Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/q1_4.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:17 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twidsq.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include q.h */ | |
29 | |
30 /* | |
31 * This function contains 88 FP additions, 48 FP multiplications, | |
32 * (or, 64 additions, 24 multiplications, 24 fused multiply/add), | |
33 * 76 stack variables, 0 constants, and 64 memory accesses | |
34 */ | |
35 #include "q.h" | |
36 | |
37 static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
38 { | |
39 { | |
40 INT m; | |
41 for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
42 E T1X, T1S, T1L, T1Y, T1R; | |
43 { | |
44 E T3, Tf, Tv, Ti, Tw, Tx, T6, Tm, Tc, Ts, T1T, T1H, T29, T1W, T2a; | |
45 E T2b, T1K, T20, T1Q, T26, TN, TB, T13, TQ, T14, T15, TE, TU, TK, T10; | |
46 E T1l, T19, T1a, T1h, T1B, T1o, T1C, T1b, T1D, T1e, T1c; | |
47 { | |
48 E T1I, T1P, T1J, T1M; | |
49 { | |
50 E Tb, T4, T5, T8; | |
51 { | |
52 E T1, T2, T9, Ta, Tg, Th; | |
53 T1 = rio[0]; | |
54 T2 = rio[WS(rs, 2)]; | |
55 T9 = iio[0]; | |
56 Ta = iio[WS(rs, 2)]; | |
57 Tg = iio[WS(rs, 1)]; | |
58 T3 = T1 + T2; | |
59 Tf = T1 - T2; | |
60 Th = iio[WS(rs, 3)]; | |
61 Tv = T9 + Ta; | |
62 Tb = T9 - Ta; | |
63 T4 = rio[WS(rs, 1)]; | |
64 Ti = Tg - Th; | |
65 Tw = Tg + Th; | |
66 T5 = rio[WS(rs, 3)]; | |
67 } | |
68 Tx = Tv - Tw; | |
69 T8 = T4 - T5; | |
70 T6 = T4 + T5; | |
71 { | |
72 E T1N, T1O, T1F, T1G, T1U, T1V; | |
73 T1F = rio[WS(vs, 3)]; | |
74 T1G = rio[WS(vs, 3) + WS(rs, 2)]; | |
75 Tm = Tb - T8; | |
76 Tc = T8 + Tb; | |
77 Ts = T3 - T6; | |
78 T1T = T1F - T1G; | |
79 T1H = T1F + T1G; | |
80 T1N = iio[WS(vs, 3)]; | |
81 T1O = iio[WS(vs, 3) + WS(rs, 2)]; | |
82 T1U = iio[WS(vs, 3) + WS(rs, 1)]; | |
83 T1V = iio[WS(vs, 3) + WS(rs, 3)]; | |
84 T1I = rio[WS(vs, 3) + WS(rs, 1)]; | |
85 T1P = T1N - T1O; | |
86 T29 = T1N + T1O; | |
87 T1W = T1U - T1V; | |
88 T2a = T1U + T1V; | |
89 T1J = rio[WS(vs, 3) + WS(rs, 3)]; | |
90 } | |
91 } | |
92 T2b = T29 - T2a; | |
93 T1M = T1I - T1J; | |
94 T1K = T1I + T1J; | |
95 { | |
96 E TC, TJ, TD, TG; | |
97 { | |
98 E TH, TI, Tz, TA, TO, TP; | |
99 Tz = rio[WS(vs, 1)]; | |
100 TA = rio[WS(vs, 1) + WS(rs, 2)]; | |
101 T20 = T1P - T1M; | |
102 T1Q = T1M + T1P; | |
103 T26 = T1H - T1K; | |
104 TN = Tz - TA; | |
105 TB = Tz + TA; | |
106 TH = iio[WS(vs, 1)]; | |
107 TI = iio[WS(vs, 1) + WS(rs, 2)]; | |
108 TO = iio[WS(vs, 1) + WS(rs, 1)]; | |
109 TP = iio[WS(vs, 1) + WS(rs, 3)]; | |
110 TC = rio[WS(vs, 1) + WS(rs, 1)]; | |
111 TJ = TH - TI; | |
112 T13 = TH + TI; | |
113 TQ = TO - TP; | |
114 T14 = TO + TP; | |
115 TD = rio[WS(vs, 1) + WS(rs, 3)]; | |
116 } | |
117 T15 = T13 - T14; | |
118 TG = TC - TD; | |
119 TE = TC + TD; | |
120 { | |
121 E T1f, T1g, T17, T18, T1m, T1n; | |
122 T17 = rio[WS(vs, 2)]; | |
123 T18 = rio[WS(vs, 2) + WS(rs, 2)]; | |
