
696 T3w = T3s + T3t;
697 T3x = FNMS(KP250000000, T3w, T3v);
698 }
699 {
700 E T3d, T3A, T3a, T3z;
701 T37 = rio[WS(vs, 4)];
702 {
703 E T3b, T3c, T38, T39;
704 T3b = rio[WS(vs, 4) + WS(rs, 2)];
705 T3c = rio[WS(vs, 4) + WS(rs, 3)];
706 T3d = T3b + T3c;
707 T3A = T3b - T3c;
708 T38 = rio[WS(vs, 4) + WS(rs, 1)];
709 T39 = rio[WS(vs, 4) + WS(rs, 4)];
710 T3a = T38 + T39;
711 T3z = T38 - T39;
712 }
713 T3g = KP559016994 * (T3a - T3d);
714 T3M = FNMS(KP587785252, T3z, KP951056516 * T3A);
715 T3B = FMA(KP951056516, T3z, KP587785252 * T3A);
716 T3e = T3a + T3d;
717 T3h = FNMS(KP250000000, T3e, T37);
718 }
719 {
720 E T2r, T2O, T2o, T2N;
721 T2l = rio[WS(vs, 3)];
722 {
723 E T2p, T2q, T2m, T2n;
724 T2p = rio[WS(vs, 3) + WS(rs, 2)];
725 T2q = rio[WS(vs, 3) + WS(rs, 3)];
726 T2r = T2p + T2q;
727 T2O = T2p - T2q;
728 T2m = rio[WS(vs, 3) + WS(rs, 1)];
729 T2n = rio[WS(vs, 3) + WS(rs, 4)];
730 T2o = T2m + T2n;
731 T2N = T2m - T2n;
732 }
733 T2u = KP559016994 * (T2o - T2r);
734 T30 = FNMS(KP587785252, T2N, KP951056516 * T2O);
735 T2P = FMA(KP951056516, T2N, KP587785252 * T2O);
736 T2s = T2o + T2r;
737 T2v = FNMS(KP250000000, T2s, T2l);
738 }
739 {
740 E T2C, T2H, T2z, T2G;
741 T2J = iio[WS(vs, 3)];
742 {
743 E T2A, T2B, T2x, T2y;
744 T2A = iio[WS(vs, 3) + WS(rs, 2)];
745 T2B = iio[WS(vs, 3) + WS(rs, 3)];
746 T2C = T2A - T2B;
747 T2H = T2A + T2B;
748 T2x = iio[WS(vs, 3) + WS(rs, 1)];
749 T2y = iio[WS(vs, 3) + WS(rs, 4)];
750 T2z = T2x - T2y;
751 T2G = T2x + T2y;
752 }
753 T2D = FMA(KP951056516, T2z, KP587785252 * T2C);
754 T2X = FNMS(KP587785252, T2z, KP951056516 * T2C);
755 T2I = KP559016994 * (T2G - T2H);
756 T2K = T2G + T2H;
757 T2L = FNMS(KP250000000, T2K, T2J);
758 }
759 rio[0] = T1 + T8;
760 iio[0] = Tp + Tq;
761 rio[WS(rs, 1)] = TN + TU;
762 iio[WS(rs, 1)] = T1b + T1c;
763 rio[WS(rs, 2)] = T1z + T1G;
764 iio[WS(rs, 2)] = T1X + T1Y;
765 iio[WS(rs, 4)] = T3v + T3w;
766 rio[WS(rs, 4)] = T37 + T3e;
767 rio[WS(rs, 3)] = T2l + T2s;
768 iio[WS(rs, 3)] = T2J + T2K;
769 {
770 E Tk, Ty, Tw, TA, Tc, Ts;
771 Tc = Ta + Tb;
772 Tk = Tc + Tj;
773 Ty = Tc - Tj;
774 Ts = To + Tr;
775 Tw = Ts - Tv;
776 TA = Tv + Ts;
777 {
778 E T9, Tl, Tx, Tz;
779 T9 = W[0];
780 Tl = W[1];
781 rio[WS(vs, 1)] = FMA(T9, Tk, Tl * Tw);
782 iio[WS(vs, 1)] = FNMS(Tl, Tk, T9 * Tw);
783 Tx = W[6];
784 Tz = W[7];
785 rio[WS(vs, 4)] = FMA(Tx, Ty, Tz * TA);
786 iio[WS(vs, 4)] = FNMS(Tz, Ty, Tx * TA);
787 }
788 }
789 {
790 E TE, TK, TI, TM, TC, TH;
791 TC = Tb - Ta;
792 TE = TC - TD;
793 TK = TC + TD;
794 TH = Tr - To;
795 TI = TG + TH;
796 TM = TH - TG;
797 {
798 E TB, TF, TJ, TL;
799 TB = W[2];
800 TF = W[3];
801 rio[WS(vs, 2)] = FMA(TB, TE, TF * TI);
802 iio[WS(vs, 2)] = FNMS(TF, TE, TB * TI);
803 TJ = W[4];
804 TL = W[5];
805 rio[WS(vs, 3)] = FMA(TJ, TK, TL * TM);
806 iio[WS(vs, 3)] = FNMS(TL, TK, TJ * TM);
807 }
808 }
809 {
810 E T2c, T2i, T2g, T2k, T2a, T2f;
811 T2a = T1J - T1I;
812 T2c = T2a - T2b;
813 T2i = T2a + T2b;
814 T2f = T1Z - T1W;
815 T2g = T2e + T2f;
816 T2k = T2f - T2e;
817 {
818 E T29, T2d, T2h, T2j;
819 T29 = W[2];
820 T2d = W[3];
821 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T29, T2c, T2d * T2g);
822 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2d, T2c, T29 * T2g);
823 T2h = W[4];
824 T2j = W[5];
825 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2h, T2i, T2j * T2k);
826 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2j, T2i, T2h * T2k);
827 }
828 }
829 {
830 E T3K, T3Q, T3O, T3S, T3I, T3N;
831 T3I = T3h - T3g;
832 T3K = T3I - T3J;
833 T3Q = T3I + T3J;
834 T3N = T3x - T3u;
835 T3O = T3M + T3N;
836 T3S = T3N - T3M;
837 {
838 E T3H, T3L, T3P, T3R;
839 T3H = W[2];
840 T3L = W[3];
841 rio[WS(vs, 2) + WS(rs, 4)] = FMA(T3H, T3K, T3L * T3O);
842 iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T3L, T3K, T3H * T3O);
843 T3P = W[4];
844 T3R = W[5];
845 rio[WS(vs, 3) + WS(rs, 4)] = FMA(T3P, T3Q, T3R * T3S);
