comparison src/fftw-3.3.3/dft/scalar/codelets/n1_64.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:35:46 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include n.h */
29
30 /*
31 * This function contains 912 FP additions, 392 FP multiplications,
32 * (or, 520 additions, 0 multiplications, 392 fused multiply/add),
33 * 202 stack variables, 15 constants, and 256 memory accesses
34 */
35 #include "n.h"
36
37 static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
40 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
41 DK(KP534511135, +0.534511135950791641089685961295362908582039528);
42 DK(KP303346683, +0.303346683607342391675883946941299872384187453);
43 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
44 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
45 DK(KP820678790, +0.820678790828660330972281985331011598767386482);
46 DK(KP098491403, +0.098491403357164253077197521291327432293052451);
47 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
48 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
49 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
50 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
51 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
54 {
55 INT i;
56 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) {
57 E T9b, T9e;
58 {
59 E T7B, T37, T5Z, T8F, Td9, Tf, TcB, TbB, T7C, T62, TdH, T2i, Tcb, Tah, T8G;
60 E T3e, Tu, TdI, Tak, TbC, TbD, Tan, Tda, T2x, T65, T3m, T8I, T7G, T8J, T7J;
61 E T64, T3t, Tdd, TK, Tce, Tas, Tcf, Tav, Tdc, T2N, T6G, T3G, T9k, T7O, T9l;
62 E T7R, T6H, T3N, TdA, T1L, Tct, Tbs, Teo, Tdx, T6Y, T5j, T6V, T5Q, T9z, T8y;
63 E Tcw, Tbb, T9C, T8n, Tdf, TZ, Tch, Taz, Tci, TaC, Tdg, T32, T6J, T3Z, T9n;
64 E T7V, T9o, T7Y, T6K, T46, Tdp, T1g, Tcm, Tb1, Tej, Tdm, T6R, T4q, T6O, T4X;
65 E T9s, T8f, Tcp, TaK, T9v, T84, Tdn, T1v, Tcq, Tb4, Tek, Tds, T6P, T4N, T6S;
66 E T50, T9w, T8i, Tcn, TaV, T9t, T8b, Tdy, T20, Tcx, Tbv, Tep, TdD, T8q, T6W;
67 E T5G, T6Z, T5T, T8t, T9D, T8B, Tcu, Tbm, T8l, T8m;
68 {
69 E T3s, T3p, T3M, T3J;
70 {
71 E Taf, T3d, T3a, Tag;
72 {
73 E T35, T3, T5Y, T26, T5X, T6, T36, T29, Tb, T39, Ta, T38, T2d, Tc, T2e;
74 E T2f;
75 {
76 E T4, T5, T27, T28;
77 {
78 E T1, T2, T24, T25;
79 T1 = ri[0];
80 T2 = ri[WS(is, 32)];
81 T24 = ii[0];
82 T25 = ii[WS(is, 32)];
83 T4 = ri[WS(is, 16)];
84 T35 = T1 - T2;
85 T3 = T1 + T2;
86 T5Y = T24 - T25;
87 T26 = T24 + T25;
88 T5 = ri[WS(is, 48)];
89 T27 = ii[WS(is, 16)];
90 T28 = ii[WS(is, 48)];
91 }
92 {
93 E T8, T9, T2b, T2c;
94 T8 = ri[WS(is, 8)];
95 T5X = T4 - T5;
96 T6 = T4 + T5;
97 T36 = T27 - T28;
98 T29 = T27 + T28;
99 T9 = ri[WS(is, 40)];
100 T2b = ii[WS(is, 8)];
101 T2c = ii[WS(is, 40)];
102 Tb = ri[WS(is, 56)];
103 T39 = T8 - T9;
104 Ta = T8 + T9;
105 T38 = T2b - T2c;
106 T2d = T2b + T2c;
107 Tc = ri[WS(is, 24)];
108 T2e = ii[WS(is, 56)];
109 T2f = ii[WS(is, 24)];
110 }
111 }
112 {
113 E T3b, T3c, T2g, T7, Te, Tbz, Td;
114 T7B = T35 + T36;
115 T37 = T35 - T36;
116 T3b = Tb - Tc;
117 Td = Tb + Tc;
118 T3c = T2e - T2f;
119 T2g = T2e + T2f;
120 T5Z = T5X + T5Y;
121 T8F = T5Y - T5X;
122 Taf = T3 - T6;
123 T7 = T3 + T6;
124 Te = Ta + Td;
125 Tbz = Td - Ta;
126 {
127 E T2a, T60, T61, TbA, T2h;
128 TbA = T26 - T29;
129 T2a = T26 + T29;
130 T3d = T3b + T3c;
131 T60 = T3b - T3c;
132 Td9 = T7 - Te;
133 Tf = T7 + Te;
134 TcB = TbA - Tbz;
135 TbB = Tbz + TbA;
136 T61 = T39 + T38;
137 T3a = T38 - T39;
138 T2h = T2d + T2g;
139 Tag = T2d - T2g;
140 T7C = T61 + T60;
141 T62 = T60 - T61;
142 TdH = T2a - T2h;
143 T2i = T2a + T2h;
144 }
145 }
146 }
147 {
148 E T3j, Ti, T3h, T2l, T3g, Tl, T3k, T2o, Tq, T3q, Tp, T3o, T2s, Tr, T2t;
149 E T2u;
150 {
151 E Tj, Tk, T2m, T2n;
152 {
153 E Tg, Th, T2j, T2k;
154 Tg = ri[WS(is, 4)];
155 Tcb = Taf - Tag;
156 Tah = Taf + Tag;
157 T8G = T3a + T3d;
158 T3e = T3a - T3d;
159 Th = ri[WS(is, 36)];
160 T2j = ii[WS(is, 4)];
161 T2k = ii[WS(is, 36)];
162 Tj = ri[WS(is, 20)];
163 T3j = Tg - Th;
164 Ti = Tg + Th;
165 T3h = T2j - T2k;
166 T2l = T2j + T2k;
167 Tk = ri[WS(is, 52)];
168 T2m = ii[WS(is, 20)];
169 T2n = ii[WS(is, 52)];
170 }
171 {
172 E Tn, To, T2q, T2r;
173 Tn = ri[WS(is, 60)];
174 T3g = Tj - Tk;
175 Tl = Tj + Tk;
176 T3k = T2m - T2n;
177 T2o = T2m + T2n;
178 To = ri[WS(is, 28)];
179 T2q = ii[WS(is, 60)];
180 T2r = ii[WS(is, 28)];
181 Tq = ri[WS(is, 12)];
182 T3q = Tn - To;
183 Tp = Tn + To;
184 T3o = T2q - T2r;
185 T2s = T2q + T2r;
186 Tr = ri[WS(is, 44)];
187 T2t = ii[WS(is, 12)];
188 T2u = ii[WS(is, 44)];
189 }
190 }
191 {
192 E T3n, T3r, T2p, T2w;
193 {
194 E Tai, Tm, T2v, Tal, Tt, Taj, Ts, Tam;
195 Tai = Ti - Tl;
196 Tm = Ti + Tl;
197 T3n = Tq - Tr;
198 Ts = Tq + Tr;
199 T3r = T2t - T2u;
200 T2v = T2t + T2u;
201 Tal = Tp - Ts;
202 Tt = Tp + Ts;
203 Taj = T2l - T2o;
204 T2p = T2l + T2o;
205 Tam = T2s - T2v;
206 T2w = T2s + T2v;
207 Tu = Tm + Tt;
208 TdI = Tt - Tm;
209 Tak = Tai + Taj;
210 TbC = Taj - Tai;
211 TbD = Tal + Tam;
212 Tan = Tal - Tam;
213 }
214 {
215 E T7F, T7E, T3i, T3l, T7H, T7I;
216 T7F = T3h - T3g;
217 T3i = T3g + T3h;
218 T3l = T3j - T3k;
219 T7E = T3j + T3k;
220 Tda = T2p - T2w;
221 T2x = T2p + T2w;
222 T65 = FNMS(KP414213562, T3i, T3l);
223 T3m = FMA(KP414213562, T3l, T3i);
224 T3s = T3q - T3r;
225 T7H = T3q + T3r;
226 T7I = T3o - T3n;
227 T3p = T3n + T3o;
228 T8I = FNMS(KP414213562, T7E, T7F);
229 T7G = FMA(KP414213562, T7F, T7E);
230 T8J = FMA(KP414213562, T7H, T7I);
231 T7J = FNMS(KP414213562, T7I, T7H);
232 }
233 }
234 }
235 }
236 {
237 E T3H, Ty, T3x, T2B, T3w, TB, T3I, T2E, TI, T2L, T3z, TF, T3E, T3K, T2I;
238 E T3A;
239 {
240 E T2z, T2A, Tz, TA, Tw, Tx, T2C, T2D;
241 Tw = ri[WS(is, 2)];
242 Tx = ri[WS(is, 34)];
243 T2z = ii[WS(is, 2)];
244 T64 = FMA(KP414213562, T3p, T3s);
245 T3t = FNMS(KP414213562, T3s, T3p);
246 T3H = Tw - Tx;
247 Ty = Tw + Tx;
248 T2A = ii[WS(is, 34)];
249 Tz = ri[WS(is, 18)];
250 TA = ri[WS(is, 50)];
251 T2C = ii[WS(is, 18)];
252 T3x = T2z - T2A;
253 T2B = T2z + T2A;
254 T3w = Tz - TA;
255 TB = Tz + TA;
256 T2D = ii[WS(is, 50)];
257 {
258 E T2J, T3C, T2K, TG, TH;
259 TG = ri[WS(is, 58)];
260 TH = ri[WS(is, 26)];
261 T2J = ii[WS(is, 58)];
262 T3I = T2C - T2D;
263 T2E = T2C + T2D;
264 T3C = TG - TH;
265 TI = TG + TH;
266 T2K = ii[WS(is, 26)];
267 {
268 E T2G, T2H, TD, TE, T3D;
269 TD = ri[WS(is, 10)];
270 TE = ri[WS(is, 42)];
271 T3D = T2J - T2K;
272 T2L = T2J + T2K;
273 T2G = ii[WS(is, 10)];
274 T3z = TD - TE;
275 TF = TD + TE;
276 T2H = ii[WS(is, 42)];
277 T3E = T3C - T3D;
278 T3K = T3C + T3D;
279 T2I = T2G + T2H;
280 T3A = T2G - T2H;
281 }
282 }
283 }
284 {
285 E T3L, T3B, T2F, T2M;
286 {
287 E Tat, Taq, Tar, TC, TJ, Tau;
288 Tat = Ty - TB;
289 TC = Ty + TB;
290 TJ = TF + TI;
291 Taq = TI - TF;
292 T3L = T3A - T3z;
293 T3B = T3z + T3A;
294 Tdd = TC - TJ;
295 TK = TC + TJ;
296 Tar = T2B - T2E;
297 T2F = T2B + T2E;
298 Tau = T2I - T2L;
299 T2M = T2I + T2L;
300 Tce = Tar - Taq;
301 Tas = Taq + Tar;
302 Tcf = Tat - Tau;
303 Tav = Tat + Tau;
304 }
305 {
306 E T7M, T7Q, T7N, T3y, T3F, T7P;
307 T7M = T3x - T3w;
308 T3y = T3w + T3x;
309 T3F = T3B - T3E;
310 T7Q = T3B + T3E;
311 Tdc = T2F - T2M;
312 T2N = T2F + T2M;
313 T6G = FMA(KP707106781, T3F, T3y);
314 T3G = FNMS(KP707106781, T3F, T3y);
315 T7N = T3L + T3K;
316 T3M = T3K - T3L;
317 T3J = T3H - T3I;
318 T7P = T3H + T3I;
319 T9k = FNMS(KP707106781, T7N, T7M);
320 T7O = FMA(KP707106781, T7N, T7M);
321 T9l = FNMS(KP707106781, T7Q, T7P);
322 T7R = FMA(KP707106781, T7Q, T7P);
323 }
324 }
325 }
326 {
327 E T5I, T1z, Tb8, T56, T53, T1C, Tb9, T5L, T1J, Tbq, T58, T1G, T5N, T5h, Tbp;
328 E T5b;
329 {
330 E T54, T55, T1A, T1B, T1x, T1y, T5J, T5K;
331 T1x = ri[WS(is, 63)];
332 T1y = ri[WS(is, 31)];
333 T54 = ii[WS(is, 63)];
334 T6H = FMA(KP707106781, T3M, T3J);
335 T3N = FNMS(KP707106781, T3M, T3J);
336 T5I = T1x - T1y;
337 T1z = T1x + T1y;
338 T55 = ii[WS(is, 31)];
339 T1A = ri[WS(is, 15)];
340 T1B = ri[WS(is, 47)];
341 T5J = ii[WS(is, 15)];
342 Tb8 = T54 + T55;
343 T56 = T54 - T55;
344 T53 = T1A - T1B;
345 T1C = T1A + T1B;
346 T5K = ii[WS(is, 47)];
347 {
348 E T5e, T5d, T5f, T1H, T1I;
349 T1H = ri[WS(is, 55)];
350 T1I = ri[WS(is, 23)];
351 T5e = ii[WS(is, 55)];
352 Tb9 = T5J + T5K;
353 T5L = T5J - T5K;
354 T5d = T1H - T1I;
355 T1J = T1H + T1I;
356 T5f = ii[WS(is, 23)];
357 {
358 E T59, T5a, T1E, T1F, T5g;
359 T1E = ri[WS(is, 7)];
360 T1F = ri[WS(is, 39)];
361 T5g = T5e - T5f;
362 Tbq = T5e + T5f;
363 T59 = ii[WS(is, 7)];
364 T58 = T1E - T1F;
365 T1G = T1E + T1F;
366 T5a = ii[WS(is, 39)];
367 T5N = T5d + T5g;
368 T5h = T5d - T5g;
369 Tbp = T59 + T5a;
370 T5b = T59 - T5a;
371 }
372 }
373 }
374 {
375 E Tb7, T5O, Tba, T57, T5i, T8x, T8w, T5M, T5P;
376 {
377 E Tbo, T5c, Tbr, Tdw, T1D, T1K, Tdv;
378 Tbo = T1z - T1C;
379 T1D = T1z + T1C;
380 T1K = T1G + T1J;
381 Tb7 = T1J - T1G;
382 T5c = T58 + T5b;
383 T5O = T5b - T58;
384 TdA = T1D - T1K;
385 T1L = T1D + T1K;
386 Tbr = Tbp - Tbq;
387 Tdw = Tbp + Tbq;
388 Tba = Tb8 - Tb9;
389 Tdv = Tb8 + Tb9;
390 T8l = T56 - T53;
391 T57 = T53 + T56;
392 Tct = Tbo - Tbr;
393 Tbs = Tbo + Tbr;
394 Teo = Tdv + Tdw;
395 Tdx = Tdv - Tdw;
396 T5i = T5c - T5h;
397 T8x = T5c + T5h;
398 }
399 T8w = T5I + T5L;
400 T5M = T5I - T5L;
401 T5P = T5N - T5O;
402 T8m = T5O + T5N;
403 T6Y = FMA(KP707106781, T5i, T57);
404 T5j = FNMS(KP707106781, T5i, T57);
405 T6V = FMA(KP707106781, T5P, T5M);
406 T5Q = FNMS(KP707106781, T5P, T5M);
407 T9z = FNMS(KP707106781, T8x, T8w);
408 T8y = FMA(KP707106781, T8x, T8w);
409 Tcw = Tba - Tb7;
410 Tbb = Tb7 + Tba;
411 }
412 }
413 }
414 {
415 E T82, T83, T45, T42, T87, T8a;
416 {
417 E T40, TN, T3Q, T2Q, T3P, TQ, T41, T2T, TX, T30, T3S, TU, T3X, T43, T2X;
418 E T3T;
419 {
420 E T2O, T2P, TO, TP, TL, TM, T2R, T2S;
421 TL = ri[WS(is, 62)];
