Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/n1_64.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:46 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include n.h */ | |
29 | |
30 /* | |
31 * This function contains 912 FP additions, 392 FP multiplications, | |
32 * (or, 520 additions, 0 multiplications, 392 fused multiply/add), | |
33 * 202 stack variables, 15 constants, and 256 memory accesses | |
34 */ | |
35 #include "n.h" | |
36 | |
37 static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
40 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
41 DK(KP534511135, +0.534511135950791641089685961295362908582039528); | |
42 DK(KP303346683, +0.303346683607342391675883946941299872384187453); | |
43 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
44 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
45 DK(KP820678790, +0.820678790828660330972281985331011598767386482); | |
46 DK(KP098491403, +0.098491403357164253077197521291327432293052451); | |
47 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
48 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
49 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
50 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
51 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
52 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
53 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
54 { | |
55 INT i; | |
56 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { | |
57 E T9b, T9e; | |
58 { | |
59 E T7B, T37, T5Z, T8F, Td9, Tf, TcB, TbB, T7C, T62, TdH, T2i, Tcb, Tah, T8G; | |
60 E T3e, Tu, TdI, Tak, TbC, TbD, Tan, Tda, T2x, T65, T3m, T8I, T7G, T8J, T7J; | |
61 E T64, T3t, Tdd, TK, Tce, Tas, Tcf, Tav, Tdc, T2N, T6G, T3G, T9k, T7O, T9l; | |
62 E T7R, T6H, T3N, TdA, T1L, Tct, Tbs, Teo, Tdx, T6Y, T5j, T6V, T5Q, T9z, T8y; | |
63 E Tcw, Tbb, T9C, T8n, Tdf, TZ, Tch, Taz, Tci, TaC, Tdg, T32, T6J, T3Z, T9n; | |
64 E T7V, T9o, T7Y, T6K, T46, Tdp, T1g, Tcm, Tb1, Tej, Tdm, T6R, T4q, T6O, T4X; | |
65 E T9s, T8f, Tcp, TaK, T9v, T84, Tdn, T1v, Tcq, Tb4, Tek, Tds, T6P, T4N, T6S; | |
66 E T50, T9w, T8i, Tcn, TaV, T9t, T8b, Tdy, T20, Tcx, Tbv, Tep, TdD, T8q, T6W; | |
67 E T5G, T6Z, T5T, T8t, T9D, T8B, Tcu, Tbm, T8l, T8m; | |
68 { | |
69 E T3s, T3p, T3M, T3J; | |
70 { | |
71 E Taf, T3d, T3a, Tag; | |
72 { | |
73 E T35, T3, T5Y, T26, T5X, T6, T36, T29, Tb, T39, Ta, T38, T2d, Tc, T2e; | |
74 E T2f; | |
75 { | |
76 E T4, T5, T27, T28; | |
77 { | |
78 E T1, T2, T24, T25; | |
79 T1 = ri[0]; | |
80 T2 = ri[WS(is, 32)]; | |
81 T24 = ii[0]; | |
82 T25 = ii[WS(is, 32)]; | |
83 T4 = ri[WS(is, 16)]; | |
84 T35 = T1 - T2; | |
85 T3 = T1 + T2; | |
86 T5Y = T24 - T25; | |
87 T26 = T24 + T25; | |
88 T5 = ri[WS(is, 48)]; | |
89 T27 = ii[WS(is, 16)]; | |
90 T28 = ii[WS(is, 48)]; | |
91 } | |
92 { | |
93 E T8, T9, T2b, T2c; | |
94 T8 = ri[WS(is, 8)]; | |
95 T5X = T4 - T5; | |
96 T6 = T4 + T5; | |
97 T36 = T27 - T28; | |
98 T29 = T27 + T28; | |
99 T9 = ri[WS(is, 40)]; | |
100 T2b = ii[WS(is, 8)]; | |
101 T2c = ii[WS(is, 40)]; | |
102 Tb = ri[WS(is, 56)]; | |
103 T39 = T8 - T9; | |
104 Ta = T8 + T9; | |
105 T38 = T2b - T2c; | |
106 T2d = T2b + T2c; | |
107 Tc = ri[WS(is, 24)]; | |
108 T2e = ii[WS(is, 56)]; | |
109 T2f = ii[WS(is, 24)]; | |
110 } | |
111 } | |
112 { | |
113 E T3b, T3c, T2g, T7, Te, Tbz, Td; | |
114 T7B = T35 + T36; | |
115 T37 = T35 - T36; | |
116 T3b = Tb - Tc; | |
117 Td = Tb + Tc; | |
118 T3c = T2e - T2f; | |
119 T2g = T2e + T2f; | |
120 T5Z = T5X + T5Y; | |
121 T8F = T5Y - T5X; | |
122 Taf = T3 - T6; | |
123 T7 = T3 + T6; | |
124 Te = Ta + Td; | |
125 Tbz = Td - Ta; | |
126 { | |
127 E T2a, T60, T61, TbA, T2h; | |
128 TbA = T26 - T29; | |
129 T2a = T26 + T29; | |
130 T3d = T3b + T3c; | |
131 T60 = T3b - T3c; | |
132 Td9 = T7 - Te; | |
133 Tf = T7 + Te; | |
134 TcB = TbA - Tbz; | |
135 TbB = Tbz + TbA; | |
136 T61 = T39 + T38; | |
137 T3a = T38 - T39; | |
138 T2h = T2d + T2g; | |
139 Tag = T2d - T2g; | |
140 T7C = T61 + T60; | |
141 T62 = T60 - T61; | |
142 TdH = T2a - T2h; | |
143 T2i = T2a + T2h; | |
144 } | |
145 } | |
146 } | |
147 { | |
148 E T3j, Ti, T3h, T2l, T3g, Tl, T3k, T2o, Tq, T3q, Tp, T3o, T2s, Tr, T2t; | |
149 E T2u; | |
150 { | |
151 E Tj, Tk, T2m, T2n; | |
152 { | |
153 E Tg, Th, T2j, T2k; | |
154 Tg = ri[WS(is, 4)]; | |
155 Tcb = Taf - Tag; | |
156 Tah = Taf + Tag; | |
157 T8G = T3a + T3d; | |
158 T3e = T3a - T3d; | |