846 iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T3R, T3Q, T3P * T3S);
847 }
848 }
849 {
850 E T1S, T26, T24, T28, T1K, T20;
851 T1K = T1I + T1J;
852 T1S = T1K + T1R;
853 T26 = T1K - T1R;
854 T20 = T1W + T1Z;
855 T24 = T20 - T23;
856 T28 = T23 + T20;
857 {
858 E T1H, T1T, T25, T27;
859 T1H = W[0];
860 T1T = W[1];
861 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1H, T1S, T1T * T24);
862 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1T, T1S, T1H * T24);
863 T25 = W[6];
864 T27 = W[7];
865 rio[WS(vs, 4) + WS(rs, 2)] = FMA(T25, T26, T27 * T28);
866 iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T27, T26, T25 * T28);
867 }
868 }
869 {
870 E T2E, T2S, T2Q, T2U, T2w, T2M;
871 T2w = T2u + T2v;
872 T2E = T2w + T2D;
873 T2S = T2w - T2D;
874 T2M = T2I + T2L;
875 T2Q = T2M - T2P;
876 T2U = T2P + T2M;
877 {
878 E T2t, T2F, T2R, T2T;
879 T2t = W[0];
880 T2F = W[1];
881 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2t, T2E, T2F * T2Q);
882 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T2F, T2E, T2t * T2Q);
883 T2R = W[6];
884 T2T = W[7];
885 rio[WS(vs, 4) + WS(rs, 3)] = FMA(T2R, T2S, T2T * T2U);
886 iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T2T, T2S, T2R * T2U);
887 }
888 }
889 {
890 E T2Y, T34, T32, T36, T2W, T31;
891 T2W = T2v - T2u;
892 T2Y = T2W - T2X;
893 T34 = T2W + T2X;
894 T31 = T2L - T2I;
895 T32 = T30 + T31;
896 T36 = T31 - T30;
897 {
898 E T2V, T2Z, T33, T35;
899 T2V = W[2];
900 T2Z = W[3];
901 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T2V, T2Y, T2Z * T32);
902 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T2Z, T2Y, T2V * T32);
903 T33 = W[4];
904 T35 = W[5];
905 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T33, T34, T35 * T36);
906 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T35, T34, T33 * T36);
907 }
908 }
909 {
910 E T3q, T3E, T3C, T3G, T3i, T3y;
911 T3i = T3g + T3h;
912 T3q = T3i + T3p;
913 T3E = T3i - T3p;
914 T3y = T3u + T3x;
915 T3C = T3y - T3B;
916 T3G = T3B + T3y;
917 {
918 E T3f, T3r, T3D, T3F;
919 T3f = W[0];
920 T3r = W[1];
921 rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3f, T3q, T3r * T3C);
922 iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3r, T3q, T3f * T3C);
923 T3D = W[6];
924 T3F = W[7];
925 rio[WS(vs, 4) + WS(rs, 4)] = FMA(T3D, T3E, T3F * T3G);
926 iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T3F, T3E, T3D * T3G);
927 }
928 }
929 {
930 E T1q, T1w, T1u, T1y, T1o, T1t;
931 T1o = TX - TW;
932 T1q = T1o - T1p;
933 T1w = T1o + T1p;
934 T1t = T1d - T1a;
935 T1u = T1s + T1t;
936 T1y = T1t - T1s;
937 {
938 E T1n, T1r, T1v, T1x;
939 T1n = W[2];
940 T1r = W[3];
941 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1n, T1q, T1r * T1u);
942 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1r, T1q, T1n * T1u);
943 T1v = W[4];
944 T1x = W[5];
945 rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y);
946 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y);
947 }
948 }
949 {
950 E T16, T1k, T1i, T1m, TY, T1e;
951 TY = TW + TX;
952 T16 = TY + T15;
953 T1k = TY - T15;
954 T1e = T1a + T1d;
955 T1i = T1e - T1h;
956 T1m = T1h + T1e;
957 {
958 E TV, T17, T1j, T1l;
959 TV = W[0];
960 T17 = W[1];
961 rio[WS(vs, 1) + WS(rs, 1)] = FMA(TV, T16, T17 * T1i);
962 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T17, T16, TV * T1i);
963 T1j = W[6];
964 T1l = W[7];
965 rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1j, T1k, T1l * T1m);
966 iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1l, T1k, T1j * T1m);
967 }
968 }
969 }
970 }
971 }
972
973 static const tw_instr twinstr[] = {
974 {TW_FULL, 0, 5},
975 {TW_NEXT, 1, 0}
976 };
977
978 static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {130, 70, 70, 0}, 0, 0, 0 };
979
980 void X(codelet_q1_5) (planner *p) {
981 X(kdft_difsq_register) (p, q1_5, &desc);
982 }
983 #endif /* HAVE_FMA */