422 TM = ri[WS(is, 30)];
423 T2O = ii[WS(is, 62)];
424 T9C = FNMS(KP707106781, T8m, T8l);
425 T8n = FMA(KP707106781, T8m, T8l);
426 T40 = TL - TM;
427 TN = TL + TM;
428 T2P = ii[WS(is, 30)];
429 TO = ri[WS(is, 14)];
430 TP = ri[WS(is, 46)];
431 T2R = ii[WS(is, 14)];
432 T3Q = T2O - T2P;
433 T2Q = T2O + T2P;
434 T3P = TO - TP;
435 TQ = TO + TP;
436 T2S = ii[WS(is, 46)];
437 {
438 E T2Y, T3V, T2Z, TV, TW;
439 TV = ri[WS(is, 54)];
440 TW = ri[WS(is, 22)];
441 T2Y = ii[WS(is, 54)];
442 T41 = T2R - T2S;
443 T2T = T2R + T2S;
444 T3V = TV - TW;
445 TX = TV + TW;
446 T2Z = ii[WS(is, 22)];
447 {
448 E T2V, T2W, TS, TT, T3W;
449 TS = ri[WS(is, 6)];
450 TT = ri[WS(is, 38)];
451 T3W = T2Y - T2Z;
452 T30 = T2Y + T2Z;
453 T2V = ii[WS(is, 6)];
454 T3S = TS - TT;
455 TU = TS + TT;
456 T2W = ii[WS(is, 38)];
457 T3X = T3V - T3W;
458 T43 = T3V + T3W;
459 T2X = T2V + T2W;
460 T3T = T2V - T2W;
461 }
462 }
463 }
464 {
465 E T44, T3U, T2U, T31;
466 {
467 E TaA, Tax, Tay, TR, TY, TaB;
468 TaA = TN - TQ;
469 TR = TN + TQ;
470 TY = TU + TX;
471 Tax = TX - TU;
472 T44 = T3T - T3S;
473 T3U = T3S + T3T;
474 Tdf = TR - TY;
475 TZ = TR + TY;
476 Tay = T2Q - T2T;
477 T2U = T2Q + T2T;
478 TaB = T2X - T30;
479 T31 = T2X + T30;
480 Tch = Tay - Tax;
481 Taz = Tax + Tay;
482 Tci = TaA - TaB;
483 TaC = TaA + TaB;
484 }
485 {
486 E T7T, T7X, T7U, T3R, T3Y, T7W;
487 T7T = T3Q - T3P;
488 T3R = T3P + T3Q;
489 T3Y = T3U - T3X;
490 T7X = T3U + T3X;
491 Tdg = T2U - T31;
492 T32 = T2U + T31;
493 T6J = FMA(KP707106781, T3Y, T3R);
494 T3Z = FNMS(KP707106781, T3Y, T3R);
495 T7U = T44 + T43;
496 T45 = T43 - T44;
497 T42 = T40 - T41;
498 T7W = T40 + T41;
499 T9n = FNMS(KP707106781, T7U, T7T);
500 T7V = FMA(KP707106781, T7U, T7T);
501 T9o = FNMS(KP707106781, T7X, T7W);
502 T7Y = FMA(KP707106781, T7X, T7W);
503 }
504 }
505 }
506 {
507 E T4P, T14, TaH, T4d, T4a, T17, TaI, T4S, T1e, TaZ, T4f, T1b, T4U, T4o, TaY;
508 E T4i;
509 {
510 E T4b, T4c, T15, T16, T12, T13, T4Q, T4R;
511 T12 = ri[WS(is, 1)];
512 T13 = ri[WS(is, 33)];
513 T4b = ii[WS(is, 1)];
514 T6K = FMA(KP707106781, T45, T42);
515 T46 = FNMS(KP707106781, T45, T42);
516 T4P = T12 - T13;
517 T14 = T12 + T13;
518 T4c = ii[WS(is, 33)];
519 T15 = ri[WS(is, 17)];
520 T16 = ri[WS(is, 49)];
521 T4Q = ii[WS(is, 17)];
522 TaH = T4b + T4c;
523 T4d = T4b - T4c;
524 T4a = T15 - T16;
525 T17 = T15 + T16;
526 T4R = ii[WS(is, 49)];
527 {
528 E T4l, T4k, T4m, T1c, T1d;
529 T1c = ri[WS(is, 57)];
530 T1d = ri[WS(is, 25)];
531 T4l = ii[WS(is, 57)];
532 TaI = T4Q + T4R;
533 T4S = T4Q - T4R;
534 T4k = T1c - T1d;
535 T1e = T1c + T1d;
536 T4m = ii[WS(is, 25)];
537 {
538 E T4g, T4h, T19, T1a, T4n;
539 T19 = ri[WS(is, 9)];
540 T1a = ri[WS(is, 41)];
541 T4n = T4l - T4m;
542 TaZ = T4l + T4m;
543 T4g = ii[WS(is, 9)];
544 T4f = T19 - T1a;
545 T1b = T19 + T1a;
546 T4h = ii[WS(is, 41)];
547 T4U = T4k + T4n;
548 T4o = T4k - T4n;
549 TaY = T4g + T4h;
550 T4i = T4g - T4h;
551 }
552 }
553 }
554 {
555 E TaG, T4V, TaJ, T4e, T4p, T8e, T8d, T4T, T4W;
556 {
557 E TaX, T4j, Tb0, Tdl, T18, T1f, Tdk;
558 TaX = T14 - T17;
559 T18 = T14 + T17;
560 T1f = T1b + T1e;
561 TaG = T1e - T1b;
562 T4j = T4f + T4i;
563 T4V = T4i - T4f;
564 Tdp = T18 - T1f;
565 T1g = T18 + T1f;
566 Tb0 = TaY - TaZ;
567 Tdl = TaY + TaZ;
568 TaJ = TaH - TaI;
569 Tdk = TaH + TaI;
570 T82 = T4d - T4a;
571 T4e = T4a + T4d;
572 Tcm = TaX - Tb0;
573 Tb1 = TaX + Tb0;
574 Tej = Tdk + Tdl;
575 Tdm = Tdk - Tdl;
576 T4p = T4j - T4o;
577 T8e = T4j + T4o;
578 }
579 T8d = T4P + T4S;
580 T4T = T4P - T4S;
581 T4W = T4U - T4V;
582 T83 = T4V + T4U;
583 T6R = FMA(KP707106781, T4p, T4e);
584 T4q = FNMS(KP707106781, T4p, T4e);
585 T6O = FMA(KP707106781, T4W, T4T);
586 T4X = FNMS(KP707106781, T4W, T4T);
587 T9s = FNMS(KP707106781, T8e, T8d);
588 T8f = FMA(KP707106781, T8e, T8d);
589 Tcp = TaJ - TaG;
590 TaK = TaG + TaJ;
591 }
592 }
593 {
594 E T85, T4L, TaO, T1n, Tdq, TaN, T86, T4G, T4r, T1q, T4s, TaR, T4z, T4w, T1t;
595 E T4t;
596 {
597 E T4C, T1j, T4D, TaL, T4K, T4H, T1m, T4E;
598 {
599 E T4I, T4J, T1h, T1i, T1k, T1l;
600 T1h = ri[WS(is, 5)];
601 T1i = ri[WS(is, 37)];
602 T4I = ii[WS(is, 5)];
603 T9v = FNMS(KP707106781, T83, T82);
604 T84 = FMA(KP707106781, T83, T82);
605 T4C = T1h - T1i;
606 T1j = T1h + T1i;
607 T4J = ii[WS(is, 37)];
608 T1k = ri[WS(is, 21)];
609 T1l = ri[WS(is, 53)];
610 T4D = ii[WS(is, 21)];
611 TaL = T4I + T4J;
612 T4K = T4I - T4J;
613 T4H = T1k - T1l;
614 T1m = T1k + T1l;
615 T4E = ii[WS(is, 53)];
616 }
617 {
618 E T4x, T4y, T1r, T1s;
619 {
620 E T1o, T4F, TaM, T1p;
621 T1o = ri[WS(is, 61)];
622 T85 = T4K - T4H;
623 T4L = T4H + T4K;
624 TaO = T1j - T1m;
625 T1n = T1j + T1m;
626 T4F = T4D - T4E;
627 TaM = T4D + T4E;
628 T1p = ri[WS(is, 29)];
629 T4x = ii[WS(is, 61)];
630 Tdq = TaL + TaM;
631 TaN = TaL - TaM;
632 T86 = T4C + T4F;
633 T4G = T4C - T4F;
634 T4r = T1o - T1p;
635 T1q = T1o + T1p;
636 T4y = ii[WS(is, 29)];
637 }
638 T1r = ri[WS(is, 13)];
639 T1s = ri[WS(is, 45)];
640 T4s = ii[WS(is, 13)];
641 TaR = T4x + T4y;
642 T4z = T4x - T4y;
643 T4w = T1r - T1s;
644 T1t = T1r + T1s;
645 T4t = ii[WS(is, 45)];
646 }
647 }
648 {
649 E T88, TaP, T89, TaU, T4Z, T4B, T4M, T4Y, T8g, T8h;
650 {
651 E T4A, Tb2, Tdr, T4v, Tb3;
652 {
653 E TaQ, T1u, T4u, TaS, TaT;
654 T88 = T4z - T4w;
655 T4A = T4w + T4z;
656 TaQ = T1q - T1t;
657 T1u = T1q + T1t;
658 T4u = T4s - T4t;
659 TaS = T4s + T4t;
660 Tb2 = TaO + TaN;
661 TaP = TaN - TaO;
662 Tdr = TaR + TaS;
663 TaT = TaR - TaS;
664 T89 = T4r + T4u;
665 T4v = T4r - T4u;
666 Tdn = T1u - T1n;
667 T1v = T1n + T1u;
668 Tb3 = TaQ - TaT;
669 TaU = TaQ + TaT;
670 }
671 T4Z = FNMS(KP414213562, T4v, T4A);
672 T4B = FMA(KP414213562, T4A, T4v);
673 Tcq = Tb2 - Tb3;
674 Tb4 = Tb2 + Tb3;
675 Tek = Tdq + Tdr;
676 Tds = Tdq - Tdr;
677 T4M = FNMS(KP414213562, T4L, T4G);
678 T4Y = FMA(KP414213562, T4G, T4L);
679 }
680 T87 = FNMS(KP414213562, T86, T85);
681 T8g = FMA(KP414213562, T85, T86);
682 T6P = T4M + T4B;
683 T4N = T4B - T4M;
684 T6S = T4Y + T4Z;
685 T50 = T4Y - T4Z;
686 T8h = FNMS(KP414213562, T88, T89);
687 T8a = FMA(KP414213562, T89, T88);
688 T9w = T8g - T8h;
689 T8i = T8g + T8h;
690 Tcn = TaU - TaP;
691 TaV = TaP + TaU;
692 }
693 }
694 {
695 E T8o, T5E, Tbf, T1S, TdB, Tbe, T8p, T5z, T5k, T1V, T5l, Tbi, T5s, T5p, T1Y;
696 E T5m;
697 {
698 E T5v, T1O, T5w, Tbc, T5D, T5A, T1R, T5x;
699 {
700 E T5B, T5C, T1M, T1N, T1P, T1Q;
701 T1M = ri[WS(is, 3)];
702 T1N = ri[WS(is, 35)];
703 T5B = ii[WS(is, 3)];
704 T9t = T8a - T87;
705 T8b = T87 + T8a;
706 T5v = T1M - T1N;
707 T1O = T1M + T1N;
708 T5C = ii[WS(is, 35)];
709 T1P = ri[WS(is, 19)];
710 T1Q = ri[WS(is, 51)];
711 T5w = ii[WS(is, 19)];
712 Tbc = T5B + T5C;
713 T5D = T5B - T5C;
714 T5A = T1P - T1Q;
715 T1R = T1P + T1Q;
716 T5x = ii[WS(is, 51)];
717 }
718 {
719 E T5q, T5r, T1W, T1X;
720 {
721 E T1T, T5y, Tbd, T1U;
722 T1T = ri[WS(is, 59)];
723 T8o = T5D - T5A;
724 T5E = T5A + T5D;
725 Tbf = T1O - T1R;
726 T1S = T1O + T1R;
727 T5y = T5w - T5x;
728 Tbd = T5w + T5x;
729 T1U = ri[WS(is, 27)];
730 T5q = ii[WS(is, 59)];
731 TdB = Tbc + Tbd;
732 Tbe = Tbc - Tbd;
733 T8p = T5v + T5y;
734 T5z = T5v - T5y;
735 T5k = T1T - T1U;
736 T1V = T1T + T1U;
737 T5r = ii[WS(is, 27)];
738 }
739 T1W = ri[WS(is, 11)];
740 T1X = ri[WS(is, 43)];
741 T5l = ii[WS(is, 11)];
742 Tbi = T5q + T5r;
743 T5s = T5q - T5r;
744 T5p = T1W - T1X;
745 T1Y = T1W + T1X;
746 T5m = ii[WS(is, 43)];
747 }
748 }
749 {
750 E T8r, Tbg, T8s, Tbl, T5S, T5u, T5F, T5R, T8z, T8A;
751 {
752 E T5t, Tbt, TdC, T5o, Tbu;
753 {
754 E Tbh, T1Z, T5n, Tbj, Tbk;
755 T8r = T5s - T5p;
756 T5t = T5p + T5s;
757 Tbh = T1V - T1Y;
758 T1Z = T1V + T1Y;
759 T5n = T5l - T5m;
760 Tbj = T5l + T5m;
761 Tbt = Tbf + Tbe;
762 Tbg = Tbe - Tbf;
763 TdC = Tbi + Tbj;
764 Tbk = Tbi - Tbj;
765 T8s = T5k + T5n;
766 T5o = T5k - T5n;
767 Tdy = T1Z - T1S;
768 T20 = T1S + T1Z;
769 Tbu = Tbh - Tbk;
770 Tbl = Tbh + Tbk;
771 }
772 T5S = FNMS(KP414213562, T5o, T5t);
773 T5u = FMA(KP414213562, T5t, T5o);
774 Tcx = Tbt - Tbu;
775 Tbv = Tbt + Tbu;
776 Tep = TdB + TdC;
777 TdD = TdB - TdC;
778 T5F = FNMS(KP414213562, T5E, T5z);
779 T5R = FMA(KP414213562, T5z, T5E);
780 }
781 T8q = FNMS(KP414213562, T8p, T8o);
782 T8z = FMA(KP414213562, T8o, T8p);
783 T6W = T5F + T5u;
784 T5G = T5u - T5F;
785 T6Z = T5R + T5S;
786 T5T = T5R - T5S;
787 T8A = FNMS(KP414213562, T8r, T8s);
788 T8t = FMA(KP414213562, T8s, T8r);
789 T9D = T8z - T8A;
790 T8B = T8z + T8A;
791 Tcu = Tbl - Tbg;
792 Tbm = Tbg + Tbl;
793 }
794 }
795 }
796 {
797 E T9A, T8u, TbE, Tao, Td7, Td8;
798 {
799 E Teq, Ten, Tex, Teh, TeB, Tev, Tey, Tem, Te9, Tec;
800 {
801 E Tef, Teu, Tel, T11, Tei, Tet, T2y, TeI, T23, T22, T33, Teg, TeD, TeG, T34;
802 E TeH;
803 {
804 E TeE, TeF, Tv, T10, T1w, T21;
805 Tef = Tf - Tu;
806 Tv = Tf + Tu;
807 T10 = TK + TZ;
808 Teu = TZ - TK;
809 Tel = Tej - Tek;
810 TeE = Tej + Tek;
811 T9A = T8t - T8q;
812 T8u = T8q + T8t;
813 TeD = Tv - T10;
814 T11 = Tv + T10;
815 TeF = Teo + Tep;
816 Teq = Teo - Tep;
817 Tei = T1g - T1v;
818 T1w = T1g + T1v;
819 T21 = T1L + T20;
820 Ten = T1L - T20;
821 Tet = T2i - T2x;
822 T2y = T2i + T2x;
823 TeI = TeE + TeF;
824 TeG = TeE - TeF;
825 T23 = T21 - T1w;
826 T22 = T1w + T21;
827 T33 = T2N + T32;
828 Teg = T2N - T32;
829 }
830 ro[WS(os, 16)] = TeD + TeG;
831 ro[WS(os, 48)] = TeD - TeG;
832 ro[0] = T11 + T22;
833 ro[WS(os, 32)] = T11 - T22;
834 T34 = T2y - T33;
835 TeH = T2y + T33;
836 io[0] = TeH + TeI;
837 io[WS(os, 32)] = TeH - TeI;
838 io[WS(os, 48)] = T34 - T23;
839 io[WS(os, 16)] = T23 + T34;
840 Tex = Tef - Teg;
841 Teh = Tef + Teg;
842 TeB = Teu + Tet;
843 Tev = Tet - Teu;
844 Tey = Tel - Tei;
845 Tem = Tei + Tel;
846 }
847 {
848 E TdV, Tdb, TdJ, Te5, TdE, Tdz, Te6, Tdi, Teb, Te3, TdZ, TdY, TdW, TdM, TdR;