159 Th = ri[WS(is, 36)]; | |
160 T2j = ii[WS(is, 4)]; | |
161 T2k = ii[WS(is, 36)]; | |
162 Tj = ri[WS(is, 20)]; | |
163 T3j = Tg - Th; | |
164 Ti = Tg + Th; | |
165 T3h = T2j - T2k; | |
166 T2l = T2j + T2k; | |
167 Tk = ri[WS(is, 52)]; | |
168 T2m = ii[WS(is, 20)]; | |
169 T2n = ii[WS(is, 52)]; | |
170 } | |
171 { | |
172 E Tn, To, T2q, T2r; | |
173 Tn = ri[WS(is, 60)]; | |
174 T3g = Tj - Tk; | |
175 Tl = Tj + Tk; | |
176 T3k = T2m - T2n; | |
177 T2o = T2m + T2n; | |
178 To = ri[WS(is, 28)]; | |
179 T2q = ii[WS(is, 60)]; | |
180 T2r = ii[WS(is, 28)]; | |
181 Tq = ri[WS(is, 12)]; | |
182 T3q = Tn - To; | |
183 Tp = Tn + To; | |
184 T3o = T2q - T2r; | |
185 T2s = T2q + T2r; | |
186 Tr = ri[WS(is, 44)]; | |
187 T2t = ii[WS(is, 12)]; | |
188 T2u = ii[WS(is, 44)]; | |
189 } | |
190 } | |
191 { | |
192 E T3n, T3r, T2p, T2w; | |
193 { | |
194 E Tai, Tm, T2v, Tal, Tt, Taj, Ts, Tam; | |
195 Tai = Ti - Tl; | |
196 Tm = Ti + Tl; | |
197 T3n = Tq - Tr; | |
198 Ts = Tq + Tr; | |
199 T3r = T2t - T2u; | |
200 T2v = T2t + T2u; | |
201 Tal = Tp - Ts; | |
202 Tt = Tp + Ts; | |
203 Taj = T2l - T2o; | |
204 T2p = T2l + T2o; | |
205 Tam = T2s - T2v; | |
206 T2w = T2s + T2v; | |
207 Tu = Tm + Tt; | |
208 TdI = Tt - Tm; | |
209 Tak = Tai + Taj; | |
210 TbC = Taj - Tai; | |
211 TbD = Tal + Tam; | |
212 Tan = Tal - Tam; | |
213 } | |
214 { | |
215 E T7F, T7E, T3i, T3l, T7H, T7I; | |
216 T7F = T3h - T3g; | |
217 T3i = T3g + T3h; | |
218 T3l = T3j - T3k; | |
219 T7E = T3j + T3k; | |
220 Tda = T2p - T2w; | |
221 T2x = T2p + T2w; | |
222 T65 = FNMS(KP414213562, T3i, T3l); | |
223 T3m = FMA(KP414213562, T3l, T3i); | |
224 T3s = T3q - T3r; | |
225 T7H = T3q + T3r; | |
226 T7I = T3o - T3n; | |
227 T3p = T3n + T3o; | |
228 T8I = FNMS(KP414213562, T7E, T7F); | |
229 T7G = FMA(KP414213562, T7F, T7E); | |
230 T8J = FMA(KP414213562, T7H, T7I); | |
231 T7J = FNMS(KP414213562, T7I, T7H); | |
232 } | |
233 } | |
234 } | |
235 } | |
236 { | |
237 E T3H, Ty, T3x, T2B, T3w, TB, T3I, T2E, TI, T2L, T3z, TF, T3E, T3K, T2I; | |
238 E T3A; | |
239 { | |
240 E T2z, T2A, Tz, TA, Tw, Tx, T2C, T2D; | |
241 Tw = ri[WS(is, 2)]; | |
242 Tx = ri[WS(is, 34)]; | |
243 T2z = ii[WS(is, 2)]; | |
244 T64 = FMA(KP414213562, T3p, T3s); | |
245 T3t = FNMS(KP414213562, T3s, T3p); | |
246 T3H = Tw - Tx; | |
247 Ty = Tw + Tx; | |
248 T2A = ii[WS(is, 34)]; | |
249 Tz = ri[WS(is, 18)]; | |
250 TA = ri[WS(is, 50)]; | |
251 T2C = ii[WS(is, 18)]; | |
252 T3x = T2z - T2A; | |
253 T2B = T2z + T2A; | |
254 T3w = Tz - TA; | |
255 TB = Tz + TA; | |
256 T2D = ii[WS(is, 50)]; | |
257 { | |
258 E T2J, T3C, T2K, TG, TH; | |
259 TG = ri[WS(is, 58)]; | |
260 TH = ri[WS(is, 26)]; | |
261 T2J = ii[WS(is, 58)]; | |
262 T3I = T2C - T2D; | |
263 T2E = T2C + T2D; | |
264 T3C = TG - TH; | |
265 TI = TG + TH; | |
266 T2K = ii[WS(is, 26)]; | |
267 { | |
268 E T2G, T2H, TD, TE, T3D; | |
269 TD = ri[WS(is, 10)]; | |
270 TE = ri[WS(is, 42)]; | |
271 T3D = T2J - T2K; | |
272 T2L = T2J + T2K; | |
273 T2G = ii[WS(is, 10)]; | |
274 T3z = TD - TE; | |
275 TF = TD + TE; | |
276 T2H = ii[WS(is, 42)]; | |
277 T3E = T3C - T3D; | |
278 T3K = T3C + T3D; | |
279 T2I = T2G + T2H; | |
280 T3A = T2G - T2H; | |
281 } | |
282 } | |
283 } | |
284 { | |
285 E T3L, T3B, T2F, T2M; | |
286 { | |
287 E Tat, Taq, Tar, TC, TJ, Tau; | |
288 Tat = Ty - TB; | |
289 TC = Ty + TB; | |
290 TJ = TF + TI; | |
291 Taq = TI - TF; | |
292 T3L = T3A - T3z; | |
293 T3B = T3z + T3A; | |
294 Tdd = TC - TJ; | |
295 TK = TC + TJ; | |
296 Tar = T2B - T2E; | |
297 T2F = T2B + T2E; | |
298 Tau = T2I - T2L; | |
299 T2M = T2I + T2L; | |
300 Tce = Tar - Taq; | |
301 Tas = Taq + Tar; | |
302 Tcf = Tat - Tau; | |
303 Tav = Tat + Tau; | |
304 } | |
305 { | |
306 E T7M, T7Q, T7N, T3y, T3F, T7P; | |
307 T7M = T3x - T3w; | |
308 T3y = T3w + T3x; | |
309 T3F = T3B - T3E; | |
310 T7Q = T3B + T3E; | |
311 Tdc = T2F - T2M; | |
312 T2N = T2F + T2M; | |
313 T6G = FMA(KP707106781, T3F, T3y); | |
314 T3G = FNMS(KP707106781, T3F, T3y); | |
315 T7N = T3L + T3K; | |
316 T3M = T3K - T3L; | |
317 T3J = T3H - T3I; | |
318 T7P = T3H + T3I; | |
319 T9k = FNMS(KP707106781, T7N, T7M); | |
320 T7O = FMA(KP707106781, T7N, T7M); | |
321 T9l = FNMS(KP707106781, T7Q, T7P); | |
322 T7R = FMA(KP707106781, T7Q, T7P); | |
323 } | |
324 } | |
325 } | |
326 { | |
327 E T5I, T1z, Tb8, T56, T53, T1C, Tb9, T5L, T1J, Tbq, T58, T1G, T5N, T5h, Tbp; | |
328 E T5b; | |
329 { | |