124 TU = TJ - TG; | |
125 TK = TG + TJ; | |
126 T10 = TB - TE; | |
127 T1l = T17 - T18; | |
128 T19 = T17 + T18; | |
129 T1f = iio[WS(vs, 2)]; | |
130 T1g = iio[WS(vs, 2) + WS(rs, 2)]; | |
131 T1m = iio[WS(vs, 2) + WS(rs, 1)]; | |
132 T1n = iio[WS(vs, 2) + WS(rs, 3)]; | |
133 T1a = rio[WS(vs, 2) + WS(rs, 1)]; | |
134 T1h = T1f - T1g; | |
135 T1B = T1f + T1g; | |
136 T1o = T1m - T1n; | |
137 T1C = T1m + T1n; | |
138 T1b = rio[WS(vs, 2) + WS(rs, 3)]; | |
139 } | |
140 } | |
141 } | |
142 T1D = T1B - T1C; | |
143 T1e = T1a - T1b; | |
144 T1c = T1a + T1b; | |
145 { | |
146 E T1s, T1i, T1y, T28, T27, Tr, Tu; | |
147 rio[0] = T3 + T6; | |
148 iio[0] = Tv + Tw; | |
149 T1s = T1h - T1e; | |
150 T1i = T1e + T1h; | |
151 T1y = T19 - T1c; | |
152 rio[WS(rs, 1)] = TB + TE; | |
153 iio[WS(rs, 1)] = T13 + T14; | |
154 rio[WS(rs, 2)] = T19 + T1c; | |
155 iio[WS(rs, 2)] = T1B + T1C; | |
156 iio[WS(rs, 3)] = T29 + T2a; | |
157 rio[WS(rs, 3)] = T1H + T1K; | |
158 Tr = W[2]; | |
159 Tu = W[3]; | |
160 { | |
161 E T25, Ty, Tt, T2c; | |
162 T25 = W[2]; | |
163 T28 = W[3]; | |
164 Ty = Tr * Tx; | |
165 Tt = Tr * Ts; | |
166 T2c = T25 * T2b; | |
167 T27 = T25 * T26; | |
168 iio[WS(vs, 2)] = FNMS(Tu, Ts, Ty); | |
169 rio[WS(vs, 2)] = FMA(Tu, Tx, Tt); | |
170 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T28, T26, T2c); | |
171 } | |
172 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T28, T2b, T27); | |
173 { | |
174 E Tp, T1v, T23, T22, T1Z, TR, TM, TF; | |
175 { | |
176 E T1A, T1z, TZ, T12; | |
177 TZ = W[2]; | |
178 T12 = W[3]; | |
179 { | |
180 E T1x, T16, T11, T1E; | |
181 T1x = W[2]; | |
182 T1A = W[3]; | |
183 T16 = TZ * T15; | |
184 T11 = TZ * T10; | |
185 T1E = T1x * T1D; | |
186 T1z = T1x * T1y; | |
187 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T12, T10, T16); | |
188 rio[WS(vs, 2) + WS(rs, 1)] = FMA(T12, T15, T11); | |
189 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1A, T1y, T1E); | |
190 } | |
191 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1A, T1D, T1z); | |
192 { | |
193 E Tj, Te, T7, T1p, T1k, T1j; | |
194 Tp = Tf + Ti; | |
195 Tj = Tf - Ti; | |
196 Te = W[5]; | |
197 T7 = W[4]; | |
198 { | |
199 E T1d, T1q, Tk, Td; | |
200 T1p = T1l - T1o; | |
201 T1v = T1l + T1o; | |
202 T1k = W[5]; | |
203 Tk = Te * Tc; | |
204 Td = T7 * Tc; | |
205 T1d = W[4]; | |
206 T1q = T1k * T1i; | |
207 rio[WS(vs, 3)] = FMA(T7, Tj, Tk); | |
208 iio[WS(vs, 3)] = FNMS(Te, Tj, Td); | |
209 T1j = T1d * T1i; | |
210 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T1d, T1p, T1q); | |
211 } | |
212 T23 = T1T + T1W; | |
213 T1X = T1T - T1W; | |
214 T22 = W[1]; | |
215 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T1k, T1p, T1j); | |
216 T1Z = W[0]; | |
217 } | |
218 } | |
219 { | |
220 E TX, TW, TT, TY, TV, T24, T21; | |
221 TX = TN + TQ; | |
222 TR = TN - TQ; | |
223 T24 = T22 * T20; | |
224 TW = W[1]; | |