849 E Tdu;
850 {
851 E TdL, Tde, Tdh, TdK, Tez, Ter;
852 TdV = Td9 + Tda;
853 Tdb = Td9 - Tda;
854 TdJ = TdH - TdI;
855 Te5 = TdI + TdH;
856 Tez = Ten + Teq;
857 Ter = Ten - Teq;
858 TdL = Tdd + Tdc;
859 Tde = Tdc - Tdd;
860 {
861 E TeA, TeC, Tew, Tes;
862 TeA = Tey - Tez;
863 TeC = Tey + Tez;
864 Tew = Ter - Tem;
865 Tes = Tem + Ter;
866 ro[WS(os, 24)] = FMA(KP707106781, TeA, Tex);
867 ro[WS(os, 56)] = FNMS(KP707106781, TeA, Tex);
868 io[WS(os, 8)] = FMA(KP707106781, TeC, TeB);
869 io[WS(os, 40)] = FNMS(KP707106781, TeC, TeB);
870 io[WS(os, 24)] = FMA(KP707106781, Tew, Tev);
871 io[WS(os, 56)] = FNMS(KP707106781, Tew, Tev);
872 ro[WS(os, 8)] = FMA(KP707106781, Tes, Teh);
873 ro[WS(os, 40)] = FNMS(KP707106781, Tes, Teh);
874 Tdh = Tdf + Tdg;
875 TdK = Tdf - Tdg;
876 }
877 {
878 E Te1, Te2, Tdo, Tdt;
879 TdE = TdA - TdD;
880 Te1 = TdA + TdD;
881 Te2 = Tdy + Tdx;
882 Tdz = Tdx - Tdy;
883 Te6 = Tde + Tdh;
884 Tdi = Tde - Tdh;
885 Teb = FMA(KP414213562, Te1, Te2);
886 Te3 = FNMS(KP414213562, Te2, Te1);
887 TdZ = Tdn + Tdm;
888 Tdo = Tdm - Tdn;
889 Tdt = Tdp - Tds;
890 TdY = Tdp + Tds;
891 TdW = TdL + TdK;
892 TdM = TdK - TdL;
893 TdR = FNMS(KP414213562, Tdo, Tdt);
894 Tdu = FMA(KP414213562, Tdt, Tdo);
895 }
896 }
897 {
898 E TdT, Tea, Te0, TdU;
899 {
900 E Tdj, TdQ, TdF, TdP, TdN, TdS, TdO, TdG;
901 TdT = FNMS(KP707106781, Tdi, Tdb);
902 Tdj = FMA(KP707106781, Tdi, Tdb);
903 Tea = FNMS(KP414213562, TdY, TdZ);
904 Te0 = FMA(KP414213562, TdZ, TdY);
905 TdQ = FMA(KP414213562, Tdz, TdE);
906 TdF = FNMS(KP414213562, TdE, Tdz);
907 TdP = FMA(KP707106781, TdM, TdJ);
908 TdN = FNMS(KP707106781, TdM, TdJ);
909 TdS = TdQ - TdR;
910 TdU = TdR + TdQ;
911 TdO = Tdu + TdF;
912 TdG = Tdu - TdF;
913 io[WS(os, 12)] = FMA(KP923879532, TdS, TdP);
914 io[WS(os, 44)] = FNMS(KP923879532, TdS, TdP);
915 ro[WS(os, 12)] = FMA(KP923879532, TdG, Tdj);
916 ro[WS(os, 44)] = FNMS(KP923879532, TdG, Tdj);
917 io[WS(os, 60)] = FMA(KP923879532, TdO, TdN);
918 io[WS(os, 28)] = FNMS(KP923879532, TdO, TdN);
919 }
920 {
921 E Te8, Te7, Ted, Tee, TdX, Te4;
922 Te9 = FNMS(KP707106781, TdW, TdV);
923 TdX = FMA(KP707106781, TdW, TdV);
924 Te4 = Te0 + Te3;
925 Te8 = Te3 - Te0;
926 Te7 = FNMS(KP707106781, Te6, Te5);
927 Ted = FMA(KP707106781, Te6, Te5);
928 ro[WS(os, 60)] = FMA(KP923879532, TdU, TdT);
929 ro[WS(os, 28)] = FNMS(KP923879532, TdU, TdT);
930 ro[WS(os, 4)] = FMA(KP923879532, Te4, TdX);
931 ro[WS(os, 36)] = FNMS(KP923879532, Te4, TdX);
932 Tee = Tea + Teb;
933 Tec = Tea - Teb;
934 io[WS(os, 4)] = FMA(KP923879532, Tee, Ted);
935 io[WS(os, 36)] = FNMS(KP923879532, Tee, Ted);
936 io[WS(os, 20)] = FMA(KP923879532, Te8, Te7);
937 io[WS(os, 52)] = FNMS(KP923879532, Te8, Te7);
938 }
939 }
940 }
941 {
942 E TcP, Tcd, TcZ, TcD, Tcy, Tcv, TcT, Td0, Tck, Td4, TcX, TcS, TcK, Tcs, TcQ;
943 E TcG;
944 {
945 E TcF, Tcg, Tcj, TcE, TcV, TcW, Tcc, TcC, Tco, Tcr;
946 TbE = TbC + TbD;
947 Tcc = TbC - TbD;
948 TcC = Tan - Tak;
949 Tao = Tak + Tan;
950 TcF = FNMS(KP414213562, Tce, Tcf);
951 Tcg = FMA(KP414213562, Tcf, Tce);
952 ro[WS(os, 20)] = FMA(KP923879532, Tec, Te9);
953 ro[WS(os, 52)] = FNMS(KP923879532, Tec, Te9);
954 TcP = FNMS(KP707106781, Tcc, Tcb);
955 Tcd = FMA(KP707106781, Tcc, Tcb);
956 TcZ = FNMS(KP707106781, TcC, TcB);
957 TcD = FMA(KP707106781, TcC, TcB);
958 Tcj = FNMS(KP414213562, Tci, Tch);
959 TcE = FMA(KP414213562, Tch, Tci);
960 Tcy = FNMS(KP707106781, Tcx, Tcw);
961 TcV = FMA(KP707106781, Tcx, Tcw);
962 TcW = FMA(KP707106781, Tcu, Tct);
963 Tcv = FNMS(KP707106781, Tcu, Tct);
964 TcT = FMA(KP707106781, Tcn, Tcm);
965 Tco = FNMS(KP707106781, Tcn, Tcm);
966 Td0 = Tcg + Tcj;
967 Tck = Tcg - Tcj;
968 Td4 = FMA(KP198912367, TcV, TcW);
969 TcX = FNMS(KP198912367, TcW, TcV);
970 Tcr = FNMS(KP707106781, Tcq, Tcp);
971 TcS = FMA(KP707106781, Tcq, Tcp);
972 TcK = FNMS(KP668178637, Tco, Tcr);
973 Tcs = FMA(KP668178637, Tcr, Tco);
974 TcQ = TcF + TcE;
975 TcG = TcE - TcF;
976 }
977 {
978 E TcJ, Td5, TcU, TcM;
979 {
980 E Tcl, TcL, Tcz, TcN, TcH, TcO, TcI, TcA;
981 TcJ = FNMS(KP923879532, Tck, Tcd);
982 Tcl = FMA(KP923879532, Tck, Tcd);
983 Td5 = FNMS(KP198912367, TcS, TcT);
984 TcU = FMA(KP198912367, TcT, TcS);
985 TcL = FMA(KP668178637, Tcv, Tcy);
986 Tcz = FNMS(KP668178637, Tcy, Tcv);
987 TcN = FMA(KP923879532, TcG, TcD);
988 TcH = FNMS(KP923879532, TcG, TcD);
989 TcO = TcK + TcL;
990 TcM = TcK - TcL;
991 TcI = Tcz - Tcs;
992 TcA = Tcs + Tcz;
993 io[WS(os, 6)] = FMA(KP831469612, TcO, TcN);
994 io[WS(os, 38)] = FNMS(KP831469612, TcO, TcN);
995 ro[WS(os, 6)] = FMA(KP831469612, TcA, Tcl);
996 ro[WS(os, 38)] = FNMS(KP831469612, TcA, Tcl);
997 io[WS(os, 22)] = FMA(KP831469612, TcI, TcH);
998 io[WS(os, 54)] = FNMS(KP831469612, TcI, TcH);
999 }
1000 {
1001 E Td2, Td1, Td3, Td6, TcR, TcY;
1002 Td7 = FMA(KP923879532, TcQ, TcP);
1003 TcR = FNMS(KP923879532, TcQ, TcP);
1004 TcY = TcU - TcX;
1005 Td2 = TcU + TcX;
1006 Td1 = FMA(KP923879532, Td0, TcZ);
1007 Td3 = FNMS(KP923879532, Td0, TcZ);
1008 ro[WS(os, 22)] = FMA(KP831469612, TcM, TcJ);
1009 ro[WS(os, 54)] = FNMS(KP831469612, TcM, TcJ);
1010 ro[WS(os, 14)] = FMA(KP980785280, TcY, TcR);
1011 ro[WS(os, 46)] = FNMS(KP980785280, TcY, TcR);
1012 Td6 = Td4 - Td5;
1013 Td8 = Td5 + Td4;
1014 io[WS(os, 14)] = FMA(KP980785280, Td6, Td3);
1015 io[WS(os, 46)] = FNMS(KP980785280, Td6, Td3);
1016 io[WS(os, 62)] = FMA(KP980785280, Td2, Td1);
1017 io[WS(os, 30)] = FNMS(KP980785280, Td2, Td1);
1018 }
1019 }
1020 }
1021 }
1022 {
1023 E T3f, T66, T63, T3u, T7z, T7A, Tc5, Tc8;
1024 {
1025 E TbR, Tap, Tc1, TbF, Tbw, Tbn, TbV, Tc2, TaE, Tc7, TbZ, TbU, TbN, Tb6, TbS;
1026 E TbI;
1027 {
1028 E TbH, Taw, TaD, TbG, TbX, TbY, TaW, Tb5;
1029 TbH = FMA(KP414213562, Tas, Tav);
1030 Taw = FNMS(KP414213562, Tav, Tas);
1031 ro[WS(os, 62)] = FMA(KP980785280, Td8, Td7);
1032 ro[WS(os, 30)] = FNMS(KP980785280, Td8, Td7);
1033 TbR = FMA(KP707106781, Tao, Tah);
1034 Tap = FNMS(KP707106781, Tao, Tah);
1035 Tc1 = FMA(KP707106781, TbE, TbB);
1036 TbF = FNMS(KP707106781, TbE, TbB);
1037 TaD = FMA(KP414213562, TaC, Taz);
1038 TbG = FNMS(KP414213562, Taz, TaC);
1039 Tbw = FNMS(KP707106781, Tbv, Tbs);
1040 TbX = FMA(KP707106781, Tbv, Tbs);
1041 TbY = FMA(KP707106781, Tbm, Tbb);
1042 Tbn = FNMS(KP707106781, Tbm, Tbb);
1043 TbV = FMA(KP707106781, TaV, TaK);
1044 TaW = FNMS(KP707106781, TaV, TaK);
1045 Tc2 = Taw + TaD;
1046 TaE = Taw - TaD;
1047 Tc7 = FMA(KP198912367, TbX, TbY);
1048 TbZ = FNMS(KP198912367, TbY, TbX);
1049 Tb5 = FNMS(KP707106781, Tb4, Tb1);
1050 TbU = FMA(KP707106781, Tb4, Tb1);
1051 TbN = FNMS(KP668178637, TaW, Tb5);
1052 Tb6 = FMA(KP668178637, Tb5, TaW);
1053 TbS = TbH + TbG;
1054 TbI = TbG - TbH;
1055 }
1056 {
1057 E TbP, Tc6, TbW, TbQ;
1058 {
1059 E TaF, TbM, Tbx, TbL, TbJ, TbO, TbK, Tby;
1060 TbP = FNMS(KP923879532, TaE, Tap);
1061 TaF = FMA(KP923879532, TaE, Tap);
1062 Tc6 = FNMS(KP198912367, TbU, TbV);
1063 TbW = FMA(KP198912367, TbV, TbU);
1064 TbM = FMA(KP668178637, Tbn, Tbw);
1065 Tbx = FNMS(KP668178637, Tbw, Tbn);
1066 TbL = FMA(KP923879532, TbI, TbF);
1067 TbJ = FNMS(KP923879532, TbI, TbF);
1068 TbO = TbM - TbN;
1069 TbQ = TbN + TbM;
1070 TbK = Tb6 + Tbx;
1071 Tby = Tb6 - Tbx;
1072 io[WS(os, 10)] = FMA(KP831469612, TbO, TbL);
1073 io[WS(os, 42)] = FNMS(KP831469612, TbO, TbL);
1074 ro[WS(os, 10)] = FMA(KP831469612, Tby, TaF);
1075 ro[WS(os, 42)] = FNMS(KP831469612, Tby, TaF);
1076 io[WS(os, 58)] = FMA(KP831469612, TbK, TbJ);
1077 io[WS(os, 26)] = FNMS(KP831469612, TbK, TbJ);
1078 }
1079 {
1080 E Tc4, Tc3, Tc9, Tca, TbT, Tc0;
1081 Tc5 = FNMS(KP923879532, TbS, TbR);
1082 TbT = FMA(KP923879532, TbS, TbR);
1083 Tc0 = TbW + TbZ;
1084 Tc4 = TbZ - TbW;
1085 Tc3 = FNMS(KP923879532, Tc2, Tc1);
1086 Tc9 = FMA(KP923879532, Tc2, Tc1);
1087 ro[WS(os, 58)] = FMA(KP831469612, TbQ, TbP);
1088 ro[WS(os, 26)] = FNMS(KP831469612, TbQ, TbP);
1089 ro[WS(os, 2)] = FMA(KP980785280, Tc0, TbT);
1090 ro[WS(os, 34)] = FNMS(KP980785280, Tc0, TbT);
1091 Tca = Tc6 + Tc7;
1092 Tc8 = Tc6 - Tc7;
1093 io[WS(os, 2)] = FMA(KP980785280, Tca, Tc9);
1094 io[WS(os, 34)] = FNMS(KP980785280, Tca, Tc9);
1095 io[WS(os, 18)] = FMA(KP980785280, Tc4, Tc3);
1096 io[WS(os, 50)] = FNMS(KP980785280, Tc4, Tc3);
1097 }
1098 }
1099 }
1100 {
1101 E T7h, T6F, T70, T6X, T7x, T7m, T7w, T7p, T7s, T6M, T7c, T6U, T7r, T75, T7i;
1102 E T78;
1103 {
1104 E T6T, T6Q, T77, T6I, T6L, T76, T73, T74;
1105 {
1106 E T7k, T7l, T6D, T6E, T7n, T7o;
1107 T3f = FMA(KP707106781, T3e, T37);
1108 T6D = FNMS(KP707106781, T3e, T37);
1109 T6E = T65 + T64;
1110 T66 = T64 - T65;
1111 T6T = FNMS(KP923879532, T6S, T6R);
1112 T7k = FMA(KP923879532, T6S, T6R);
1113 ro[WS(os, 18)] = FMA(KP980785280, Tc8, Tc5);
1114 ro[WS(os, 50)] = FNMS(KP980785280, Tc8, Tc5);
1115 T7h = FMA(KP923879532, T6E, T6D);
1116 T6F = FNMS(KP923879532, T6E, T6D);
1117 T7l = FMA(KP923879532, T6P, T6O);
1118 T6Q = FNMS(KP923879532, T6P, T6O);
1119 T70 = FNMS(KP923879532, T6Z, T6Y);
1120 T7n = FMA(KP923879532, T6Z, T6Y);
1121 T7o = FMA(KP923879532, T6W, T6V);
1122 T6X = FNMS(KP923879532, T6W, T6V);
1123 T77 = FNMS(KP198912367, T6G, T6H);
1124 T6I = FMA(KP198912367, T6H, T6G);
1125 T7x = FNMS(KP098491403, T7k, T7l);
1126 T7m = FMA(KP098491403, T7l, T7k);
1127 T7w = FMA(KP098491403, T7n, T7o);
1128 T7p = FNMS(KP098491403, T7o, T7n);
1129 T6L = FNMS(KP198912367, T6K, T6J);
1130 T76 = FMA(KP198912367, T6J, T6K);
1131 }
1132 T63 = FMA(KP707106781, T62, T5Z);
1133 T73 = FNMS(KP707106781, T62, T5Z);
1134 T7s = T6I + T6L;
1135 T6M = T6I - T6L;
1136 T7c = FNMS(KP820678790, T6Q, T6T);
1137 T6U = FMA(KP820678790, T6T, T6Q);
1138 T74 = T3m + T3t;
1139 T3u = T3m - T3t;
1140 T7r = FMA(KP923879532, T74, T73);
1141 T75 = FNMS(KP923879532, T74, T73);