330 E T54, T55, T1A, T1B, T1x, T1y, T5J, T5K; | |
331 T1x = ri[WS(is, 63)]; | |
332 T1y = ri[WS(is, 31)]; | |
333 T54 = ii[WS(is, 63)]; | |
334 T6H = FMA(KP707106781, T3M, T3J); | |
335 T3N = FNMS(KP707106781, T3M, T3J); | |
336 T5I = T1x - T1y; | |
337 T1z = T1x + T1y; | |
338 T55 = ii[WS(is, 31)]; | |
339 T1A = ri[WS(is, 15)]; | |
340 T1B = ri[WS(is, 47)]; | |
341 T5J = ii[WS(is, 15)]; | |
342 Tb8 = T54 + T55; | |
343 T56 = T54 - T55; | |
344 T53 = T1A - T1B; | |
345 T1C = T1A + T1B; | |
346 T5K = ii[WS(is, 47)]; | |
347 { | |
348 E T5e, T5d, T5f, T1H, T1I; | |
349 T1H = ri[WS(is, 55)]; | |
350 T1I = ri[WS(is, 23)]; | |
351 T5e = ii[WS(is, 55)]; | |
352 Tb9 = T5J + T5K; | |
353 T5L = T5J - T5K; | |
354 T5d = T1H - T1I; | |
355 T1J = T1H + T1I; | |
356 T5f = ii[WS(is, 23)]; | |
357 { | |
358 E T59, T5a, T1E, T1F, T5g; | |
359 T1E = ri[WS(is, 7)]; | |
360 T1F = ri[WS(is, 39)]; | |
361 T5g = T5e - T5f; | |
362 Tbq = T5e + T5f; | |
363 T59 = ii[WS(is, 7)]; | |
364 T58 = T1E - T1F; | |
365 T1G = T1E + T1F; | |
366 T5a = ii[WS(is, 39)]; | |
367 T5N = T5d + T5g; | |
368 T5h = T5d - T5g; | |
369 Tbp = T59 + T5a; | |
370 T5b = T59 - T5a; | |
371 } | |
372 } | |
373 } | |
374 { | |
375 E Tb7, T5O, Tba, T57, T5i, T8x, T8w, T5M, T5P; | |
376 { | |
377 E Tbo, T5c, Tbr, Tdw, T1D, T1K, Tdv; | |
378 Tbo = T1z - T1C; | |
379 T1D = T1z + T1C; | |
380 T1K = T1G + T1J; | |
381 Tb7 = T1J - T1G; | |
382 T5c = T58 + T5b; | |
383 T5O = T5b - T58; | |
384 TdA = T1D - T1K; | |
385 T1L = T1D + T1K; | |
386 Tbr = Tbp - Tbq; | |
387 Tdw = Tbp + Tbq; | |
388 Tba = Tb8 - Tb9; | |
389 Tdv = Tb8 + Tb9; | |
390 T8l = T56 - T53; | |
391 T57 = T53 + T56; | |
392 Tct = Tbo - Tbr; | |
393 Tbs = Tbo + Tbr; | |
394 Teo = Tdv + Tdw; | |
395 Tdx = Tdv - Tdw; | |
396 T5i = T5c - T5h; | |
397 T8x = T5c + T5h; | |
398 } | |
399 T8w = T5I + T5L; | |
400 T5M = T5I - T5L; | |
401 T5P = T5N - T5O; | |
402 T8m = T5O + T5N; | |
403 T6Y = FMA(KP707106781, T5i, T57); | |
404 T5j = FNMS(KP707106781, T5i, T57); | |
405 T6V = FMA(KP707106781, T5P, T5M); | |
406 T5Q = FNMS(KP707106781, T5P, T5M); | |
407 T9z = FNMS(KP707106781, T8x, T8w); | |
408 T8y = FMA(KP707106781, T8x, T8w); | |
409 Tcw = Tba - Tb7; | |
410 Tbb = Tb7 + Tba; | |
411 } | |
412 } | |
413 } | |
414 { | |
415 E T82, T83, T45, T42, T87, T8a; | |
416 { | |
417 E T40, TN, T3Q, T2Q, T3P, TQ, T41, T2T, TX, T30, T3S, TU, T3X, T43, T2X; | |
418 E T3T; | |
419 { | |
420 E T2O, T2P, TO, TP, TL, TM, T2R, T2S; | |
421 TL = ri[WS(is, 62)]; | |
422 TM = ri[WS(is, 30)]; | |
423 T2O = ii[WS(is, 62)]; | |
424 T9C = FNMS(KP707106781, T8m, T8l); | |
425 T8n = FMA(KP707106781, T8m, T8l); | |
426 T40 = TL - TM; | |
427 TN = TL + TM; | |
428 T2P = ii[WS(is, 30)]; | |
429 TO = ri[WS(is, 14)]; | |
430 TP = ri[WS(is, 46)]; | |
431 T2R = ii[WS(is, 14)]; | |
432 T3Q = T2O - T2P; | |
433 T2Q = T2O + T2P; | |
434 T3P = TO - TP; | |
435 TQ = TO + TP; | |
436 T2S = ii[WS(is, 46)]; | |
437 { | |
438 E T2Y, T3V, T2Z, TV, TW; | |
439 TV = ri[WS(is, 54)]; | |
440 TW = ri[WS(is, 22)]; | |
441 T2Y = ii[WS(is, 54)]; | |
442 T41 = T2R - T2S; | |
443 T2T = T2R + T2S; | |
444 T3V = TV - TW; | |
445 TX = TV + TW; | |
446 T2Z = ii[WS(is, 22)]; | |
447 { | |
448 E T2V, T2W, TS, TT, T3W; | |
449 TS = ri[WS(is, 6)]; | |
450 TT = ri[WS(is, 38)]; | |
451 T3W = T2Y - T2Z; | |
452 T30 = T2Y + T2Z; | |
453 T2V = ii[WS(is, 6)]; | |
454 T3S = TS - TT; | |
455 TU = TS + TT; | |
456 T2W = ii[WS(is, 38)]; | |
457 T3X = T3V - T3W; | |
458 T43 = T3V + T3W; | |
459 T2X = T2V + T2W; | |
460 T3T = T2V - T2W; | |
461 } | |
462 } | |
463 } | |
464 { | |
465 E T44, T3U, T2U, T31; | |
466 { | |
467 E TaA, Tax, Tay, TR, TY, TaB; | |
468 TaA = TN - TQ; | |
469 TR = TN + TQ; | |
470 TY = TU + TX; | |
471 Tax = TX - TU; | |
472 T44 = T3T - T3S; | |
473 T3U = T3S + T3T; | |
474 Tdf = TR - TY; | |
475 TZ = TR + TY; | |
476 Tay = T2Q - T2T; | |
477 T2U = T2Q + T2T; | |
478 TaB = T2X - T30; | |
479 T31 = T2X + T30; | |
480 Tch = Tay - Tax; | |
481 Taz = Tax + Tay; | |
482 Tci = TaA - TaB; | |
483 TaC = TaA + TaB; | |
484 } | |
485 { | |
486 E T7T, T7X, T7U, T3R, T3Y, T7W; | |
487 T7T = T3Q - T3P; | |
488 T3R = T3P + T3Q; | |
489 T3Y = T3U - T3X; | |
490 T7X = T3U + T3X; | |
491 Tdg = T2U - T31; | |
492 T32 = T2U + T31; | |
493 T6J = FMA(KP707106781, T3Y, T3R); | |
494 T3Z = FNMS(KP707106781, T3Y, T3R); | |
495 T7U = T44 + T43; | |
496 T45 = T43 - T44; | |
497 T42 = T40 - T41; | |