225 T21 = T1Z * T20; | |
226 TT = W[0]; | |
227 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1Z, T23, T24); | |
228 TY = TW * TU; | |
229 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T22, T23, T21); | |
230 TV = TT * TU; | |
231 rio[WS(vs, 1) + WS(rs, 1)] = FMA(TT, TX, TY); | |
232 TM = W[5]; | |
233 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TW, TX, TV); | |
234 TF = W[4]; | |
235 } | |
236 { | |
237 E To, Tl, Tq, Tn, TS, TL; | |
238 TS = TM * TK; | |
239 To = W[1]; | |
240 TL = TF * TK; | |
241 Tl = W[0]; | |
242 rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TR, TS); | |
243 Tq = To * Tm; | |
244 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TM, TR, TL); | |
245 Tn = Tl * Tm; | |
246 { | |
247 E T1u, T1r, T1w, T1t; | |
248 rio[WS(vs, 1)] = FMA(Tl, Tp, Tq); | |
249 T1u = W[1]; | |
250 iio[WS(vs, 1)] = FNMS(To, Tp, Tn); | |
251 T1r = W[0]; | |
252 T1w = T1u * T1s; | |
253 T1S = W[5]; | |
254 T1t = T1r * T1s; | |
255 T1L = W[4]; | |
256 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1r, T1v, T1w); | |
257 T1Y = T1S * T1Q; | |
258 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1u, T1v, T1t); | |
259 T1R = T1L * T1Q; | |
260 } | |
261 } | |
262 } | |
263 } | |
264 } | |
265 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1L, T1X, T1Y); | |
266 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1S, T1X, T1R); | |
267 } | |
268 } | |
269 } | |
270 | |
271 static const tw_instr twinstr[] = { | |
272 {TW_FULL, 0, 4}, | |
273 {TW_NEXT, 1, 0} | |
274 }; | |
275 | |
276 static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, {64, 24, 24, 0}, 0, 0, 0 }; | |
277 | |
278 void X(codelet_q1_4) (planner *p) { | |
279 X(kdft_difsq_register) (p, q1_4, &desc); | |
280 } | |
281 #else /* HAVE_FMA */ | |
282 | |
283 /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include q.h */ | |
284 | |
285 /* | |
286 * This function contains 88 FP additions, 48 FP multiplications, | |
287 * (or, 64 additions, 24 multiplications, 24 fused multiply/add), | |
288 * 37 stack variables, 0 constants, and 64 memory accesses | |
289 */ | |
290 #include "q.h" | |
291 | |
292 static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) | |
293 { | |
294 { | |
295 INT m; | |
296 for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { | |
297 E T3, Te, Tb, Tq, T6, T8, Th, Tr, Tv, TG, TD, TS, Ty, TA, TJ; | |
298 E TT, TX, T18, T15, T1k, T10, T12, T1b, T1l, T1p, T1A, T1x, T1M, T1s, T1u; | |
299 E T1D, T1N; | |
300 { | |
301 E T1, T2, T9, Ta; | |
302 T1 = rio[0]; | |
303 T2 = rio[WS(rs, 2)]; | |
304 T3 = T1 + T2; | |
305 Te = T1 - T2; | |
306 T9 = iio[0]; | |
307 Ta = iio[WS(rs, 2)]; | |
308 Tb = T9 - Ta; | |
309 Tq = T9 + Ta; | |
310 } | |
311 { | |
312 E T4, T5, Tf, Tg; | |
313 T4 = rio[WS(rs, 1)]; | |
314 T5 = rio[WS(rs, 3)]; | |
315 T6 = T4 + T5; | |
316 T8 = T4 - T5; | |
317 Tf = iio[WS(rs, 1)]; | |