1142 T7i = T77 + T76;
1143 T78 = T76 - T77;
1144 }
1145 {
1146 E T7b, T6N, T7f, T79, T71, T7d;
1147 T7b = FNMS(KP980785280, T6M, T6F);
1148 T6N = FMA(KP980785280, T6M, T6F);
1149 T7f = FMA(KP980785280, T78, T75);
1150 T79 = FNMS(KP980785280, T78, T75);
1151 T71 = FNMS(KP820678790, T70, T6X);
1152 T7d = FMA(KP820678790, T6X, T70);
1153 {
1154 E T7u, T7t, T7v, T7y, T7j, T7q;
1155 T7z = FMA(KP980785280, T7i, T7h);
1156 T7j = FNMS(KP980785280, T7i, T7h);
1157 T7q = T7m - T7p;
1158 T7u = T7m + T7p;
1159 {
1160 E T7g, T7e, T72, T7a;
1161 T7g = T7c + T7d;
1162 T7e = T7c - T7d;
1163 T72 = T6U + T71;
1164 T7a = T71 - T6U;
1165 ro[WS(os, 23)] = FMA(KP773010453, T7e, T7b);
1166 ro[WS(os, 55)] = FNMS(KP773010453, T7e, T7b);
1167 io[WS(os, 7)] = FMA(KP773010453, T7g, T7f);
1168 io[WS(os, 39)] = FNMS(KP773010453, T7g, T7f);
1169 io[WS(os, 23)] = FMA(KP773010453, T7a, T79);
1170 io[WS(os, 55)] = FNMS(KP773010453, T7a, T79);
1171 ro[WS(os, 7)] = FMA(KP773010453, T72, T6N);
1172 ro[WS(os, 39)] = FNMS(KP773010453, T72, T6N);
1173 ro[WS(os, 47)] = FNMS(KP995184726, T7q, T7j);
1174 ro[WS(os, 15)] = FMA(KP995184726, T7q, T7j);
1175 }
1176 T7t = FMA(KP980785280, T7s, T7r);
1177 T7v = FNMS(KP980785280, T7s, T7r);
1178 T7y = T7w - T7x;
1179 T7A = T7x + T7w;
1180 io[WS(os, 15)] = FMA(KP995184726, T7y, T7v);
1181 io[WS(os, 47)] = FNMS(KP995184726, T7y, T7v);
1182 io[WS(os, 63)] = FMA(KP995184726, T7u, T7t);
1183 io[WS(os, 31)] = FNMS(KP995184726, T7u, T7t);
1184 }
1185 }
1186 }
1187 {
1188 E T7D, T8K, T8H, T7K, Tad, Tae, T6x, T6A;
1189 {
1190 E T9V, T9j, T9E, T9B, Tab, Ta0, Taa, Ta3, Ta6, T9q, T9Q, T9y, Ta5, T9J, T9W;
1191 E T9M;
1192 {
1193 E T9x, T9u, T9L, T9m, T9p, T9K, T9H, T9I;
1194 {
1195 E T9Y, T9Z, T9h, T9i, Ta1, Ta2;
1196 T7D = FMA(KP707106781, T7C, T7B);
1197 T9h = FNMS(KP707106781, T7C, T7B);
1198 T9i = T8I - T8J;
1199 T8K = T8I + T8J;
1200 T9x = FNMS(KP923879532, T9w, T9v);
1201 T9Y = FMA(KP923879532, T9w, T9v);
1202 ro[WS(os, 63)] = FMA(KP995184726, T7A, T7z);
1203 ro[WS(os, 31)] = FNMS(KP995184726, T7A, T7z);
1204 T9V = FNMS(KP923879532, T9i, T9h);
1205 T9j = FMA(KP923879532, T9i, T9h);
1206 T9Z = FMA(KP923879532, T9t, T9s);
1207 T9u = FNMS(KP923879532, T9t, T9s);
1208 T9E = FNMS(KP923879532, T9D, T9C);
1209 Ta1 = FMA(KP923879532, T9D, T9C);
1210 Ta2 = FMA(KP923879532, T9A, T9z);
1211 T9B = FNMS(KP923879532, T9A, T9z);
1212 T9L = FNMS(KP668178637, T9k, T9l);
1213 T9m = FMA(KP668178637, T9l, T9k);
1214 Tab = FNMS(KP303346683, T9Y, T9Z);
1215 Ta0 = FMA(KP303346683, T9Z, T9Y);
1216 Taa = FMA(KP303346683, Ta1, Ta2);
1217 Ta3 = FNMS(KP303346683, Ta2, Ta1);
1218 T9p = FNMS(KP668178637, T9o, T9n);
1219 T9K = FMA(KP668178637, T9n, T9o);
1220 }
1221 T8H = FMA(KP707106781, T8G, T8F);
1222 T9H = FNMS(KP707106781, T8G, T8F);
1223 Ta6 = T9m + T9p;
1224 T9q = T9m - T9p;
1225 T9Q = FNMS(KP534511135, T9u, T9x);
1226 T9y = FMA(KP534511135, T9x, T9u);
1227 T9I = T7J - T7G;
1228 T7K = T7G + T7J;
1229 Ta5 = FNMS(KP923879532, T9I, T9H);
1230 T9J = FMA(KP923879532, T9I, T9H);
1231 T9W = T9L + T9K;
1232 T9M = T9K - T9L;
1233 }
1234 {
1235 E T9P, T9r, T9T, T9N, T9F, T9R;
1236 T9P = FNMS(KP831469612, T9q, T9j);
1237 T9r = FMA(KP831469612, T9q, T9j);
1238 T9T = FMA(KP831469612, T9M, T9J);
1239 T9N = FNMS(KP831469612, T9M, T9J);
1240 T9F = FNMS(KP534511135, T9E, T9B);
1241 T9R = FMA(KP534511135, T9B, T9E);
1242 {
1243 E Ta8, Ta7, Ta9, Tac, T9X, Ta4;
1244 Tad = FMA(KP831469612, T9W, T9V);
1245 T9X = FNMS(KP831469612, T9W, T9V);
1246 Ta4 = Ta0 - Ta3;
1247 Ta8 = Ta0 + Ta3;
1248 {
1249 E T9U, T9S, T9G, T9O;
1250 T9U = T9Q + T9R;
1251 T9S = T9Q - T9R;
1252 T9G = T9y + T9F;
1253 T9O = T9F - T9y;
1254 ro[WS(os, 21)] = FMA(KP881921264, T9S, T9P);
1255 ro[WS(os, 53)] = FNMS(KP881921264, T9S, T9P);
1256 io[WS(os, 5)] = FMA(KP881921264, T9U, T9T);
1257 io[WS(os, 37)] = FNMS(KP881921264, T9U, T9T);
1258 io[WS(os, 21)] = FMA(KP881921264, T9O, T9N);
1259 io[WS(os, 53)] = FNMS(KP881921264, T9O, T9N);
1260 ro[WS(os, 5)] = FMA(KP881921264, T9G, T9r);
1261 ro[WS(os, 37)] = FNMS(KP881921264, T9G, T9r);
1262 ro[WS(os, 45)] = FNMS(KP956940335, Ta4, T9X);
1263 ro[WS(os, 13)] = FMA(KP956940335, Ta4, T9X);
1264 }
1265 Ta7 = FMA(KP831469612, Ta6, Ta5);
1266 Ta9 = FNMS(KP831469612, Ta6, Ta5);
1267 Tac = Taa - Tab;
1268 Tae = Tab + Taa;
1269 io[WS(os, 13)] = FMA(KP956940335, Tac, Ta9);
1270 io[WS(os, 45)] = FNMS(KP956940335, Tac, Ta9);
1271 io[WS(os, 61)] = FMA(KP956940335, Ta8, Ta7);
1272 io[WS(os, 29)] = FNMS(KP956940335, Ta8, Ta7);
1273 }
1274 }
1275 }
1276 {
1277 E T6j, T3v, T5U, T5H, T6y, T6o, T6z, T6r, T6u, T48, T6f, T52, T6t, T67, T6k;
1278 E T6a;
1279 {
1280 E T51, T4O, T69, T3O, T47, T68;
1281 {
1282 E T6m, T6n, T6p, T6q;
1283 T51 = FNMS(KP923879532, T50, T4X);
1284 T6m = FMA(KP923879532, T50, T4X);
1285 ro[WS(os, 61)] = FMA(KP956940335, Tae, Tad);
1286 ro[WS(os, 29)] = FNMS(KP956940335, Tae, Tad);
1287 T6j = FMA(KP923879532, T3u, T3f);
1288 T3v = FNMS(KP923879532, T3u, T3f);
1289 T6n = FMA(KP923879532, T4N, T4q);
1290 T4O = FNMS(KP923879532, T4N, T4q);
1291 T5U = FNMS(KP923879532, T5T, T5Q);
1292 T6p = FMA(KP923879532, T5T, T5Q);
1293 T6q = FMA(KP923879532, T5G, T5j);
1294 T5H = FNMS(KP923879532, T5G, T5j);
1295 T69 = FMA(KP668178637, T3G, T3N);
1296 T3O = FNMS(KP668178637, T3N, T3G);
1297 T6y = FNMS(KP303346683, T6m, T6n);
1298 T6o = FMA(KP303346683, T6n, T6m);
1299 T6z = FMA(KP303346683, T6p, T6q);
1300 T6r = FNMS(KP303346683, T6q, T6p);
1301 T47 = FMA(KP668178637, T46, T3Z);
1302 T68 = FNMS(KP668178637, T3Z, T46);
1303 }
1304 T6u = T3O + T47;
1305 T48 = T3O - T47;
1306 T6f = FNMS(KP534511135, T4O, T51);
1307 T52 = FMA(KP534511135, T51, T4O);
1308 T6t = FMA(KP923879532, T66, T63);
1309 T67 = FNMS(KP923879532, T66, T63);
1310 T6k = T69 + T68;
1311 T6a = T68 - T69;
1312 }
1313 {
1314 E T6h, T49, T6d, T6b, T5V, T6e;
1315 T6h = FNMS(KP831469612, T48, T3v);
1316 T49 = FMA(KP831469612, T48, T3v);
1317 T6d = FMA(KP831469612, T6a, T67);
1318 T6b = FNMS(KP831469612, T6a, T67);
1319 T5V = FNMS(KP534511135, T5U, T5H);
1320 T6e = FMA(KP534511135, T5H, T5U);
1321 {
1322 E T6w, T6v, T6B, T6C, T6l, T6s;
1323 T6x = FNMS(KP831469612, T6k, T6j);
1324 T6l = FMA(KP831469612, T6k, T6j);
1325 T6s = T6o + T6r;
1326 T6w = T6r - T6o;
1327 {
1328 E T6g, T6i, T5W, T6c;
1329 T6g = T6e - T6f;
1330 T6i = T6f + T6e;
1331 T5W = T52 - T5V;
1332 T6c = T52 + T5V;
1333 ro[WS(os, 59)] = FMA(KP881921264, T6i, T6h);
1334 ro[WS(os, 27)] = FNMS(KP881921264, T6i, T6h);
1335 io[WS(os, 11)] = FMA(KP881921264, T6g, T6d);
1336 io[WS(os, 43)] = FNMS(KP881921264, T6g, T6d);
1337 io[WS(os, 59)] = FMA(KP881921264, T6c, T6b);
1338 io[WS(os, 27)] = FNMS(KP881921264, T6c, T6b);
1339 ro[WS(os, 11)] = FMA(KP881921264, T5W, T49);
1340 ro[WS(os, 43)] = FNMS(KP881921264, T5W, T49);
1341 ro[WS(os, 35)] = FNMS(KP956940335, T6s, T6l);
1342 ro[WS(os, 3)] = FMA(KP956940335, T6s, T6l);
1343 }
1344 T6v = FNMS(KP831469612, T6u, T6t);
1345 T6B = FMA(KP831469612, T6u, T6t);
1346 T6C = T6y + T6z;
1347 T6A = T6y - T6z;
1348 io[WS(os, 3)] = FMA(KP956940335, T6C, T6B);
1349 io[WS(os, 35)] = FNMS(KP956940335, T6C, T6B);
1350 io[WS(os, 19)] = FMA(KP956940335, T6w, T6v);
1351 io[WS(os, 51)] = FNMS(KP956940335, T6w, T6v);
1352 }
1353 }
1354 }
1355 {
1356 E T8X, T7L, T8C, T8v, T9c, T92, T9d, T95, T98, T80, T8T, T8k, T97, T8L, T8Y;
1357 E T8O;
1358 {
1359 E T8j, T8c, T8N, T7S, T7Z, T8M;
1360 {
1361 E T90, T91, T93, T94;
1362 T8j = FNMS(KP923879532, T8i, T8f);
1363 T90 = FMA(KP923879532, T8i, T8f);
1364 ro[WS(os, 19)] = FMA(KP956940335, T6A, T6x);
1365 ro[WS(os, 51)] = FNMS(KP956940335, T6A, T6x);
1366 T8X = FMA(KP923879532, T7K, T7D);
1367 T7L = FNMS(KP923879532, T7K, T7D);
1368 T91 = FMA(KP923879532, T8b, T84);
1369 T8c = FNMS(KP923879532, T8b, T84);
1370 T8C = FNMS(KP923879532, T8B, T8y);
1371 T93 = FMA(KP923879532, T8B, T8y);
1372 T94 = FMA(KP923879532, T8u, T8n);
1373 T8v = FNMS(KP923879532, T8u, T8n);
1374 T8N = FMA(KP198912367, T7O, T7R);
1375 T7S = FNMS(KP198912367, T7R, T7O);
1376 T9c = FNMS(KP098491403, T90, T91);
1377 T92 = FMA(KP098491403, T91, T90);
1378 T9d = FMA(KP098491403, T93, T94);
1379 T95 = FNMS(KP098491403, T94, T93);
1380 T7Z = FMA(KP198912367, T7Y, T7V);
1381 T8M = FNMS(KP198912367, T7V, T7Y);
1382 }
1383 T98 = T7S + T7Z;
1384 T80 = T7S - T7Z;
1385 T8T = FNMS(KP820678790, T8c, T8j);
1386 T8k = FMA(KP820678790, T8j, T8c);
1387 T97 = FMA(KP923879532, T8K, T8H);
1388 T8L = FNMS(KP923879532, T8K, T8H);
1389 T8Y = T8N + T8M;
1390 T8O = T8M - T8N;
1391 }
1392 {
1393 E T8V, T81, T8R, T8P, T8D, T8S;
1394 T8V = FNMS(KP980785280, T80, T7L);
1395 T81 = FMA(KP980785280, T80, T7L);
1396 T8R = FMA(KP980785280, T8O, T8L);
1397 T8P = FNMS(KP980785280, T8O, T8L);
1398 T8D = FNMS(KP820678790, T8C, T8v);
1399 T8S = FMA(KP820678790, T8v, T8C);
1400 {
1401 E T9a, T99, T9f, T9g, T8Z, T96;
1402 T9b = FNMS(KP980785280, T8Y, T8X);
1403 T8Z = FMA(KP980785280, T8Y, T8X);
1404 T96 = T92 + T95;
1405 T9a = T95 - T92;
1406 {
1407 E T8U, T8W, T8E, T8Q;
1408 T8U = T8S - T8T;
1409 T8W = T8T + T8S;
1410 T8E = T8k - T8D;
1411 T8Q = T8k + T8D;
1412 ro[WS(os, 57)] = FMA(KP773010453, T8W, T8V);
1413 ro[WS(os, 25)] = FNMS(KP773010453, T8W, T8V);
1414 io[WS(os, 9)] = FMA(KP773010453, T8U, T8R);
1415 io[WS(os, 41)] = FNMS(KP773010453, T8U, T8R);
1416 io[WS(os, 57)] = FMA(KP773010453, T8Q, T8P);
1417 io[WS(os, 25)] = FNMS(KP773010453, T8Q, T8P);
1418 ro[WS(os, 9)] = FMA(KP773010453, T8E, T81);
1419 ro[WS(os, 41)] = FNMS(KP773010453, T8E, T81);
1420 ro[WS(os, 33)] = FNMS(KP995184726, T96, T8Z);
1421 ro[WS(os, 1)] = FMA(KP995184726, T96, T8Z);
1422 }
1423 T99 = FNMS(KP980785280, T98, T97);
1424 T9f = FMA(KP980785280, T98, T97);
1425 T9g = T9c + T9d;