498 T7W = T40 + T41; | |
499 T9n = FNMS(KP707106781, T7U, T7T); | |
500 T7V = FMA(KP707106781, T7U, T7T); | |
501 T9o = FNMS(KP707106781, T7X, T7W); | |
502 T7Y = FMA(KP707106781, T7X, T7W); | |
503 } | |
504 } | |
505 } | |
506 { | |
507 E T4P, T14, TaH, T4d, T4a, T17, TaI, T4S, T1e, TaZ, T4f, T1b, T4U, T4o, TaY; | |
508 E T4i; | |
509 { | |
510 E T4b, T4c, T15, T16, T12, T13, T4Q, T4R; | |
511 T12 = ri[WS(is, 1)]; | |
512 T13 = ri[WS(is, 33)]; | |
513 T4b = ii[WS(is, 1)]; | |
514 T6K = FMA(KP707106781, T45, T42); | |
515 T46 = FNMS(KP707106781, T45, T42); | |
516 T4P = T12 - T13; | |
517 T14 = T12 + T13; | |
518 T4c = ii[WS(is, 33)]; | |
519 T15 = ri[WS(is, 17)]; | |
520 T16 = ri[WS(is, 49)]; | |
521 T4Q = ii[WS(is, 17)]; | |
522 TaH = T4b + T4c; | |
523 T4d = T4b - T4c; | |
524 T4a = T15 - T16; | |
525 T17 = T15 + T16; | |
526 T4R = ii[WS(is, 49)]; | |
527 { | |
528 E T4l, T4k, T4m, T1c, T1d; | |
529 T1c = ri[WS(is, 57)]; | |
530 T1d = ri[WS(is, 25)]; | |
531 T4l = ii[WS(is, 57)]; | |
532 TaI = T4Q + T4R; | |
533 T4S = T4Q - T4R; | |
534 T4k = T1c - T1d; | |
535 T1e = T1c + T1d; | |
536 T4m = ii[WS(is, 25)]; | |
537 { | |
538 E T4g, T4h, T19, T1a, T4n; | |
539 T19 = ri[WS(is, 9)]; | |
540 T1a = ri[WS(is, 41)]; | |
541 T4n = T4l - T4m; | |
542 TaZ = T4l + T4m; | |
543 T4g = ii[WS(is, 9)]; | |
544 T4f = T19 - T1a; | |
545 T1b = T19 + T1a; | |
546 T4h = ii[WS(is, 41)]; | |
547 T4U = T4k + T4n; | |
548 T4o = T4k - T4n; | |
549 TaY = T4g + T4h; | |
550 T4i = T4g - T4h; | |
551 } | |
552 } | |
553 } | |
554 { | |
555 E TaG, T4V, TaJ, T4e, T4p, T8e, T8d, T4T, T4W; | |
556 { | |
557 E TaX, T4j, Tb0, Tdl, T18, T1f, Tdk; | |
558 TaX = T14 - T17; | |
559 T18 = T14 + T17; | |
560 T1f = T1b + T1e; | |
561 TaG = T1e - T1b; | |
562 T4j = T4f + T4i; | |
563 T4V = T4i - T4f; | |
564 Tdp = T18 - T1f; | |
565 T1g = T18 + T1f; | |
566 Tb0 = TaY - TaZ; | |
567 Tdl = TaY + TaZ; | |
568 TaJ = TaH - TaI; | |
569 Tdk = TaH + TaI; | |
570 T82 = T4d - T4a; | |
571 T4e = T4a + T4d; | |
572 Tcm = TaX - Tb0; | |
573 Tb1 = TaX + Tb0; | |
574 Tej = Tdk + Tdl; | |
575 Tdm = Tdk - Tdl; | |
576 T4p = T4j - T4o; | |
577 T8e = T4j + T4o; | |
578 } | |
579 T8d = T4P + T4S; | |
580 T4T = T4P - T4S; | |
581 T4W = T4U - T4V; | |
582 T83 = T4V + T4U; | |
583 T6R = FMA(KP707106781, T4p, T4e); | |
584 T4q = FNMS(KP707106781, T4p, T4e); | |
585 T6O = FMA(KP707106781, T4W, T4T); | |
586 T4X = FNMS(KP707106781, T4W, T4T); | |
587 T9s = FNMS(KP707106781, T8e, T8d); | |
588 T8f = FMA(KP707106781, T8e, T8d); | |
589 Tcp = TaJ - TaG; | |
590 TaK = TaG + TaJ; | |
591 } | |
592 } | |
593 { | |
594 E T85, T4L, TaO, T1n, Tdq, TaN, T86, T4G, T4r, T1q, T4s, TaR, T4z, T4w, T1t; | |
595 E T4t; | |
596 { | |
597 E T4C, T1j, T4D, TaL, T4K, T4H, T1m, T4E; | |
598 { | |
599 E T4I, T4J, T1h, T1i, T1k, T1l; | |
600 T1h = ri[WS(is, 5)]; | |
601 T1i = ri[WS(is, 37)]; | |
602 T4I = ii[WS(is, 5)]; | |
603 T9v = FNMS(KP707106781, T83, T82); | |
604 T84 = FMA(KP707106781, T83, T82); | |
605 T4C = T1h - T1i; | |
606 T1j = T1h + T1i; | |
607 T4J = ii[WS(is, 37)]; | |
608 T1k = ri[WS(is, 21)]; | |
609 T1l = ri[WS(is, 53)]; | |
610 T4D = ii[WS(is, 21)]; | |
611 TaL = T4I + T4J; | |
612 T4K = T4I - T4J; | |
613 T4H = T1k - T1l; | |
614 T1m = T1k + T1l; | |
615 T4E = ii[WS(is, 53)]; | |
616 } | |
617 { | |
618 E T4x, T4y, T1r, T1s; | |
619 { | |
620 E T1o, T4F, TaM, T1p; | |
621 T1o = ri[WS(is, 61)]; | |
622 T85 = T4K - T4H; | |
623 T4L = T4H + T4K; | |
624 TaO = T1j - T1m; | |
625 T1n = T1j + T1m; | |
626 T4F = T4D - T4E; | |
627 TaM = T4D + T4E; | |
628 T1p = ri[WS(is, 29)]; | |
629 T4x = ii[WS(is, 61)]; | |
630 Tdq = TaL + TaM; | |
631 TaN = TaL - TaM; | |
632 T86 = T4C + T4F; | |
633 T4G = T4C - T4F; | |
634 T4r = T1o - T1p; | |
635 T1q = T1o + T1p; | |
636 T4y = ii[WS(is, 29)]; | |
637 } | |
638 T1r = ri[WS(is, 13)]; | |
639 T1s = ri[WS(is, 45)]; | |
640 T4s = ii[WS(is, 13)]; | |
641 TaR = T4x + T4y; | |
642 T4z = T4x - T4y; | |
643 T4w = T1r - T1s; | |
644 T1t = T1r + T1s; | |
645 T4t = ii[WS(is, 45)]; | |
646 } | |
647 } | |
648 { | |
649 E T88, TaP, T89, TaU, T4Z, T4B, T4M, T4Y, T8g, T8h; | |
650 { | |
651 E T4A, Tb2, Tdr, T4v, Tb3; | |
652 { | |
653 E TaQ, T1u, T4u, TaS, TaT; | |
654 T88 = T4z - T4w; | |
655 T4A = T4w + T4z; | |
656 TaQ = T1q - T1t; | |
657 T1u = T1q + T1t; | |
658 T4u = T4s - T4t; | |
659 TaS = T4s + T4t; | |
660 Tb2 = TaO + TaN; | |
661 TaP = TaN - TaO; | |