318 Tg = iio[WS(rs, 3)]; | |
319 Th = Tf - Tg; | |
320 Tr = Tf + Tg; | |
321 } | |
322 { | |
323 E Tt, Tu, TB, TC; | |
324 Tt = rio[WS(vs, 1)]; | |
325 Tu = rio[WS(vs, 1) + WS(rs, 2)]; | |
326 Tv = Tt + Tu; | |
327 TG = Tt - Tu; | |
328 TB = iio[WS(vs, 1)]; | |
329 TC = iio[WS(vs, 1) + WS(rs, 2)]; | |
330 TD = TB - TC; | |
331 TS = TB + TC; | |
332 } | |
333 { | |
334 E Tw, Tx, TH, TI; | |
335 Tw = rio[WS(vs, 1) + WS(rs, 1)]; | |
336 Tx = rio[WS(vs, 1) + WS(rs, 3)]; | |
337 Ty = Tw + Tx; | |
338 TA = Tw - Tx; | |
339 TH = iio[WS(vs, 1) + WS(rs, 1)]; | |
340 TI = iio[WS(vs, 1) + WS(rs, 3)]; | |
341 TJ = TH - TI; | |
342 TT = TH + TI; | |
343 } | |
344 { | |
345 E TV, TW, T13, T14; | |
346 TV = rio[WS(vs, 2)]; | |
347 TW = rio[WS(vs, 2) + WS(rs, 2)]; | |
348 TX = TV + TW; | |
349 T18 = TV - TW; | |
350 T13 = iio[WS(vs, 2)]; | |
351 T14 = iio[WS(vs, 2) + WS(rs, 2)]; | |
352 T15 = T13 - T14; | |
353 T1k = T13 + T14; | |
354 } | |
355 { | |
356 E TY, TZ, T19, T1a; | |
357 TY = rio[WS(vs, 2) + WS(rs, 1)]; | |
358 TZ = rio[WS(vs, 2) + WS(rs, 3)]; | |
359 T10 = TY + TZ; | |
360 T12 = TY - TZ; | |
361 T19 = iio[WS(vs, 2) + WS(rs, 1)]; | |
362 T1a = iio[WS(vs, 2) + WS(rs, 3)]; | |
363 T1b = T19 - T1a; | |
364 T1l = T19 + T1a; | |
365 } | |
366 { | |
367 E T1n, T1o, T1v, T1w; | |
368 T1n = rio[WS(vs, 3)]; | |
369 T1o = rio[WS(vs, 3) + WS(rs, 2)]; | |
370 T1p = T1n + T1o; | |
371 T1A = T1n - T1o; | |
372 T1v = iio[WS(vs, 3)]; | |
373 T1w = iio[WS(vs, 3) + WS(rs, 2)]; | |
374 T1x = T1v - T1w; | |
375 T1M = T1v + T1w; | |
376 } | |
377 { | |
378 E T1q, T1r, T1B, T1C; | |
379 T1q = rio[WS(vs, 3) + WS(rs, 1)]; | |
380 T1r = rio[WS(vs, 3) + WS(rs, 3)]; | |
381 T1s = T1q + T1r; | |
382 T1u = T1q - T1r; | |
383 T1B = iio[WS(vs, 3) + WS(rs, 1)]; | |
384 T1C = iio[WS(vs, 3) + WS(rs, 3)]; | |
385 T1D = T1B - T1C; | |
386 T1N = T1B + T1C; | |
387 } | |
388 rio[0] = T3 + T6; | |
389 iio[0] = Tq + Tr; | |
390 rio[WS(rs, 1)] = Tv + Ty; | |
391 iio[WS(rs, 1)] = TS + TT; | |
392 rio[WS(rs, 2)] = TX + T10; | |
393 iio[WS(rs, 2)] = T1k + T1l; | |
394 iio[WS(rs, 3)] = T1M + T1N; | |
395 rio[WS(rs, 3)] = T1p + T1s; | |
396 { | |
397 E Tc, Ti, T7, Td; | |
398 Tc = T8 + Tb; | |
399 Ti = Te - Th; | |
400 T7 = W[4]; | |
401 Td = W[5]; | |
402 iio[WS(vs, 3)] = FNMS(Td, Ti, T7 * Tc); | |
403 rio[WS(vs, 3)] = FMA(Td, Tc, T7 * Ti); | |
404 } | |
405 { | |
406 E T1K, T1O, T1J, T1L; | |
407 T1K = T1p - T1s; | |
408 T1O = T1M - T1N; | |
409 T1J = W[2]; | |
410 T1L = W[3]; | |
411 rio[WS(vs, 2) + WS(rs, 3)] = FMA(T1J, T1K, T1L * T1O); | |
412 iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T1L, T1K, T1J * T1O); | |
413 } | |
414 { | |
415 E Tk, Tm, Tj, Tl; | |
416 Tk = Tb - T8; | |
417 Tm = Te + Th; | |
418 Tj = W[0]; | |
419 Tl = W[1]; | |
420 iio[WS(vs, 1)] = FNMS(Tl, Tm, Tj * Tk); | |
421 rio[WS(vs, 1)] = FMA(Tl, Tk, Tj * Tm); | |
422 } | |
423 { | |
424 E To, Ts, Tn, Tp; | |