1426 T9e = T9c - T9d;
1427 io[WS(os, 1)] = FMA(KP995184726, T9g, T9f);
1428 io[WS(os, 33)] = FNMS(KP995184726, T9g, T9f);
1429 io[WS(os, 17)] = FMA(KP995184726, T9a, T99);
1430 io[WS(os, 49)] = FNMS(KP995184726, T9a, T99);
1431 }
1432 }
1433 }
1434 }
1435 }
1436 }
1437 }
1438 ro[WS(os, 17)] = FMA(KP995184726, T9e, T9b);
1439 ro[WS(os, 49)] = FNMS(KP995184726, T9e, T9b);
1440 }
1441 }
1442 }
1443
1444 static const kdft_desc desc = { 64, "n1_64", {520, 0, 392, 0}, &GENUS, 0, 0, 0, 0 };
1445
1446 void X(codelet_n1_64) (planner *p) {
1447 X(kdft_register) (p, n1_64, &desc);
1448 }
1449
1450 #else /* HAVE_FMA */
1451
1452 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include n.h */
1453
1454 /*
1455 * This function contains 912 FP additions, 248 FP multiplications,
1456 * (or, 808 additions, 144 multiplications, 104 fused multiply/add),
1457 * 172 stack variables, 15 constants, and 256 memory accesses
1458 */
1459 #include "n.h"
1460
1461 static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
1462 {
1463 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
1464 DK(KP634393284, +0.634393284163645498215171613225493370675687095);
1465 DK(KP098017140, +0.098017140329560601994195563888641845861136673);
1466 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
1467 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
1468 DK(KP471396736, +0.471396736825997648556387625905254377657460319);
1469 DK(KP290284677, +0.290284677254462367636192375817395274691476278);
1470 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
1471 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
1472 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
1473 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
1474 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
1475 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
1476 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
1477 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1478 {
1479 INT i;
1480 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) {
1481 E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e;
1482 E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I;
1483 E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R;
1484 E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C;
1485 E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V;
1486 E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O;
1487 E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50;
1488 E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z;
1489 E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D;
1490 {
1491 E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g;
1492 E T3c;
1493 {
1494 E T1, T2, T24, T25;
1495 T1 = ri[0];
1496 T2 = ri[WS(is, 32)];
1497 T3 = T1 + T2;
1498 T35 = T1 - T2;
1499 T24 = ii[0];
1500 T25 = ii[WS(is, 32)];
1501 T26 = T24 + T25;
1502 T5Y = T24 - T25;
1503 }
1504 {
1505 E T4, T5, T27, T28;
1506 T4 = ri[WS(is, 16)];
1507 T5 = ri[WS(is, 48)];
1508 T6 = T4 + T5;
1509 T5X = T4 - T5;
1510 T27 = ii[WS(is, 16)];
1511 T28 = ii[WS(is, 48)];
1512 T29 = T27 + T28;
1513 T36 = T27 - T28;
1514 }
1515 {
1516 E T8, T9, T2b, T2c;
1517 T8 = ri[WS(is, 8)];
1518 T9 = ri[WS(is, 40)];
1519 Ta = T8 + T9;
1520 T39 = T8 - T9;
1521 T2b = ii[WS(is, 8)];
1522 T2c = ii[WS(is, 40)];
1523 T2d = T2b + T2c;
1524 T38 = T2b - T2c;
1525 }
1526 {
1527 E Tb, Tc, T2e, T2f;
1528 Tb = ri[WS(is, 56)];
1529 Tc = ri[WS(is, 24)];
1530 Td = Tb + Tc;
1531 T3b = Tb - Tc;
1532 T2e = ii[WS(is, 56)];
1533 T2f = ii[WS(is, 24)];
1534 T2g = T2e + T2f;
1535 T3c = T2e - T2f;
1536 }
1537 {
1538 E T7, Te, T2a, T2h;
1539 T37 = T35 - T36;
1540 T7B = T35 + T36;
1541 T8F = T5Y - T5X;
1542 T5Z = T5X + T5Y;
1543 T7 = T3 + T6;
1544 Te = Ta + Td;
1545 Tf = T7 + Te;
1546 Td9 = T7 - Te;
1547 {
1548 E Tbz, TbA, T60, T61;
1549 Tbz = T26 - T29;
1550 TbA = Td - Ta;
1551 TbB = Tbz - TbA;
1552 TcB = TbA + Tbz;
1553 T60 = T3b - T3c;
1554 T61 = T39 + T38;
1555 T62 = KP707106781 * (T60 - T61);
1556 T7C = KP707106781 * (T61 + T60);
1557 }
1558 T2a = T26 + T29;
1559 T2h = T2d + T2g;
1560 T2i = T2a + T2h;
1561 TdH = T2a - T2h;
1562 {
1563 E Taf, Tag, T3a, T3d;
1564 Taf = T3 - T6;
1565 Tag = T2d - T2g;
1566 Tah = Taf - Tag;
1567 Tcb = Taf + Tag;
1568 T3a = T38 - T39;
1569 T3d = T3b + T3c;
1570 T3e = KP707106781 * (T3a - T3d);
1571 T8G = KP707106781 * (T3a + T3d);
1572 }
1573 }
1574 }
1575 {
1576 E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v;
1577 E T3r;
1578 {
1579 E Tg, Th, T2j, T2k;
1580 Tg = ri[WS(is, 4)];
1581 Th = ri[WS(is, 36)];
1582 Ti = Tg + Th;
1583 T3j = Tg - Th;
1584 T2j = ii[WS(is, 4)];
1585 T2k = ii[WS(is, 36)];
1586 T2l = T2j + T2k;
1587 T3h = T2j - T2k;
1588 }
1589 {
1590 E Tj, Tk, T2m, T2n;
1591 Tj = ri[WS(is, 20)];
1592 Tk = ri[WS(is, 52)];
1593 Tl = Tj + Tk;
1594 T3g = Tj - Tk;
1595 T2m = ii[WS(is, 20)];
1596 T2n = ii[WS(is, 52)];
1597 T2o = T2m + T2n;
1598 T3k = T2m - T2n;
1599 }
1600 {
1601 E Tn, To, T2q, T2r;
1602 Tn = ri[WS(is, 60)];
1603 To = ri[WS(is, 28)];
1604 Tp = Tn + To;
1605 T3q = Tn - To;
1606 T2q = ii[WS(is, 60)];
1607 T2r = ii[WS(is, 28)];
1608 T2s = T2q + T2r;
1609 T3o = T2q - T2r;
1610 }
1611 {
1612 E Tq, Tr, T2t, T2u;
1613 Tq = ri[WS(is, 12)];
1614 Tr = ri[WS(is, 44)];
1615 Ts = Tq + Tr;
1616 T3n = Tq - Tr;
1617 T2t = ii[WS(is, 12)];
1618 T2u = ii[WS(is, 44)];
1619 T2v = T2t + T2u;
1620 T3r = T2t - T2u;
1621 }
1622 {
1623 E Tm, Tt, Tai, Taj;
1624 Tm = Ti + Tl;
1625 Tt = Tp + Ts;
1626 Tu = Tm + Tt;
1627 TdI = Tt - Tm;
1628 Tai = T2l - T2o;
1629 Taj = Ti - Tl;
1630 Tak = Tai - Taj;
1631 TbD = Taj + Tai;
1632 }
1633 {
1634 E Tal, Tam, T2p, T2w;
1635 Tal = Tp - Ts;
1636 Tam = T2s - T2v;
1637 Tan = Tal + Tam;
1638 TbC = Tal - Tam;
1639 T2p = T2l + T2o;
1640 T2w = T2s + T2v;
1641 T2x = T2p + T2w;
1642 Tda = T2p - T2w;
1643 }
1644 {
1645 E T3i, T3l, T7E, T7F;
1646 T3i = T3g + T3h;
1647 T3l = T3j - T3k;
1648 T3m = FNMS(KP923879532, T3l, KP382683432 * T3i);
1649 T65 = FMA(KP923879532, T3i, KP382683432 * T3l);
1650 T7E = T3h - T3g;
1651 T7F = T3j + T3k;
1652 T7G = FNMS(KP382683432, T7F, KP923879532 * T7E);
1653 T8J = FMA(KP382683432, T7E, KP923879532 * T7F);
1654 }
1655 {
1656 E T7H, T7I, T3p, T3s;
1657 T7H = T3o - T3n;
1658 T7I = T3q + T3r;
1659 T7J = FMA(KP923879532, T7H, KP382683432 * T7I);
1660 T8I = FNMS(KP382683432, T7H, KP923879532 * T7I);
1661 T3p = T3n + T3o;
1662 T3s = T3q - T3r;
1663 T3t = FMA(KP382683432, T3p, KP923879532 * T3s);
1664 T64 = FNMS(KP923879532, T3p, KP382683432 * T3s);
1665 }
1666 }
1667 {
1668 E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I;
1669 E T3E;
1670 {
1671 E Tw, Tx, T2C, T2D;
1672 Tw = ri[WS(is, 2)];
1673 Tx = ri[WS(is, 34)];
1674 Ty = Tw + Tx;
1675 T3H = Tw - Tx;
1676 {
1677 E T2z, T2A, Tz, TA;
1678 T2z = ii[WS(is, 2)];
1679 T2A = ii[WS(is, 34)];
1680 T2B = T2z + T2A;
1681 T3x = T2z - T2A;
1682 Tz = ri[WS(is, 18)];
1683 TA = ri[WS(is, 50)];
1684 TB = Tz + TA;
1685 T3w = Tz - TA;
1686 }
1687 T2C = ii[WS(is, 18)];
1688 T2D = ii[WS(is, 50)];
1689 T2E = T2C + T2D;
1690 T3I = T2C - T2D;
1691 {
1692 E TG, TH, T3z, T2J, T2K, T3A;
1693 TG = ri[WS(is, 58)];
1694 TH = ri[WS(is, 26)];
1695 T3z = TG - TH;
1696 T2J = ii[WS(is, 58)];
1697 T2K = ii[WS(is, 26)];
1698 T3A = T2J - T2K;
1699 TI = TG + TH;
1700 T3L = T3z + T3A;
1701 T2L = T2J + T2K;
1702 T3B = T3z - T3A;
1703 }
1704 {
1705 E TD, TE, T3C, T2G, T2H, T3D;
1706 TD = ri[WS(is, 10)];
1707 TE = ri[WS(is, 42)];
1708 T3C = TD - TE;
1709 T2G = ii[WS(is, 10)];
1710 T2H = ii[WS(is, 42)];
1711 T3D = T2G - T2H;
1712 TF = TD + TE;
1713 T3K = T3D - T3C;
1714 T2I = T2G + T2H;
1715 T3E = T3C + T3D;
1716 }
1717 }
1718 {
1719 E TC, TJ, Taq, Tar;
1720 TC = Ty + TB;
1721 TJ = TF + TI;
1722 TK = TC + TJ;
1723 Tdd = TC - TJ;
1724 Taq = T2B - T2E;
1725 Tar = TI - TF;
1726 Tas = Taq - Tar;
1727 Tce = Tar + Taq;
1728 }
1729 {
1730 E Tat, Tau, T2F, T2M;
1731 Tat = Ty - TB;
1732 Tau = T2I - T2L;
1733 Tav = Tat - Tau;
1734 Tcf = Tat + Tau;
1735 T2F = T2B + T2E;
1736 T2M = T2I + T2L;
1737 T2N = T2F + T2M;
1738 Tdc = T2F - T2M;
1739 }
1740 {
1741 E T3y, T3F, T7M, T7N;
1742 T3y = T3w + T3x;
1743 T3F = KP707106781 * (T3B - T3E);
1744 T3G = T3y - T3F;
1745 T6G = T3y + T3F;
1746 T7M = T3x - T3w;
1747 T7N = KP707106781 * (T3K + T3L);
1748 T7O = T7M - T7N;
1749 T9k = T7M + T7N;
1750 }
1751 {
1752 E T7P, T7Q, T3J, T3M;
1753 T7P = T3H + T3I;
1754 T7Q = KP707106781 * (T3E + T3B);
1755 T7R = T7P - T7Q;
1756 T9l = T7P + T7Q;
1757 T3J = T3H - T3I;
1758 T3M = KP707106781 * (T3K - T3L);
1759 T3N = T3J - T3M;
1760 T6H = T3J + T3M;
1761 }
1762 }
1763 {
1764 E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c;
1765 E T5O;
1766 {
1767 E T1x, T1y, T54, T55;
1768 T1x = ri[WS(is, 63)];
1769 T1y = ri[WS(is, 31)];
1770 T1z = T1x + T1y;
1771 T53 = T1x - T1y;
1772 {
1773 E T5J, T5K, T1A, T1B;
1774 T5J = ii[WS(is, 63)];
1775 T5K = ii[WS(is, 31)];
1776 T5L = T5J - T5K;
1777 Tbo = T5J + T5K;
1778 T1A = ri[WS(is, 15)];
1779 T1B = ri[WS(is, 47)];
1780 T1C = T1A + T1B;
1781 T5I = T1A - T1B;
1782 }
1783 T54 = ii[WS(is, 15)];
1784 T55 = ii[WS(is, 47)];
1785 T56 = T54 - T55;
1786 Tbp = T54 + T55;
1787 {
1788 E T1H, T1I, T5d, T5e, T5f, T5g;
1789 T1H = ri[WS(is, 55)];
1790 T1I = ri[WS(is, 23)];
1791 T5d = T1H - T1I;
1792 T5e = ii[WS(is, 55)];
1793 T5f = ii[WS(is, 23)];
1794 T5g = T5e - T5f;
1795 T1J = T1H + T1I;
1796 Tb9 = T5e + T5f;
1797 T5h = T5d + T5g;
1798 T5N = T5d - T5g;
1799 }
1800 {
1801 E T1E, T1F, T5b, T58, T59, T5a;
1802 T1E = ri[WS(is, 7)];
1803 T1F = ri[WS(is, 39)];
1804 T5b = T1E - T1F;
1805 T58 = ii[WS(is, 7)];
1806 T59 = ii[WS(is, 39)];
1807 T5a = T58 - T59;
1808 T1G = T1E + T1F;
1809 Tb8 = T58 + T59;
1810 T5c = T5a - T5b;
1811 T5O = T5b + T5a;