662 Tdr = TaR + TaS; | |
663 TaT = TaR - TaS; | |
664 T89 = T4r + T4u; | |
665 T4v = T4r - T4u; | |
666 Tdn = T1u - T1n; | |
667 T1v = T1n + T1u; | |
668 Tb3 = TaQ - TaT; | |
669 TaU = TaQ + TaT; | |
670 } | |
671 T4Z = FNMS(KP414213562, T4v, T4A); | |
672 T4B = FMA(KP414213562, T4A, T4v); | |
673 Tcq = Tb2 - Tb3; | |
674 Tb4 = Tb2 + Tb3; | |
675 Tek = Tdq + Tdr; | |
676 Tds = Tdq - Tdr; | |
677 T4M = FNMS(KP414213562, T4L, T4G); | |
678 T4Y = FMA(KP414213562, T4G, T4L); | |
679 } | |
680 T87 = FNMS(KP414213562, T86, T85); | |
681 T8g = FMA(KP414213562, T85, T86); | |
682 T6P = T4M + T4B; | |
683 T4N = T4B - T4M; | |
684 T6S = T4Y + T4Z; | |
685 T50 = T4Y - T4Z; | |
686 T8h = FNMS(KP414213562, T88, T89); | |
687 T8a = FMA(KP414213562, T89, T88); | |
688 T9w = T8g - T8h; | |
689 T8i = T8g + T8h; | |
690 Tcn = TaU - TaP; | |
691 TaV = TaP + TaU; | |
692 } | |
693 } | |
694 { | |
695 E T8o, T5E, Tbf, T1S, TdB, Tbe, T8p, T5z, T5k, T1V, T5l, Tbi, T5s, T5p, T1Y; | |
696 E T5m; | |
697 { | |
698 E T5v, T1O, T5w, Tbc, T5D, T5A, T1R, T5x; | |
699 { | |
700 E T5B, T5C, T1M, T1N, T1P, T1Q; | |
701 T1M = ri[WS(is, 3)]; | |
702 T1N = ri[WS(is, 35)]; | |
703 T5B = ii[WS(is, 3)]; | |
704 T9t = T8a - T87; | |
705 T8b = T87 + T8a; | |
706 T5v = T1M - T1N; | |
707 T1O = T1M + T1N; | |
708 T5C = ii[WS(is, 35)]; | |
709 T1P = ri[WS(is, 19)]; | |
710 T1Q = ri[WS(is, 51)]; | |
711 T5w = ii[WS(is, 19)]; | |
712 Tbc = T5B + T5C; | |
713 T5D = T5B - T5C; | |
714 T5A = T1P - T1Q; | |
715 T1R = T1P + T1Q; | |
716 T5x = ii[WS(is, 51)]; | |
717 } | |
718 { | |
719 E T5q, T5r, T1W, T1X; | |
720 { | |
721 E T1T, T5y, Tbd, T1U; | |
722 T1T = ri[WS(is, 59)]; | |
723 T8o = T5D - T5A; | |
724 T5E = T5A + T5D; | |
725 Tbf = T1O - T1R; | |
726 T1S = T1O + T1R; | |
727 T5y = T5w - T5x; | |
728 Tbd = T5w + T5x; | |
729 T1U = ri[WS(is, 27)]; | |
730 T5q = ii[WS(is, 59)]; | |
731 TdB = Tbc + Tbd; | |
732 Tbe = Tbc - Tbd; | |
733 T8p = T5v + T5y; | |
734 T5z = T5v - T5y; | |
735 T5k = T1T - T1U; | |
736 T1V = T1T + T1U; | |
737 T5r = ii[WS(is, 27)]; | |
738 } | |
739 T1W = ri[WS(is, 11)]; | |
740 T1X = ri[WS(is, 43)]; | |
741 T5l = ii[WS(is, 11)]; | |
742 Tbi = T5q + T5r; | |
743 T5s = T5q - T5r; | |
744 T5p = T1W - T1X; | |
745 T1Y = T1W + T1X; | |
746 T5m = ii[WS(is, 43)]; | |
747 } | |
748 } | |
749 { | |
750 E T8r, Tbg, T8s, Tbl, T5S, T5u, T5F, T5R, T8z, T8A; | |
751 { | |
752 E T5t, Tbt, TdC, T5o, Tbu; | |
753 { | |
754 E Tbh, T1Z, T5n, Tbj, Tbk; | |
755 T8r = T5s - T5p; | |
756 T5t = T5p + T5s; | |
757 Tbh = T1V - T1Y; | |
758 T1Z = T1V + T1Y; | |
759 T5n = T5l - T5m; | |
760 Tbj = T5l + T5m; | |
761 Tbt = Tbf + Tbe; | |
762 Tbg = Tbe - Tbf; | |
763 TdC = Tbi + Tbj; | |
764 Tbk = Tbi - Tbj; | |
765 T8s = T5k + T5n; | |
766 T5o = T5k - T5n; | |
767 Tdy = T1Z - T1S; | |
768 T20 = T1S + T1Z; | |
769 Tbu = Tbh - Tbk; | |
770 Tbl = Tbh + Tbk; | |
771 } | |
772 T5S = FNMS(KP414213562, T5o, T5t); | |
773 T5u = FMA(KP414213562, T5t, T5o); | |
774 Tcx = Tbt - Tbu; | |
775 Tbv = Tbt + Tbu; | |
776 Tep = TdB + TdC; | |
777 TdD = TdB - TdC; | |
778 T5F = FNMS(KP414213562, T5E, T5z); | |
779 T5R = FMA(KP414213562, T5z, T5E); | |
780 } | |
781 T8q = FNMS(KP414213562, T8p, T8o); | |
782 T8z = FMA(KP414213562, T8o, T8p); | |
783 T6W = T5F + T5u; | |
784 T5G = T5u - T5F; | |
785 T6Z = T5R + T5S; | |
786 T5T = T5R - T5S; | |
787 T8A = FNMS(KP414213562, T8r, T8s); | |
788 T8t = FMA(KP414213562, T8s, T8r); | |
789 T9D = T8z - T8A; | |
790 T8B = T8z + T8A; | |
791 Tcu = Tbl - Tbg; | |
792 Tbm = Tbg + Tbl; | |
793 } | |
794 } | |
795 } | |
796 { | |
797 E T9A, T8u, TbE, Tao, Td7, Td8; | |
798 { | |
799 E Teq, Ten, Tex, Teh, TeB, Tev, Tey, Tem, Te9, Tec; | |
800 { | |
801 E Tef, Teu, Tel, T11, Tei, Tet, T2y, TeI, T23, T22, T33, Teg, TeD, TeG, T34; | |
802 E TeH; | |
803 { | |
804 E TeE, TeF, Tv, T10, T1w, T21; | |
805 Tef = Tf - Tu; | |
806 Tv = Tf + Tu; | |
807 T10 = TK + TZ; | |
808 Teu = TZ - TK; | |
809 Tel = Tej - Tek; | |
810 TeE = Tej + Tek; | |
811 T9A = T8t - T8q; | |
812 T8u = T8q + T8t; | |
813 TeD = Tv - T10; | |
814 T11 = Tv + T10; | |
815 TeF = Teo + Tep; | |
816 Teq = Teo - Tep; | |
817 Tei = T1g - T1v; | |
818 T1w = T1g + T1v; | |
819 T21 = T1L + T20; | |
820 Ten = T1L - T20; | |
821 Tet = T2i - T2x; | |
822 T2y = T2i + T2x; | |
823 TeI = TeE + TeF; | |
824 TeG = TeE - TeF; | |
825 T23 = T21 - T1w; | |
826 T22 = T1w + T21; | |