425 To = T3 - T6; | |
426 Ts = Tq - Tr; | |
427 Tn = W[2]; | |
428 Tp = W[3]; | |
429 rio[WS(vs, 2)] = FMA(Tn, To, Tp * Ts); | |
430 iio[WS(vs, 2)] = FNMS(Tp, To, Tn * Ts); | |
431 } | |
432 { | |
433 E T16, T1c, T11, T17; | |
434 T16 = T12 + T15; | |
435 T1c = T18 - T1b; | |
436 T11 = W[4]; | |
437 T17 = W[5]; | |
438 iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T17, T1c, T11 * T16); | |
439 rio[WS(vs, 3) + WS(rs, 2)] = FMA(T17, T16, T11 * T1c); | |
440 } | |
441 { | |
442 E T1G, T1I, T1F, T1H; | |
443 T1G = T1x - T1u; | |
444 T1I = T1A + T1D; | |
445 T1F = W[0]; | |
446 T1H = W[1]; | |
447 iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T1H, T1I, T1F * T1G); | |
448 rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1H, T1G, T1F * T1I); | |
449 } | |
450 { | |
451 E TQ, TU, TP, TR; | |
452 TQ = Tv - Ty; | |
453 TU = TS - TT; | |
454 TP = W[2]; | |
455 TR = W[3]; | |
456 rio[WS(vs, 2) + WS(rs, 1)] = FMA(TP, TQ, TR * TU); | |
457 iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TR, TQ, TP * TU); | |
458 } | |
459 { | |
460 E T1e, T1g, T1d, T1f; | |
461 T1e = T15 - T12; | |
462 T1g = T18 + T1b; | |
463 T1d = W[0]; | |
464 T1f = W[1]; | |
465 iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e); | |
466 rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g); | |
467 } | |
468 { | |
469 E T1i, T1m, T1h, T1j; | |
470 T1i = TX - T10; | |
471 T1m = T1k - T1l; | |
472 T1h = W[2]; | |
473 T1j = W[3]; | |
474 rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1h, T1i, T1j * T1m); | |
475 iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1j, T1i, T1h * T1m); | |
476 } | |
477 { | |
478 E T1y, T1E, T1t, T1z; | |
479 T1y = T1u + T1x; | |
480 T1E = T1A - T1D; | |
481 T1t = W[4]; | |
482 T1z = W[5]; | |
483 iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1z, T1E, T1t * T1y); | |
484 rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1z, T1y, T1t * T1E); | |
485 } | |
486 { | |
487 E TM, TO, TL, TN; | |
488 TM = TD - TA; | |
489 TO = TG + TJ; | |
490 TL = W[0]; | |
491 TN = W[1]; | |
492 iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TN, TO, TL * TM); | |
493 rio[WS(vs, 1) + WS(rs, 1)] = FMA(TN, TM, TL * TO); | |
494 } | |
495 { | |
496 E TE, TK, Tz, TF; | |
497 TE = TA + TD; | |
498 TK = TG - TJ; | |
499 Tz = W[4]; | |
500 TF = W[5]; | |
501 iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TF, TK, Tz * TE); | |
502 rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TE, Tz * TK); | |
503 } | |
504 } | |
505 } | |
506 } | |
507 | |
508 static const tw_instr twinstr[] = { | |
509 {TW_FULL, 0, 4}, | |
510 {TW_NEXT, 1, 0} | |
511 }; | |
512 | |
513 static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, {64, 24, 24, 0}, 0, 0, 0 }; | |
514 | |
515 void X(codelet_q1_4) (planner *p) { | |
516 X(kdft_difsq_register) (p, q1_4, &desc); | |
517 } | |
518 #endif /* HAVE_FMA */ |