1812 }
1813 }
1814 {
1815 E T1D, T1K, Tbq, Tbr;
1816 T1D = T1z + T1C;
1817 T1K = T1G + T1J;
1818 T1L = T1D + T1K;
1819 Tdv = T1D - T1K;
1820 Tbq = Tbo - Tbp;
1821 Tbr = T1J - T1G;
1822 Tbs = Tbq - Tbr;
1823 Tcw = Tbr + Tbq;
1824 }
1825 {
1826 E TdA, TdB, T57, T5i;
1827 TdA = Tbo + Tbp;
1828 TdB = Tb8 + Tb9;
1829 TdC = TdA - TdB;
1830 Teo = TdA + TdB;
1831 T57 = T53 - T56;
1832 T5i = KP707106781 * (T5c - T5h);
1833 T5j = T57 - T5i;
1834 T6V = T57 + T5i;
1835 }
1836 {
1837 E T5M, T5P, T8w, T8x;
1838 T5M = T5I + T5L;
1839 T5P = KP707106781 * (T5N - T5O);
1840 T5Q = T5M - T5P;
1841 T6Y = T5M + T5P;
1842 T8w = T5L - T5I;
1843 T8x = KP707106781 * (T5c + T5h);
1844 T8y = T8w - T8x;
1845 T9C = T8w + T8x;
1846 }
1847 {
1848 E Tb7, Tba, T8l, T8m;
1849 Tb7 = T1z - T1C;
1850 Tba = Tb8 - Tb9;
1851 Tbb = Tb7 - Tba;
1852 Tct = Tb7 + Tba;
1853 T8l = T53 + T56;
1854 T8m = KP707106781 * (T5O + T5N);
1855 T8n = T8l - T8m;
1856 T9z = T8l + T8m;
1857 }
1858 }
1859 {
1860 E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X;
1861 E T3X;
1862 {
1863 E TL, TM, T2R, T2S;
1864 TL = ri[WS(is, 62)];
1865 TM = ri[WS(is, 30)];
1866 TN = TL + TM;
1867 T40 = TL - TM;
1868 {
1869 E T2O, T2P, TO, TP;
1870 T2O = ii[WS(is, 62)];
1871 T2P = ii[WS(is, 30)];
1872 T2Q = T2O + T2P;
1873 T3Q = T2O - T2P;
1874 TO = ri[WS(is, 14)];
1875 TP = ri[WS(is, 46)];
1876 TQ = TO + TP;
1877 T3P = TO - TP;
1878 }
1879 T2R = ii[WS(is, 14)];
1880 T2S = ii[WS(is, 46)];
1881 T2T = T2R + T2S;
1882 T41 = T2R - T2S;
1883 {
1884 E TV, TW, T3S, T2Y, T2Z, T3T;
1885 TV = ri[WS(is, 54)];
1886 TW = ri[WS(is, 22)];
1887 T3S = TV - TW;
1888 T2Y = ii[WS(is, 54)];
1889 T2Z = ii[WS(is, 22)];
1890 T3T = T2Y - T2Z;
1891 TX = TV + TW;
1892 T44 = T3S + T3T;
1893 T30 = T2Y + T2Z;
1894 T3U = T3S - T3T;
1895 }
1896 {
1897 E TS, TT, T3V, T2V, T2W, T3W;
1898 TS = ri[WS(is, 6)];
1899 TT = ri[WS(is, 38)];
1900 T3V = TS - TT;
1901 T2V = ii[WS(is, 6)];
1902 T2W = ii[WS(is, 38)];
1903 T3W = T2V - T2W;
1904 TU = TS + TT;
1905 T43 = T3W - T3V;
1906 T2X = T2V + T2W;
1907 T3X = T3V + T3W;
1908 }
1909 }
1910 {
1911 E TR, TY, Tax, Tay;
1912 TR = TN + TQ;
1913 TY = TU + TX;
1914 TZ = TR + TY;
1915 Tdf = TR - TY;
1916 Tax = T2Q - T2T;
1917 Tay = TX - TU;
1918 Taz = Tax - Tay;
1919 Tch = Tay + Tax;
1920 }
1921 {
1922 E TaA, TaB, T2U, T31;
1923 TaA = TN - TQ;
1924 TaB = T2X - T30;
1925 TaC = TaA - TaB;
1926 Tci = TaA + TaB;
1927 T2U = T2Q + T2T;
1928 T31 = T2X + T30;
1929 T32 = T2U + T31;
1930 Tdg = T2U - T31;
1931 }
1932 {
1933 E T3R, T3Y, T7T, T7U;
1934 T3R = T3P + T3Q;
1935 T3Y = KP707106781 * (T3U - T3X);
1936 T3Z = T3R - T3Y;
1937 T6J = T3R + T3Y;
1938 T7T = T40 + T41;
1939 T7U = KP707106781 * (T3X + T3U);
1940 T7V = T7T - T7U;
1941 T9n = T7T + T7U;
1942 }
1943 {
1944 E T7W, T7X, T42, T45;
1945 T7W = T3Q - T3P;
1946 T7X = KP707106781 * (T43 + T44);
1947 T7Y = T7W - T7X;
1948 T9o = T7W + T7X;
1949 T42 = T40 - T41;
1950 T45 = KP707106781 * (T43 - T44);
1951 T46 = T42 - T45;
1952 T6K = T42 + T45;
1953 }
1954 }
1955 {
1956 E T14, T4P, T4d, TaG, T17, T4a, T4S, TaH, T1e, TaZ, T4j, T4V, T1b, TaY, T4o;
1957 E T4U;
1958 {
1959 E T12, T13, T4Q, T4R;
1960 T12 = ri[WS(is, 1)];
1961 T13 = ri[WS(is, 33)];
1962 T14 = T12 + T13;
1963 T4P = T12 - T13;
1964 {
1965 E T4b, T4c, T15, T16;
1966 T4b = ii[WS(is, 1)];
1967 T4c = ii[WS(is, 33)];
1968 T4d = T4b - T4c;
1969 TaG = T4b + T4c;
1970 T15 = ri[WS(is, 17)];
1971 T16 = ri[WS(is, 49)];
1972 T17 = T15 + T16;
1973 T4a = T15 - T16;
1974 }
1975 T4Q = ii[WS(is, 17)];
1976 T4R = ii[WS(is, 49)];
1977 T4S = T4Q - T4R;
1978 TaH = T4Q + T4R;
1979 {
1980 E T1c, T1d, T4f, T4g, T4h, T4i;
1981 T1c = ri[WS(is, 57)];
1982 T1d = ri[WS(is, 25)];
1983 T4f = T1c - T1d;
1984 T4g = ii[WS(is, 57)];
1985 T4h = ii[WS(is, 25)];
1986 T4i = T4g - T4h;
1987 T1e = T1c + T1d;
1988 TaZ = T4g + T4h;
1989 T4j = T4f - T4i;
1990 T4V = T4f + T4i;
1991 }
1992 {
1993 E T19, T1a, T4k, T4l, T4m, T4n;
1994 T19 = ri[WS(is, 9)];
1995 T1a = ri[WS(is, 41)];
1996 T4k = T19 - T1a;
1997 T4l = ii[WS(is, 9)];
1998 T4m = ii[WS(is, 41)];
1999 T4n = T4l - T4m;
2000 T1b = T19 + T1a;
2001 TaY = T4l + T4m;
2002 T4o = T4k + T4n;
2003 T4U = T4n - T4k;
2004 }
2005 }
2006 {
2007 E T18, T1f, TaX, Tb0;
2008 T18 = T14 + T17;
2009 T1f = T1b + T1e;
2010 T1g = T18 + T1f;
2011 Tdp = T18 - T1f;
2012 TaX = T14 - T17;
2013 Tb0 = TaY - TaZ;
2014 Tb1 = TaX - Tb0;
2015 Tcm = TaX + Tb0;
2016 }
2017 {
2018 E Tdk, Tdl, T4e, T4p;
2019 Tdk = TaG + TaH;
2020 Tdl = TaY + TaZ;
2021 Tdm = Tdk - Tdl;
2022 Tej = Tdk + Tdl;
2023 T4e = T4a + T4d;
2024 T4p = KP707106781 * (T4j - T4o);
2025 T4q = T4e - T4p;
2026 T6R = T4e + T4p;
2027 }
2028 {
2029 E T4T, T4W, T8d, T8e;
2030 T4T = T4P - T4S;
2031 T4W = KP707106781 * (T4U - T4V);
2032 T4X = T4T - T4W;
2033 T6O = T4T + T4W;
2034 T8d = T4P + T4S;
2035 T8e = KP707106781 * (T4o + T4j);
2036 T8f = T8d - T8e;
2037 T9s = T8d + T8e;
2038 }
2039 {
2040 E TaI, TaJ, T82, T83;
2041 TaI = TaG - TaH;
2042 TaJ = T1e - T1b;
2043 TaK = TaI - TaJ;
2044 Tcp = TaJ + TaI;
2045 T82 = T4d - T4a;
2046 T83 = KP707106781 * (T4U + T4V);
2047 T84 = T82 - T83;
2048 T9v = T82 + T83;
2049 }
2050 }
2051 {
2052 E T1j, TaR, T1m, TaS, T4G, T4L, TaT, TaQ, T89, T88, T1q, TaM, T1t, TaN, T4v;
2053 E T4A, TaO, TaL, T86, T85;
2054 {
2055 E T4H, T4F, T4C, T4K;
2056 {
2057 E T1h, T1i, T4D, T4E;
2058 T1h = ri[WS(is, 5)];
2059 T1i = ri[WS(is, 37)];
2060 T1j = T1h + T1i;
2061 T4H = T1h - T1i;
2062 T4D = ii[WS(is, 5)];
2063 T4E = ii[WS(is, 37)];
2064 T4F = T4D - T4E;
2065 TaR = T4D + T4E;
2066 }
2067 {
2068 E T1k, T1l, T4I, T4J;
2069 T1k = ri[WS(is, 21)];
2070 T1l = ri[WS(is, 53)];
2071 T1m = T1k + T1l;
2072 T4C = T1k - T1l;
2073 T4I = ii[WS(is, 21)];
2074 T4J = ii[WS(is, 53)];
2075 T4K = T4I - T4J;
2076 TaS = T4I + T4J;
2077 }
2078 T4G = T4C + T4F;
2079 T4L = T4H - T4K;
2080 TaT = TaR - TaS;
2081 TaQ = T1j - T1m;
2082 T89 = T4H + T4K;
2083 T88 = T4F - T4C;
2084 }
2085 {
2086 E T4r, T4z, T4w, T4u;
2087 {
2088 E T1o, T1p, T4x, T4y;
2089 T1o = ri[WS(is, 61)];
2090 T1p = ri[WS(is, 29)];
2091 T1q = T1o + T1p;
2092 T4r = T1o - T1p;
2093 T4x = ii[WS(is, 61)];
2094 T4y = ii[WS(is, 29)];
2095 T4z = T4x - T4y;
2096 TaM = T4x + T4y;
2097 }
2098 {
2099 E T1r, T1s, T4s, T4t;
2100 T1r = ri[WS(is, 13)];
2101 T1s = ri[WS(is, 45)];
2102 T1t = T1r + T1s;
2103 T4w = T1r - T1s;
2104 T4s = ii[WS(is, 13)];
2105 T4t = ii[WS(is, 45)];
2106 T4u = T4s - T4t;
2107 TaN = T4s + T4t;
2108 }
2109 T4v = T4r - T4u;
2110 T4A = T4w + T4z;
2111 TaO = TaM - TaN;
2112 TaL = T1q - T1t;
2113 T86 = T4z - T4w;
2114 T85 = T4r + T4u;
2115 }
2116 {
2117 E T1n, T1u, Tb2, Tb3;
2118 T1n = T1j + T1m;
2119 T1u = T1q + T1t;
2120 T1v = T1n + T1u;
2121 Tdn = T1u - T1n;
2122 Tb2 = TaT - TaQ;
2123 Tb3 = TaL + TaO;
2124 Tb4 = KP707106781 * (Tb2 - Tb3);
2125 Tcq = KP707106781 * (Tb2 + Tb3);
2126 }
2127 {
2128 E Tdq, Tdr, T4B, T4M;
2129 Tdq = TaR + TaS;
2130 Tdr = TaM + TaN;
2131 Tds = Tdq - Tdr;
2132 Tek = Tdq + Tdr;
2133 T4B = FNMS(KP923879532, T4A, KP382683432 * T4v);
2134 T4M = FMA(KP923879532, T4G, KP382683432 * T4L);
2135 T4N = T4B - T4M;
2136 T6P = T4M + T4B;
2137 }
2138 {
2139 E T4Y, T4Z, T8g, T8h;
2140 T4Y = FNMS(KP923879532, T4L, KP382683432 * T4G);
2141 T4Z = FMA(KP382683432, T4A, KP923879532 * T4v);
2142 T50 = T4Y - T4Z;
2143 T6S = T4Y + T4Z;
2144 T8g = FNMS(KP382683432, T89, KP923879532 * T88);
2145 T8h = FMA(KP923879532, T86, KP382683432 * T85);
2146 T8i = T8g - T8h;
2147 T9w = T8g + T8h;
2148 }
2149 {
2150 E TaP, TaU, T87, T8a;
2151 TaP = TaL - TaO;
2152 TaU = TaQ + TaT;
2153 TaV = KP707106781 * (TaP - TaU);
2154 Tcn = KP707106781 * (TaU + TaP);
2155 T87 = FNMS(KP382683432, T86, KP923879532 * T85);
2156 T8a = FMA(KP382683432, T88, KP923879532 * T89);
2157 T8b = T87 - T8a;
2158 T9t = T8a + T87;
2159 }
2160 }
2161 {
2162 E T1O, Tbc, T1R, Tbd, T5o, T5t, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5z;
2163 E T5E, Tbk, Tbh, T8s, T8r;
2164 {
2165 E T5p, T5n, T5k, T5s;
2166 {
2167 E T1M, T1N, T5l, T5m;
2168 T1M = ri[WS(is, 3)];
2169 T1N = ri[WS(is, 35)];
2170 T1O = T1M + T1N;
2171 T5p = T1M - T1N;
2172 T5l = ii[WS(is, 3)];
2173 T5m = ii[WS(is, 35)];
2174 T5n = T5l - T5m;
2175 Tbc = T5l + T5m;
2176 }
2177 {
2178 E T1P, T1Q, T5q, T5r;
2179 T1P = ri[WS(is, 19)];
2180 T1Q = ri[WS(is, 51)];
2181 T1R = T1P + T1Q;
2182 T5k = T1P - T1Q;
2183 T5q = ii[WS(is, 19)];
2184 T5r = ii[WS(is, 51)];
2185 T5s = T5q - T5r;
2186 Tbd = T5q + T5r;
2187 }
2188 T5o = T5k + T5n;
2189 T5t = T5p - T5s;
2190 Tbf = T1O - T1R;
2191 Tbe = Tbc - Tbd;
2192 T8p = T5p + T5s;
2193 T8o = T5n - T5k;
2194 }
2195 {
2196 E T5A, T5y, T5v, T5D;
2197 {
2198 E T1T, T1U, T5w, T5x;
2199 T1T = ri[WS(is, 59)];
2200 T1U = ri[WS(is, 27)];
2201 T1V = T1T + T1U;
2202 T5A = T1T - T1U;
2203 T5w = ii[WS(is, 59)];
2204 T5x = ii[WS(is, 27)];
2205 T5y = T5w - T5x;
2206 Tbi = T5w + T5x;
2207 }
2208 {
2209 E T1W, T1X, T5B, T5C;
2210 T1W = ri[WS(is, 11)];
2211 T1X = ri[WS(is, 43)];
2212 T1Y = T1W + T1X;
2213 T5v = T1W - T1X;
2214 T5B = ii[WS(is, 11)];
2215 T5C = ii[WS(is, 43)];
2216 T5D = T5B - T5C;
2217 Tbj = T5B + T5C;
2218 }
2219 T5z = T5v + T5y;
2220 T5E = T5A - T5D;
2221 Tbk = Tbi - Tbj;
2222 Tbh = T1V - T1Y;
2223 T8s = T5A + T5D;
2224 T8r = T5y - T5v;
2225 }
2226 {
2227 E T1S, T1Z, Tbt, Tbu;
2228 T1S = T1O + T1R;
2229 T1Z = T1V + T1Y;
2230 T20 = T1S + T1Z;
2231 TdD = T1Z - T1S;
2232 Tbt = Tbh - Tbk;
2233 Tbu = Tbf + Tbe;
2234 Tbv = KP707106781 * (Tbt - Tbu);
2235 Tcu = KP707106781 * (Tbu + Tbt);
2236 }
2237 {
2238 E Tdw, Tdx, T5u, T5F;
2239 Tdw = Tbc + Tbd;
2240 Tdx = Tbi + Tbj;
2241 Tdy = Tdw - Tdx;
2242 Tep = Tdw + Tdx;
2243 T5u = FNMS(KP923879532, T5t, KP382683432 * T5o);
2244 T5F = FMA(KP382683432, T5z, KP923879532 * T5E);
2245 T5G = T5u - T5F;