827 T33 = T2N + T32; | |
828 Teg = T2N - T32; | |
829 } | |
830 ro[WS(os, 16)] = TeD + TeG; | |
831 ro[WS(os, 48)] = TeD - TeG; | |
832 ro[0] = T11 + T22; | |
833 ro[WS(os, 32)] = T11 - T22; | |
834 T34 = T2y - T33; | |
835 TeH = T2y + T33; | |
836 io[0] = TeH + TeI; | |
837 io[WS(os, 32)] = TeH - TeI; | |
838 io[WS(os, 48)] = T34 - T23; | |
839 io[WS(os, 16)] = T23 + T34; | |
840 Tex = Tef - Teg; | |
841 Teh = Tef + Teg; | |
842 TeB = Teu + Tet; | |
843 Tev = Tet - Teu; | |
844 Tey = Tel - Tei; | |
845 Tem = Tei + Tel; | |
846 } | |
847 { | |
848 E TdV, Tdb, TdJ, Te5, TdE, Tdz, Te6, Tdi, Teb, Te3, TdZ, TdY, TdW, TdM, TdR; | |
849 E Tdu; | |
850 { | |
851 E TdL, Tde, Tdh, TdK, Tez, Ter; | |
852 TdV = Td9 + Tda; | |
853 Tdb = Td9 - Tda; | |
854 TdJ = TdH - TdI; | |
855 Te5 = TdI + TdH; | |
856 Tez = Ten + Teq; | |
857 Ter = Ten - Teq; | |
858 TdL = Tdd + Tdc; | |
859 Tde = Tdc - Tdd; | |
860 { | |
861 E TeA, TeC, Tew, Tes; | |
862 TeA = Tey - Tez; | |
863 TeC = Tey + Tez; | |
864 Tew = Ter - Tem; | |
865 Tes = Tem + Ter; | |
866 ro[WS(os, 24)] = FMA(KP707106781, TeA, Tex); | |
867 ro[WS(os, 56)] = FNMS(KP707106781, TeA, Tex); | |
868 io[WS(os, 8)] = FMA(KP707106781, TeC, TeB); | |
869 io[WS(os, 40)] = FNMS(KP707106781, TeC, TeB); | |
870 io[WS(os, 24)] = FMA(KP707106781, Tew, Tev); | |
871 io[WS(os, 56)] = FNMS(KP707106781, Tew, Tev); | |
872 ro[WS(os, 8)] = FMA(KP707106781, Tes, Teh); | |
873 ro[WS(os, 40)] = FNMS(KP707106781, Tes, Teh); | |
874 Tdh = Tdf + Tdg; | |
875 TdK = Tdf - Tdg; | |
876 } | |
877 { | |
878 E Te1, Te2, Tdo, Tdt; | |
879 TdE = TdA - TdD; | |
880 Te1 = TdA + TdD; | |
881 Te2 = Tdy + Tdx; | |
882 Tdz = Tdx - Tdy; | |
883 Te6 = Tde + Tdh; | |
884 Tdi = Tde - Tdh; | |
885 Teb = FMA(KP414213562, Te1, Te2); | |
886 Te3 = FNMS(KP414213562, Te2, Te1); | |
887 TdZ = Tdn + Tdm; | |
888 Tdo = Tdm - Tdn; | |
889 Tdt = Tdp - Tds; | |
890 TdY = Tdp + Tds; | |
891 TdW = TdL + TdK; | |
892 TdM = TdK - TdL; | |
893 TdR = FNMS(KP414213562, Tdo, Tdt); | |
894 Tdu = FMA(KP414213562, Tdt, Tdo); | |
895 } | |
896 } | |
897 { | |
898 E TdT, Tea, Te0, TdU; | |
899 { | |
900 E Tdj, TdQ, TdF, TdP, TdN, TdS, TdO, TdG; | |
901 TdT = FNMS(KP707106781, Tdi, Tdb); | |
902 Tdj = FMA(KP707106781, Tdi, Tdb); | |
903 Tea = FNMS(KP414213562, TdY, TdZ); | |
904 Te0 = FMA(KP414213562, TdZ, TdY); | |
905 TdQ = FMA(KP414213562, Tdz, TdE); | |
906 TdF = FNMS(KP414213562, TdE, Tdz); | |
907 TdP = FMA(KP707106781, TdM, TdJ); | |
908 TdN = FNMS(KP707106781, TdM, TdJ); | |
909 TdS = TdQ - TdR; | |
910 TdU = TdR + TdQ; | |
911 TdO = Tdu + TdF; | |
912 TdG = Tdu - TdF; | |
913 io[WS(os, 12)] = FMA(KP923879532, TdS, TdP); | |
914 io[WS(os, 44)] = FNMS(KP923879532, TdS, TdP); | |
915 ro[WS(os, 12)] = FMA(KP923879532, TdG, Tdj); | |
916 ro[WS(os, 44)] = FNMS(KP923879532, TdG, Tdj); | |
917 io[WS(os, 60)] = FMA(KP923879532, TdO, TdN); | |
918 io[WS(os, 28)] = FNMS(KP923879532, TdO, TdN); | |
919 } | |
920 { | |
921 E Te8, Te7, Ted, Tee, TdX, Te4; | |
922 Te9 = FNMS(KP707106781, TdW, TdV); | |
923 TdX = FMA(KP707106781, TdW, TdV); | |
924 Te4 = Te0 + Te3; | |
925 Te8 = Te3 - Te0; | |
926 Te7 = FNMS(KP707106781, Te6, Te5); | |
927 Ted = FMA(KP707106781, Te6, Te5); | |
928 ro[WS(os, 60)] = FMA(KP923879532, TdU, TdT); | |
929 ro[WS(os, 28)] = FNMS(KP923879532, TdU, TdT); | |
930 ro[WS(os, 4)] = FMA(KP923879532, Te4, TdX); | |
931 ro[WS(os, 36)] = FNMS(KP923879532, Te4, TdX); | |
932 Tee = Tea + Teb; | |
933 Tec = Tea - Teb; | |
934 io[WS(os, 4)] = FMA(KP923879532, Tee, Ted); | |
935 io[WS(os, 36)] = FNMS(KP923879532, Tee, Ted); | |
936 io[WS(os, 20)] = FMA(KP923879532, Te8, Te7); | |
937 io[WS(os, 52)] = FNMS(KP923879532, Te8, Te7); | |
938 } | |
939 } | |
940 } | |
941 { | |
942 E TcP, Tcd, TcZ, TcD, Tcy, Tcv, TcT, Td0, Tck, Td4, TcX, TcS, TcK, Tcs, TcQ; | |
943 E TcG; | |
944 { | |
945 E TcF, Tcg, Tcj, TcE, TcV, TcW, Tcc, TcC, Tco, Tcr; | |
946 TbE = TbC + TbD; | |
947 Tcc = TbC - TbD; | |
948 TcC = Tan - Tak; | |
949 Tao = Tak + Tan; | |
950 TcF = FNMS(KP414213562, Tce, Tcf); | |
951 Tcg = FMA(KP414213562, Tcf, Tce); | |
952 ro[WS(os, 20)] = FMA(KP923879532, Tec, Te9); | |
953 ro[WS(os, 52)] = FNMS(KP923879532, Tec, Te9); | |
954 TcP = FNMS(KP707106781, Tcc, Tcb); | |
955 Tcd = FMA(KP707106781, Tcc, Tcb); | |
956 TcZ = FNMS(KP707106781, TcC, TcB); | |
957 TcD = FMA(KP707106781, TcC, TcB); | |
958 Tcj = FNMS(KP414213562, Tci, Tch); | |
959 TcE = FMA(KP414213562, Tch, Tci); | |
960 Tcy = FNMS(KP707106781, Tcx, Tcw); | |
961 TcV = FMA(KP707106781, Tcx, Tcw); | |
962 TcW = FMA(KP707106781, Tcu, Tct); | |
963 Tcv = FNMS(KP707106781, Tcu, Tct); | |
964 TcT = FMA(KP707106781, Tcn, Tcm); | |
965 Tco = FNMS(KP707106781, Tcn, Tcm); | |
966 Td0 = Tcg + Tcj; | |
967 Tck = Tcg - Tcj; | |
968 Td4 = FMA(KP198912367, TcV, TcW); | |
969 TcX = FNMS(KP198912367, TcW, TcV); | |
970 Tcr = FNMS(KP707106781, Tcq, Tcp); | |
971 TcS = FMA(KP707106781, Tcq, Tcp); | |
972 TcK = FNMS(KP668178637, Tco, Tcr); | |
973 Tcs = FMA(KP668178637, Tcr, Tco); | |
974 TcQ = TcF + TcE; | |
975 TcG = TcE - TcF; | |
976 } | |
977 { | |
978 E TcJ, Td5, TcU, TcM; | |
979 { | |
980 E Tcl, TcL, Tcz, TcN, TcH, TcO, TcI, TcA; | |
981 TcJ = FNMS(KP923879532, Tck, Tcd); | |
982 Tcl = FMA(KP923879532, Tck, Tcd); | |
983 Td5 = FNMS(KP198912367, TcS, TcT); | |
984 TcU = FMA(KP198912367, TcT, TcS); | |
985 TcL = FMA(KP668178637, Tcv, Tcy); | |
986 Tcz = FNMS(KP668178637, Tcy, Tcv); | |
987 TcN = FMA(KP923879532, TcG, TcD); | |
988 TcH = FNMS(KP923879532, TcG, TcD); | |
989 TcO = TcK + TcL; | |
990 TcM = TcK - TcL; | |
991 TcI = Tcz - Tcs; | |
992 TcA = Tcs + Tcz; | |
993 io[WS(os, 6)] = FMA(KP831469612, TcO, TcN); | |
994 io[WS(os, 38)] = FNMS(KP831469612, TcO, TcN); | |
995 ro[WS(os, 6)] = FMA(KP831469612, TcA, Tcl); | |
996 ro[WS(os, 38)] = FNMS(KP831469612, TcA, Tcl); | |
997 io[WS(os, 22)] = FMA(KP831469612, TcI, TcH); | |
998 io[WS(os, 54)] = FNMS(KP831469612, TcI, TcH); | |
999 } | |
1000 { | |
1001 E Td2, Td1, Td3, Td6, TcR, TcY; | |
1002 Td7 = FMA(KP923879532, TcQ, TcP); | |
1003 TcR = FNMS(KP923879532, TcQ, TcP); | |
1004 TcY = TcU - TcX; | |
1005 Td2 = TcU + TcX; | |
1006 Td1 = FMA(KP923879532, Td0, TcZ); | |
1007 Td3 = FNMS(KP923879532, Td0, TcZ); | |
1008 ro[WS(os, 22)] = FMA(KP831469612, TcM, TcJ); | |
1009 ro[WS(os, 54)] = FNMS(KP831469612, TcM, TcJ); | |
1010 ro[WS(os, 14)] = FMA(KP980785280, TcY, TcR); | |
1011 ro[WS(os, 46)] = FNMS(KP980785280, TcY, TcR); | |
1012 Td6 = Td4 - Td5; | |
1013 Td8 = Td5 + Td4; | |
1014 io[WS(os, 14)] = FMA(KP980785280, Td6, Td3); | |
1015 io[WS(os, 46)] = FNMS(KP980785280, Td6, Td3); | |
1016 io[WS(os, 62)] = FMA(KP980785280, Td2, Td1); | |
1017 io[WS(os, 30)] = FNMS(KP980785280, Td2, Td1); | |
1018 } | |
1019 } | |
1020 } | |
1021 } | |
1022 { | |
1023 E T3f, T66, T63, T3u, T7z, T7A, Tc5, Tc8; | |
1024 { | |
1025 E TbR, Tap, Tc1, TbF, Tbw, Tbn, TbV, Tc2, TaE, Tc7, TbZ, TbU, TbN, Tb6, TbS; | |
1026 E TbI; | |
1027 { | |
1028 E TbH, Taw, TaD, TbG, TbX, TbY, TaW, Tb5; | |
1029 TbH = FMA(KP414213562, Tas, Tav); | |
1030 Taw = FNMS(KP414213562, Tav, Tas); | |
1031 ro[WS(os, 62)] = FMA(KP980785280, Td8, Td7); | |
1032 ro[WS(os, 30)] = FNMS(KP980785280, Td8, Td7); | |
1033 TbR = FMA(KP707106781, Tao, Tah); | |
1034 Tap = FNMS(KP707106781, Tao, Tah); | |
1035 Tc1 = FMA(KP707106781, TbE, TbB); | |
1036 TbF = FNMS(KP707106781, TbE, TbB); | |
1037 TaD = FMA(KP414213562, TaC, Taz); | |
1038 TbG = FNMS(KP414213562, Taz, TaC); | |
1039 Tbw = FNMS(KP707106781, Tbv, Tbs); | |
1040 TbX = FMA(KP707106781, Tbv, Tbs); | |
1041 TbY = FMA(KP707106781, Tbm, Tbb); | |
1042 Tbn = FNMS(KP707106781, Tbm, Tbb); | |
1043 TbV = FMA(KP707106781, TaV, TaK); | |
1044 TaW = FNMS(KP707106781, TaV, TaK); | |
1045 Tc2 = Taw + TaD; | |
1046 TaE = Taw - TaD; | |
1047 Tc7 = FMA(KP198912367, TbX, TbY); | |
1048 TbZ = FNMS(KP198912367, TbY, TbX); | |
1049 Tb5 = FNMS(KP707106781, Tb4, Tb1); | |
1050 TbU = FMA(KP707106781, Tb4, Tb1); | |
1051 TbN = FNMS(KP668178637, TaW, Tb5); | |
1052 Tb6 = FMA(KP668178637, Tb5, TaW); | |
1053 TbS = TbH + TbG; | |
1054 TbI = TbG - TbH; | |
1055 } | |
1056 { | |
1057 E TbP, Tc6, TbW, TbQ; | |
1058 { | |
1059 E TaF, TbM, Tbx, TbL, TbJ, TbO, TbK, Tby; | |
1060 TbP = FNMS(KP923879532, TaE, Tap); | |
1061 TaF = FMA(KP923879532, TaE, Tap); | |
1062 Tc6 = FNMS(KP198912367, TbU, TbV); | |
1063 TbW = FMA(KP198912367, TbV, TbU); | |
1064 TbM = FMA(KP668178637, Tbn, Tbw); | |
1065 Tbx = FNMS(KP668178637, Tbw, Tbn); | |
1066 TbL = FMA(KP923879532, TbI, TbF); | |
1067 TbJ = FNMS(KP923879532, TbI, TbF); | |
1068 TbO = TbM - TbN; | |
1069 TbQ = TbN + TbM; | |
1070 TbK = Tb6 + Tbx; | |
1071 Tby = Tb6 - Tbx; | |
1072 io[WS(os, 10)] = FMA(KP831469612, TbO, TbL); | |
1073 io[WS(os, 42)] = FNMS(KP831469612, TbO, TbL); | |
1074 ro[WS(os, 10)] = FMA(KP831469612, Tby, TaF); | |