2246 T6Z = T5u + T5F;
2247 }
2248 {
2249 E T5R, T5S, T8z, T8A;
2250 T5R = FNMS(KP923879532, T5z, KP382683432 * T5E);
2251 T5S = FMA(KP923879532, T5o, KP382683432 * T5t);
2252 T5T = T5R - T5S;
2253 T6W = T5S + T5R;
2254 T8z = FNMS(KP382683432, T8r, KP923879532 * T8s);
2255 T8A = FMA(KP382683432, T8o, KP923879532 * T8p);
2256 T8B = T8z - T8A;
2257 T9A = T8A + T8z;
2258 }
2259 {
2260 E Tbg, Tbl, T8q, T8t;
2261 Tbg = Tbe - Tbf;
2262 Tbl = Tbh + Tbk;
2263 Tbm = KP707106781 * (Tbg - Tbl);
2264 Tcx = KP707106781 * (Tbg + Tbl);
2265 T8q = FNMS(KP382683432, T8p, KP923879532 * T8o);
2266 T8t = FMA(KP923879532, T8r, KP382683432 * T8s);
2267 T8u = T8q - T8t;
2268 T9D = T8q + T8t;
2269 }
2270 }
2271 {
2272 E T11, TeD, TeG, TeI, T22, T23, T34, TeH;
2273 {
2274 E Tv, T10, TeE, TeF;
2275 Tv = Tf + Tu;
2276 T10 = TK + TZ;
2277 T11 = Tv + T10;
2278 TeD = Tv - T10;
2279 TeE = Tej + Tek;
2280 TeF = Teo + Tep;
2281 TeG = TeE - TeF;
2282 TeI = TeE + TeF;
2283 }
2284 {
2285 E T1w, T21, T2y, T33;
2286 T1w = T1g + T1v;
2287 T21 = T1L + T20;
2288 T22 = T1w + T21;
2289 T23 = T21 - T1w;
2290 T2y = T2i + T2x;
2291 T33 = T2N + T32;
2292 T34 = T2y - T33;
2293 TeH = T2y + T33;
2294 }
2295 ro[WS(os, 32)] = T11 - T22;
2296 io[WS(os, 32)] = TeH - TeI;
2297 ro[0] = T11 + T22;
2298 io[0] = TeH + TeI;
2299 io[WS(os, 16)] = T23 + T34;
2300 ro[WS(os, 16)] = TeD + TeG;
2301 io[WS(os, 48)] = T34 - T23;
2302 ro[WS(os, 48)] = TeD - TeG;
2303 }
2304 {
2305 E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez;
2306 {
2307 E Tef, Teg, Tet, Teu;
2308 Tef = Tf - Tu;
2309 Teg = T2N - T32;
2310 Teh = Tef + Teg;
2311 Tex = Tef - Teg;
2312 Tet = T2i - T2x;
2313 Teu = TZ - TK;
2314 Tev = Tet - Teu;
2315 TeB = Teu + Tet;
2316 }
2317 {
2318 E Tei, Tel, Ten, Teq;
2319 Tei = T1g - T1v;
2320 Tel = Tej - Tek;
2321 Tem = Tei + Tel;
2322 Tey = Tel - Tei;
2323 Ten = T1L - T20;
2324 Teq = Teo - Tep;
2325 Ter = Ten - Teq;
2326 Tez = Ten + Teq;
2327 }
2328 {
2329 E Tes, TeC, Tew, TeA;
2330 Tes = KP707106781 * (Tem + Ter);
2331 ro[WS(os, 40)] = Teh - Tes;
2332 ro[WS(os, 8)] = Teh + Tes;
2333 TeC = KP707106781 * (Tey + Tez);
2334 io[WS(os, 40)] = TeB - TeC;
2335 io[WS(os, 8)] = TeB + TeC;
2336 Tew = KP707106781 * (Ter - Tem);
2337 io[WS(os, 56)] = Tev - Tew;
2338 io[WS(os, 24)] = Tev + Tew;
2339 TeA = KP707106781 * (Tey - Tez);
2340 ro[WS(os, 56)] = Tex - TeA;
2341 ro[WS(os, 24)] = Tex + TeA;
2342 }
2343 }
2344 {
2345 E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdQ, Te0, Tea, TdF;
2346 E TdR;
2347 {
2348 E Tde, Tdh, Tdo, Tdt;
2349 Tdb = Td9 - Tda;
2350 TdV = Td9 + Tda;
2351 Te5 = TdI + TdH;
2352 TdJ = TdH - TdI;
2353 Tde = Tdc - Tdd;
2354 Tdh = Tdf + Tdg;
2355 Tdi = KP707106781 * (Tde - Tdh);
2356 Te6 = KP707106781 * (Tde + Tdh);
2357 {
2358 E Te1, Te2, TdK, TdL;
2359 Te1 = Tdv + Tdy;
2360 Te2 = TdD + TdC;
2361 Te3 = FNMS(KP382683432, Te2, KP923879532 * Te1);
2362 Teb = FMA(KP923879532, Te2, KP382683432 * Te1);
2363 TdK = Tdf - Tdg;
2364 TdL = Tdd + Tdc;
2365 TdM = KP707106781 * (TdK - TdL);
2366 TdW = KP707106781 * (TdL + TdK);
2367 }
2368 Tdo = Tdm - Tdn;
2369 Tdt = Tdp - Tds;
2370 Tdu = FMA(KP923879532, Tdo, KP382683432 * Tdt);
2371 TdQ = FNMS(KP923879532, Tdt, KP382683432 * Tdo);
2372 {
2373 E TdY, TdZ, Tdz, TdE;
2374 TdY = Tdn + Tdm;
2375 TdZ = Tdp + Tds;
2376 Te0 = FMA(KP382683432, TdY, KP923879532 * TdZ);
2377 Tea = FNMS(KP382683432, TdZ, KP923879532 * TdY);
2378 Tdz = Tdv - Tdy;
2379 TdE = TdC - TdD;
2380 TdF = FNMS(KP923879532, TdE, KP382683432 * Tdz);
2381 TdR = FMA(KP382683432, TdE, KP923879532 * Tdz);
2382 }
2383 }
2384 {
2385 E Tdj, TdG, TdT, TdU;
2386 Tdj = Tdb + Tdi;
2387 TdG = Tdu + TdF;
2388 ro[WS(os, 44)] = Tdj - TdG;
2389 ro[WS(os, 12)] = Tdj + TdG;
2390 TdT = TdJ + TdM;
2391 TdU = TdQ + TdR;
2392 io[WS(os, 44)] = TdT - TdU;
2393 io[WS(os, 12)] = TdT + TdU;
2394 }
2395 {
2396 E TdN, TdO, TdP, TdS;
2397 TdN = TdJ - TdM;
2398 TdO = TdF - Tdu;
2399 io[WS(os, 60)] = TdN - TdO;
2400 io[WS(os, 28)] = TdN + TdO;
2401 TdP = Tdb - Tdi;
2402 TdS = TdQ - TdR;
2403 ro[WS(os, 60)] = TdP - TdS;
2404 ro[WS(os, 28)] = TdP + TdS;
2405 }
2406 {
2407 E TdX, Te4, Ted, Tee;
2408 TdX = TdV + TdW;
2409 Te4 = Te0 + Te3;
2410 ro[WS(os, 36)] = TdX - Te4;
2411 ro[WS(os, 4)] = TdX + Te4;
2412 Ted = Te5 + Te6;
2413 Tee = Tea + Teb;
2414 io[WS(os, 36)] = Ted - Tee;
2415 io[WS(os, 4)] = Ted + Tee;
2416 }
2417 {
2418 E Te7, Te8, Te9, Tec;
2419 Te7 = Te5 - Te6;
2420 Te8 = Te3 - Te0;
2421 io[WS(os, 52)] = Te7 - Te8;
2422 io[WS(os, 20)] = Te7 + Te8;
2423 Te9 = TdV - TdW;
2424 Tec = Tea - Teb;
2425 ro[WS(os, 52)] = Te9 - Tec;
2426 ro[WS(os, 20)] = Te9 + Tec;
2427 }
2428 }
2429 {
2430 E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td5, Tcs, TcK, TcG, TcQ, TcU, Td4, Tcz;
2431 E TcL, Tcc, TcC;
2432 Tcc = KP707106781 * (TbD + TbC);
2433 Tcd = Tcb - Tcc;
2434 TcP = Tcb + Tcc;
2435 TcC = KP707106781 * (Tak + Tan);
2436 TcD = TcB - TcC;
2437 TcZ = TcB + TcC;
2438 {
2439 E Tcg, Tcj, TcV, TcW;
2440 Tcg = FNMS(KP382683432, Tcf, KP923879532 * Tce);
2441 Tcj = FMA(KP923879532, Tch, KP382683432 * Tci);
2442 Tck = Tcg - Tcj;
2443 Td0 = Tcg + Tcj;
2444 TcV = Tct + Tcu;
2445 TcW = Tcw + Tcx;
2446 TcX = FNMS(KP195090322, TcW, KP980785280 * TcV);
2447 Td5 = FMA(KP195090322, TcV, KP980785280 * TcW);
2448 }
2449 {
2450 E Tco, Tcr, TcE, TcF;
2451 Tco = Tcm - Tcn;
2452 Tcr = Tcp - Tcq;
2453 Tcs = FMA(KP555570233, Tco, KP831469612 * Tcr);
2454 TcK = FNMS(KP831469612, Tco, KP555570233 * Tcr);
2455 TcE = FNMS(KP382683432, Tch, KP923879532 * Tci);
2456 TcF = FMA(KP382683432, Tce, KP923879532 * Tcf);
2457 TcG = TcE - TcF;
2458 TcQ = TcF + TcE;
2459 }
2460 {
2461 E TcS, TcT, Tcv, Tcy;
2462 TcS = Tcm + Tcn;
2463 TcT = Tcp + Tcq;
2464 TcU = FMA(KP980785280, TcS, KP195090322 * TcT);
2465 Td4 = FNMS(KP195090322, TcS, KP980785280 * TcT);
2466 Tcv = Tct - Tcu;
2467 Tcy = Tcw - Tcx;
2468 Tcz = FNMS(KP831469612, Tcy, KP555570233 * Tcv);
2469 TcL = FMA(KP831469612, Tcv, KP555570233 * Tcy);
2470 }
2471 {
2472 E Tcl, TcA, TcN, TcO;
2473 Tcl = Tcd + Tck;
2474 TcA = Tcs + Tcz;
2475 ro[WS(os, 42)] = Tcl - TcA;
2476 ro[WS(os, 10)] = Tcl + TcA;
2477 TcN = TcD + TcG;
2478 TcO = TcK + TcL;
2479 io[WS(os, 42)] = TcN - TcO;
2480 io[WS(os, 10)] = TcN + TcO;
2481 }
2482 {
2483 E TcH, TcI, TcJ, TcM;
2484 TcH = TcD - TcG;
2485 TcI = Tcz - Tcs;
2486 io[WS(os, 58)] = TcH - TcI;
2487 io[WS(os, 26)] = TcH + TcI;
2488 TcJ = Tcd - Tck;
2489 TcM = TcK - TcL;
2490 ro[WS(os, 58)] = TcJ - TcM;
2491 ro[WS(os, 26)] = TcJ + TcM;
2492 }
2493 {
2494 E TcR, TcY, Td7, Td8;
2495 TcR = TcP + TcQ;
2496 TcY = TcU + TcX;
2497 ro[WS(os, 34)] = TcR - TcY;
2498 ro[WS(os, 2)] = TcR + TcY;
2499 Td7 = TcZ + Td0;
2500 Td8 = Td4 + Td5;
2501 io[WS(os, 34)] = Td7 - Td8;
2502 io[WS(os, 2)] = Td7 + Td8;
2503 }
2504 {
2505 E Td1, Td2, Td3, Td6;
2506 Td1 = TcZ - Td0;
2507 Td2 = TcX - TcU;
2508 io[WS(os, 50)] = Td1 - Td2;
2509 io[WS(os, 18)] = Td1 + Td2;
2510 Td3 = TcP - TcQ;
2511 Td6 = Td4 - Td5;
2512 ro[WS(os, 50)] = Td3 - Td6;
2513 ro[WS(os, 18)] = Td3 + Td6;
2514 }
2515 }
2516 {
2517 E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbM, TbI, TbS, TbW, Tc6, Tbx;
2518 E TbN, Tao, TbE;
2519 Tao = KP707106781 * (Tak - Tan);
2520 Tap = Tah - Tao;
2521 TbR = Tah + Tao;
2522 TbE = KP707106781 * (TbC - TbD);
2523 TbF = TbB - TbE;
2524 Tc1 = TbB + TbE;
2525 {
2526 E Taw, TaD, TbX, TbY;
2527 Taw = FNMS(KP923879532, Tav, KP382683432 * Tas);
2528 TaD = FMA(KP382683432, Taz, KP923879532 * TaC);
2529 TaE = Taw - TaD;
2530 Tc2 = Taw + TaD;
2531 TbX = Tbb + Tbm;
2532 TbY = Tbs + Tbv;
2533 TbZ = FNMS(KP555570233, TbY, KP831469612 * TbX);
2534 Tc7 = FMA(KP831469612, TbY, KP555570233 * TbX);
2535 }
2536 {
2537 E TaW, Tb5, TbG, TbH;
2538 TaW = TaK - TaV;
2539 Tb5 = Tb1 - Tb4;
2540 Tb6 = FMA(KP980785280, TaW, KP195090322 * Tb5);
2541 TbM = FNMS(KP980785280, Tb5, KP195090322 * TaW);
2542 TbG = FNMS(KP923879532, Taz, KP382683432 * TaC);
2543 TbH = FMA(KP923879532, Tas, KP382683432 * Tav);
2544 TbI = TbG - TbH;
2545 TbS = TbH + TbG;
2546 }
2547 {
2548 E TbU, TbV, Tbn, Tbw;
2549 TbU = TaK + TaV;
2550 TbV = Tb1 + Tb4;
2551 TbW = FMA(KP555570233, TbU, KP831469612 * TbV);
2552 Tc6 = FNMS(KP555570233, TbV, KP831469612 * TbU);
2553 Tbn = Tbb - Tbm;
2554 Tbw = Tbs - Tbv;
2555 Tbx = FNMS(KP980785280, Tbw, KP195090322 * Tbn);
2556 TbN = FMA(KP195090322, Tbw, KP980785280 * Tbn);
2557 }
2558 {
2559 E TaF, Tby, TbP, TbQ;
2560 TaF = Tap + TaE;
2561 Tby = Tb6 + Tbx;
2562 ro[WS(os, 46)] = TaF - Tby;
2563 ro[WS(os, 14)] = TaF + Tby;
2564 TbP = TbF + TbI;
2565 TbQ = TbM + TbN;
2566 io[WS(os, 46)] = TbP - TbQ;
2567 io[WS(os, 14)] = TbP + TbQ;
2568 }
2569 {
2570 E TbJ, TbK, TbL, TbO;
2571 TbJ = TbF - TbI;
2572 TbK = Tbx - Tb6;
2573 io[WS(os, 62)] = TbJ - TbK;
2574 io[WS(os, 30)] = TbJ + TbK;
2575 TbL = Tap - TaE;
2576 TbO = TbM - TbN;
2577 ro[WS(os, 62)] = TbL - TbO;
2578 ro[WS(os, 30)] = TbL + TbO;
2579 }
2580 {
2581 E TbT, Tc0, Tc9, Tca;
2582 TbT = TbR + TbS;
2583 Tc0 = TbW + TbZ;
2584 ro[WS(os, 38)] = TbT - Tc0;
2585 ro[WS(os, 6)] = TbT + Tc0;
2586 Tc9 = Tc1 + Tc2;
2587 Tca = Tc6 + Tc7;
2588 io[WS(os, 38)] = Tc9 - Tca;
2589 io[WS(os, 6)] = Tc9 + Tca;
2590 }
2591 {
2592 E Tc3, Tc4, Tc5, Tc8;
2593 Tc3 = Tc1 - Tc2;
2594 Tc4 = TbZ - TbW;
2595 io[WS(os, 54)] = Tc3 - Tc4;
2596 io[WS(os, 22)] = Tc3 + Tc4;
2597 Tc5 = TbR - TbS;
2598 Tc8 = Tc6 - Tc7;
2599 ro[WS(os, 54)] = Tc5 - Tc8;
2600 ro[WS(os, 22)] = Tc5 + Tc8;
2601 }
2602 }
2603 {
2604 E T6F, T7h, T7m, T7w, T7p, T7x, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71;
2605 E T7d;
2606 {
2607 E T6D, T6E, T7k, T7l;
2608 T6D = T37 + T3e;
2609 T6E = T65 + T64;
2610 T6F = T6D - T6E;
2611 T7h = T6D + T6E;
2612 T7k = T6O + T6P;
2613 T7l = T6R + T6S;
2614 T7m = FMA(KP956940335, T7k, KP290284677 * T7l);
2615 T7w = FNMS(KP290284677, T7k, KP956940335 * T7l);
2616 }
2617 {
2618 E T7n, T7o, T6I, T6L;
2619 T7n = T6V + T6W;
2620 T7o = T6Y + T6Z;
2621 T7p = FNMS(KP290284677, T7o, KP956940335 * T7n);
2622 T7x = FMA(KP290284677, T7n, KP956940335 * T7o);
2623 T6I = FNMS(KP555570233, T6H, KP831469612 * T6G);
2624 T6L = FMA(KP831469612, T6J, KP555570233 * T6K);
2625 T6M = T6I - T6L;
2626 T7s = T6I + T6L;
2627 }
2628 {
2629 E T6Q, T6T, T73, T74;
2630 T6Q = T6O - T6P;
2631 T6T = T6R - T6S;
2632 T6U = FMA(KP471396736, T6Q, KP881921264 * T6T);
2633 T7c = FNMS(KP881921264, T6Q, KP471396736 * T6T);
2634 T73 = T5Z + T62;
2635 T74 = T3m + T3t;
2636 T75 = T73 - T74;
2637 T7r = T73 + T74;
2638 }
2639 {
2640 E T76, T77, T6X, T70;
2641 T76 = FNMS(KP555570233, T6J, KP831469612 * T6K);
2642 T77 = FMA(KP555570233, T6G, KP831469612 * T6H);
2643 T78 = T76 - T77;
2644 T7i = T77 + T76;
2645 T6X = T6V - T6W;
2646 T70 = T6Y - T6Z;
2647 T71 = FNMS(KP881921264, T70, KP471396736 * T6X);
2648 T7d = FMA(KP881921264, T6X, KP471396736 * T70);
2649 }
2650 {
2651 E T6N, T72, T7f, T7g;
2652 T6N = T6F + T6M;
2653 T72 = T6U + T71;
2654 ro[WS(os, 43)] = T6N - T72;
2655 ro[WS(os, 11)] = T6N + T72;
2656 T7f = T75 + T78;
2657 T7g = T7c + T7d;
2658 io[WS(os, 43)] = T7f - T7g;
2659 io[WS(os, 11)] = T7f + T7g;
2660 }
2661 {
2662 E T79, T7a, T7b, T7e;
2663 T79 = T75 - T78;
2664 T7a = T71 - T6U;
2665 io[WS(os, 59)] = T79 - T7a;
2666 io[WS(os, 27)] = T79 + T7a;
2667 T7b = T6F - T6M;
2668 T7e = T7c - T7d;
2669 ro[WS(os, 59)] = T7b - T7e;
2670 ro[WS(os, 27)] = T7b + T7e;
2671 }
2672 {
2673 E T7j, T7q, T7z, T7A;
2674 T7j = T7h + T7i;
2675 T7q = T7m + T7p;
2676 ro[WS(os, 35)] = T7j - T7q;
2677 ro[WS(os, 3)] = T7j + T7q;
2678 T7z = T7r + T7s;
2679 T7A = T7w + T7x;
2680 io[WS(os, 35)] = T7z - T7A;
2681 io[WS(os, 3)] = T7z + T7A;
2682 }
2683 {
2684 E T7t, T7u, T7v, T7y;
2685 T7t = T7r - T7s;
2686 T7u = T7p - T7m;
2687 io[WS(os, 51)] = T7t - T7u;
2688 io[WS(os, 19)] = T7t + T7u;
2689 T7v = T7h - T7i;
2690 T7y = T7w - T7x;
2691 ro[WS(os, 51)] = T7v - T7y;
2692 ro[WS(os, 19)] = T7v + T7y;
2693 }
2694 }
2695 {
2696 E T9j, T9V, Ta0, Taa, Ta3, Tab, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F;
2697 E T9R;
2698 {
2699 E T9h, T9i, T9Y, T9Z;
2700 T9h = T7B + T7C;
2701 T9i = T8J + T8I;
2702 T9j = T9h - T9i;
2703 T9V = T9h + T9i;
2704 T9Y = T9s + T9t;
2705 T9Z = T9v + T9w;
2706 Ta0 = FMA(KP995184726, T9Y, KP098017140 * T9Z);
2707 Taa = FNMS(KP098017140, T9Y, KP995184726 * T9Z);
2708 }
2709 {
2710 E Ta1, Ta2, T9m, T9p;
2711 Ta1 = T9z + T9A;
2712 Ta2 = T9C + T9D;
2713 Ta3 = FNMS(KP098017140, Ta2, KP995184726 * Ta1);
2714 Tab = FMA(KP098017140, Ta1, KP995184726 * Ta2);
2715 T9m = FNMS(KP195090322, T9l, KP980785280 * T9k);
2716 T9p = FMA(KP195090322, T9n, KP980785280 * T9o);
2717 T9q = T9m - T9p;
2718 Ta6 = T9m + T9p;
2719 }
2720 {
2721 E T9u, T9x, T9H, T9I;
2722 T9u = T9s - T9t;
2723 T9x = T9v - T9w;
2724 T9y = FMA(KP634393284, T9u, KP773010453 * T9x);
2725 T9Q = FNMS(KP773010453, T9u, KP634393284 * T9x);
2726 T9H = T8F + T8G;
2727 T9I = T7G + T7J;
2728 T9J = T9H - T9I;
2729 Ta5 = T9H + T9I;
2730 }
2731 {
2732 E T9K, T9L, T9B, T9E;
2733 T9K = FNMS(KP195090322, T9o, KP980785280 * T9n);
2734 T9L = FMA(KP980785280, T9l, KP195090322 * T9k);
2735 T9M = T9K - T9L;
2736 T9W = T9L + T9K;
2737 T9B = T9z - T9A;
2738 T9E = T9C - T9D;
2739 T9F = FNMS(KP773010453, T9E, KP634393284 * T9B);
2740 T9R = FMA(KP773010453, T9B, KP634393284 * T9E);
2741 }
2742 {
2743 E T9r, T9G, T9T, T9U;
2744 T9r = T9j + T9q;
2745 T9G = T9y + T9F;
2746 ro[WS(os, 41)] = T9r - T9G;
2747 ro[WS(os, 9)] = T9r + T9G;
2748 T9T = T9J + T9M;
2749 T9U = T9Q + T9R;
2750 io[WS(os, 41)] = T9T - T9U;
2751 io[WS(os, 9)] = T9T + T9U;
2752 }
2753 {
2754 E T9N, T9O, T9P, T9S;
2755 T9N = T9J - T9M;
2756 T9O = T9F - T9y;
2757 io[WS(os, 57)] = T9N - T9O;
2758 io[WS(os, 25)] = T9N + T9O;
2759 T9P = T9j - T9q;
2760 T9S = T9Q - T9R;
2761 ro[WS(os, 57)] = T9P - T9S;
2762 ro[WS(os, 25)] = T9P + T9S;
2763 }
2764 {
2765 E T9X, Ta4, Tad, Tae;
2766 T9X = T9V + T9W;
2767 Ta4 = Ta0 + Ta3;
2768 ro[WS(os, 33)] = T9X - Ta4;
2769 ro[WS(os, 1)] = T9X + Ta4;
2770 Tad = Ta5 + Ta6;
2771 Tae = Taa + Tab;
2772 io[WS(os, 33)] = Tad - Tae;
2773 io[WS(os, 1)] = Tad + Tae;
2774 }
2775 {
2776 E Ta7, Ta8, Ta9, Tac;
2777 Ta7 = Ta5 - Ta6;
2778 Ta8 = Ta3 - Ta0;
2779 io[WS(os, 49)] = Ta7 - Ta8;
2780 io[WS(os, 17)] = Ta7 + Ta8;
2781 Ta9 = T9V - T9W;
2782 Tac = Taa - Tab;
2783 ro[WS(os, 49)] = Ta9 - Tac;
2784 ro[WS(os, 17)] = Ta9 + Tac;
2785 }
2786 }
2787 {
2788 E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6e, T67, T6t, T6a, T6k, T5V;
2789 E T6f;
2790 {
2791 E T3f, T3u, T6m, T6n;
2792 T3f = T37 - T3e;
2793 T3u = T3m - T3t;
2794 T3v = T3f - T3u;
2795 T6j = T3f + T3u;
2796 T6m = T4q + T4N;
2797 T6n = T4X + T50;
2798 T6o = FMA(KP634393284, T6m, KP773010453 * T6n);
2799 T6y = FNMS(KP634393284, T6n, KP773010453 * T6m);
2800 }
2801 {
2802 E T6p, T6q, T3O, T47;
2803 T6p = T5j + T5G;
2804 T6q = T5Q + T5T;
2805 T6r = FNMS(KP634393284, T6q, KP773010453 * T6p);
2806 T6z = FMA(KP773010453, T6q, KP634393284 * T6p);
2807 T3O = FNMS(KP980785280, T3N, KP195090322 * T3G);
2808 T47 = FMA(KP195090322, T3Z, KP980785280 * T46);
2809 T48 = T3O - T47;
2810 T6u = T3O + T47;
2811 }
2812 {
2813 E T4O, T51, T63, T66;
2814 T4O = T4q - T4N;
2815 T51 = T4X - T50;
2816 T52 = FMA(KP995184726, T4O, KP098017140 * T51);
2817 T6e = FNMS(KP995184726, T51, KP098017140 * T4O);
2818 T63 = T5Z - T62;
2819 T66 = T64 - T65;
2820 T67 = T63 - T66;
2821 T6t = T63 + T66;
2822 }
2823 {
2824 E T68, T69, T5H, T5U;
2825 T68 = FNMS(KP980785280, T3Z, KP195090322 * T46);
2826 T69 = FMA(KP980785280, T3G, KP195090322 * T3N);
2827 T6a = T68 - T69;
2828 T6k = T69 + T68;
2829 T5H = T5j - T5G;
2830 T5U = T5Q - T5T;
2831 T5V = FNMS(KP995184726, T5U, KP098017140 * T5H);
2832 T6f = FMA(KP098017140, T5U, KP995184726 * T5H);
2833 }
2834 {
2835 E T49, T5W, T6h, T6i;
2836 T49 = T3v + T48;
2837 T5W = T52 + T5V;
2838 ro[WS(os, 47)] = T49 - T5W;
2839 ro[WS(os, 15)] = T49 + T5W;
2840 T6h = T67 + T6a;
2841 T6i = T6e + T6f;
2842 io[WS(os, 47)] = T6h - T6i;
2843 io[WS(os, 15)] = T6h + T6i;
2844 }
2845 {
2846 E T6b, T6c, T6d, T6g;
2847 T6b = T67 - T6a;
2848 T6c = T5V - T52;
2849 io[WS(os, 63)] = T6b - T6c;
2850 io[WS(os, 31)] = T6b + T6c;
2851 T6d = T3v - T48;
2852 T6g = T6e - T6f;
2853 ro[WS(os, 63)] = T6d - T6g;
2854 ro[WS(os, 31)] = T6d + T6g;
2855 }
2856 {
2857 E T6l, T6s, T6B, T6C;
2858 T6l = T6j + T6k;
2859 T6s = T6o + T6r;
2860 ro[WS(os, 39)] = T6l - T6s;
2861 ro[WS(os, 7)] = T6l + T6s;
2862 T6B = T6t + T6u;
2863 T6C = T6y + T6z;
2864 io[WS(os, 39)] = T6B - T6C;
2865 io[WS(os, 7)] = T6B + T6C;
2866 }
2867 {
2868 E T6v, T6w, T6x, T6A;
2869 T6v = T6t - T6u;
2870 T6w = T6r - T6o;
2871 io[WS(os, 55)] = T6v - T6w;
2872 io[WS(os, 23)] = T6v + T6w;
2873 T6x = T6j - T6k;
2874 T6A = T6y - T6z;
2875 ro[WS(os, 55)] = T6x - T6A;
2876 ro[WS(os, 23)] = T6x + T6A;
2877 }
2878 }
2879 {
2880 E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8S, T8L, T97, T8O, T8Y, T8D;
2881 E T8T;
2882 {
2883 E T7D, T7K, T90, T91;
2884 T7D = T7B - T7C;
2885 T7K = T7G - T7J;
2886 T7L = T7D - T7K;
2887 T8X = T7D + T7K;
2888 T90 = T84 + T8b;
2889 T91 = T8f + T8i;
2890 T92 = FMA(KP471396736, T90, KP881921264 * T91);
2891 T9c = FNMS(KP471396736, T91, KP881921264 * T90);
2892 }
2893 {
2894 E T93, T94, T7S, T7Z;
2895 T93 = T8n + T8u;
2896 T94 = T8y + T8B;
2897 T95 = FNMS(KP471396736, T94, KP881921264 * T93);
2898 T9d = FMA(KP881921264, T94, KP471396736 * T93);
2899 T7S = FNMS(KP831469612, T7R, KP555570233 * T7O);
2900 T7Z = FMA(KP831469612, T7V, KP555570233 * T7Y);
2901 T80 = T7S - T7Z;
2902 T98 = T7S + T7Z;
2903 }
2904 {
2905 E T8c, T8j, T8H, T8K;
2906 T8c = T84 - T8b;
2907 T8j = T8f - T8i;
2908 T8k = FMA(KP956940335, T8c, KP290284677 * T8j);
2909 T8S = FNMS(KP956940335, T8j, KP290284677 * T8c);
2910 T8H = T8F - T8G;
2911 T8K = T8I - T8J;
2912 T8L = T8H - T8K;
2913 T97 = T8H + T8K;
2914 }
2915 {
2916 E T8M, T8N, T8v, T8C;
2917 T8M = FNMS(KP831469612, T7Y, KP555570233 * T7V);
2918 T8N = FMA(KP555570233, T7R, KP831469612 * T7O);
2919 T8O = T8M - T8N;
2920 T8Y = T8N + T8M;
2921 T8v = T8n - T8u;
2922 T8C = T8y - T8B;
2923 T8D = FNMS(KP956940335, T8C, KP290284677 * T8v);
2924 T8T = FMA(KP290284677, T8C, KP956940335 * T8v);
2925 }
2926 {
2927 E T81, T8E, T8V, T8W;
2928 T81 = T7L + T80;
2929 T8E = T8k + T8D;
2930 ro[WS(os, 45)] = T81 - T8E;
2931 ro[WS(os, 13)] = T81 + T8E;
2932 T8V = T8L + T8O;
2933 T8W = T8S + T8T;
2934 io[WS(os, 45)] = T8V - T8W;
2935 io[WS(os, 13)] = T8V + T8W;
2936 }
2937 {
2938 E T8P, T8Q, T8R, T8U;
2939 T8P = T8L - T8O;
2940 T8Q = T8D - T8k;
2941 io[WS(os, 61)] = T8P - T8Q;
2942 io[WS(os, 29)] = T8P + T8Q;
2943 T8R = T7L - T80;
2944 T8U = T8S - T8T;
2945 ro[WS(os, 61)] = T8R - T8U;
2946 ro[WS(os, 29)] = T8R + T8U;
2947 }
2948 {
2949 E T8Z, T96, T9f, T9g;
2950 T8Z = T8X + T8Y;
2951 T96 = T92 + T95;
2952 ro[WS(os, 37)] = T8Z - T96;
2953 ro[WS(os, 5)] = T8Z + T96;
2954 T9f = T97 + T98;
2955 T9g = T9c + T9d;
2956 io[WS(os, 37)] = T9f - T9g;
2957 io[WS(os, 5)] = T9f + T9g;
2958 }
2959 {
2960 E T99, T9a, T9b, T9e;
2961 T99 = T97 - T98;
2962 T9a = T95 - T92;
2963 io[WS(os, 53)] = T99 - T9a;
2964 io[WS(os, 21)] = T99 + T9a;
2965 T9b = T8X - T8Y;
2966 T9e = T9c - T9d;
2967 ro[WS(os, 53)] = T9b - T9e;
2968 ro[WS(os, 21)] = T9b + T9e;
2969 }
2970 }
2971 }
2972 }
2973 }
2974
2975 static const kdft_desc desc = { 64, "n1_64", {808, 144, 104, 0}, &GENUS, 0, 0, 0, 0 };
2976
2977 void X(codelet_n1_64) (planner *p) {
2978 X(kdft_register) (p, n1_64, &desc);
2979 }
2980
2981 #endif /* HAVE_FMA */