1075 ro[WS(os, 42)] = FNMS(KP831469612, Tby, TaF); | |
1076 io[WS(os, 58)] = FMA(KP831469612, TbK, TbJ); | |
1077 io[WS(os, 26)] = FNMS(KP831469612, TbK, TbJ); | |
1078 } | |
1079 { | |
1080 E Tc4, Tc3, Tc9, Tca, TbT, Tc0; | |
1081 Tc5 = FNMS(KP923879532, TbS, TbR); | |
1082 TbT = FMA(KP923879532, TbS, TbR); | |
1083 Tc0 = TbW + TbZ; | |
1084 Tc4 = TbZ - TbW; | |
1085 Tc3 = FNMS(KP923879532, Tc2, Tc1); | |
1086 Tc9 = FMA(KP923879532, Tc2, Tc1); | |
1087 ro[WS(os, 58)] = FMA(KP831469612, TbQ, TbP); | |
1088 ro[WS(os, 26)] = FNMS(KP831469612, TbQ, TbP); | |
1089 ro[WS(os, 2)] = FMA(KP980785280, Tc0, TbT); | |
1090 ro[WS(os, 34)] = FNMS(KP980785280, Tc0, TbT); | |
1091 Tca = Tc6 + Tc7; | |
1092 Tc8 = Tc6 - Tc7; | |
1093 io[WS(os, 2)] = FMA(KP980785280, Tca, Tc9); | |
1094 io[WS(os, 34)] = FNMS(KP980785280, Tca, Tc9); | |
1095 io[WS(os, 18)] = FMA(KP980785280, Tc4, Tc3); | |
1096 io[WS(os, 50)] = FNMS(KP980785280, Tc4, Tc3); | |
1097 } | |
1098 } | |
1099 } | |
1100 { | |
1101 E T7h, T6F, T70, T6X, T7x, T7m, T7w, T7p, T7s, T6M, T7c, T6U, T7r, T75, T7i; | |
1102 E T78; | |
1103 { | |
1104 E T6T, T6Q, T77, T6I, T6L, T76, T73, T74; | |
1105 { | |
1106 E T7k, T7l, T6D, T6E, T7n, T7o; | |
1107 T3f = FMA(KP707106781, T3e, T37); | |
1108 T6D = FNMS(KP707106781, T3e, T37); | |
1109 T6E = T65 + T64; | |
1110 T66 = T64 - T65; | |
1111 T6T = FNMS(KP923879532, T6S, T6R); | |
1112 T7k = FMA(KP923879532, T6S, T6R); | |
1113 ro[WS(os, 18)] = FMA(KP980785280, Tc8, Tc5); | |
1114 ro[WS(os, 50)] = FNMS(KP980785280, Tc8, Tc5); | |
1115 T7h = FMA(KP923879532, T6E, T6D); | |
1116 T6F = FNMS(KP923879532, T6E, T6D); | |
1117 T7l = FMA(KP923879532, T6P, T6O); | |
1118 T6Q = FNMS(KP923879532, T6P, T6O); | |
1119 T70 = FNMS(KP923879532, T6Z, T6Y); | |
1120 T7n = FMA(KP923879532, T6Z, T6Y); | |
1121 T7o = FMA(KP923879532, T6W, T6V); | |
1122 T6X = FNMS(KP923879532, T6W, T6V); | |
1123 T77 = FNMS(KP198912367, T6G, T6H); | |
1124 T6I = FMA(KP198912367, T6H, T6G); | |
1125 T7x = FNMS(KP098491403, T7k, T7l); | |
1126 T7m = FMA(KP098491403, T7l, T7k); | |
1127 T7w = FMA(KP098491403, T7n, T7o); | |
1128 T7p = FNMS(KP098491403, T7o, T7n); | |
1129 T6L = FNMS(KP198912367, T6K, T6J); | |
1130 T76 = FMA(KP198912367, T6J, T6K); | |
1131 } | |
1132 T63 = FMA(KP707106781, T62, T5Z); | |
1133 T73 = FNMS(KP707106781, T62, T5Z); | |
1134 T7s = T6I + T6L; | |
1135 T6M = T6I - T6L; | |
1136 T7c = FNMS(KP820678790, T6Q, T6T); | |
1137 T6U = FMA(KP820678790, T6T, T6Q); | |
1138 T74 = T3m + T3t; | |
1139 T3u = T3m - T3t; | |
1140 T7r = FMA(KP923879532, T74, T73); | |
1141 T75 = FNMS(KP923879532, T74, T73); | |
1142 T7i = T77 + T76; | |
1143 T78 = T76 - T77; | |
1144 } | |
1145 { | |
1146 E T7b, T6N, T7f, T79, T71, T7d; | |
1147 T7b = FNMS(KP980785280, T6M, T6F); | |
1148 T6N = FMA(KP980785280, T6M, T6F); | |
1149 T7f = FMA(KP980785280, T78, T75); | |
1150 T79 = FNMS(KP980785280, T78, T75); | |
1151 T71 = FNMS(KP820678790, T70, T6X); | |
1152 T7d = FMA(KP820678790, T6X, T70); | |
1153 { | |
1154 E T7u, T7t, T7v, T7y, T7j, T7q; | |
1155 T7z = FMA(KP980785280, T7i, T7h); | |
1156 T7j = FNMS(KP980785280, T7i, T7h); | |
1157 T7q = T7m - T7p; | |
1158 T7u = T7m + T7p; | |
1159 { | |
1160 E T7g, T7e, T72, T7a; | |
1161 T7g = T7c + T7d; | |
1162 T7e = T7c - T7d; | |
1163 T72 = T6U + T71; | |
1164 T7a = T71 - T6U; | |
1165 ro[WS(os, 23)] = FMA(KP773010453, T7e, T7b); | |
1166 ro[WS(os, 55)] = FNMS(KP773010453, T7e, T7b); | |
1167 io[WS(os, 7)] = FMA(KP773010453, T7g, T7f); | |
1168 io[WS(os, 39)] = FNMS(KP773010453, T7g, T7f); | |
1169 io[WS(os, 23)] = FMA(KP773010453, T7a, T79); | |
1170 io[WS(os, 55)] = FNMS(KP773010453, T7a, T79); | |
1171 ro[WS(os, 7)] = FMA(KP773010453, T72, T6N); | |
1172 ro[WS(os, 39)] = FNMS(KP773010453, T72, T6N); | |
1173 ro[WS(os, 47)] = FNMS(KP995184726, T7q, T7j); | |
1174 ro[WS(os, 15)] = FMA(KP995184726, T7q, T7j); | |
1175 } | |
1176 T7t = FMA(KP980785280, T7s, T7r); | |
1177 T7v = FNMS(KP980785280, T7s, T7r); | |
1178 T7y = T7w - T7x; | |
1179 T7A = T7x + T7w; | |
1180 io[WS(os, 15)] = FMA(KP995184726, T7y, T7v); | |
1181 io[WS(os, 47)] = FNMS(KP995184726, T7y, T7v); | |
1182 io[WS(os, 63)] = FMA(KP995184726, T7u, T7t); | |
1183 io[WS(os, 31)] = FNMS(KP995184726, T7u, T7t); | |
1184 } | |
1185 } | |
1186 } | |
1187 { | |
1188 E T7D, T8K, T8H, T7K, Tad, Tae, T6x, T6A; | |
1189 { | |
1190 E T9V, T9j, T9E, T9B, Tab, Ta0, Taa, Ta3, Ta6, T9q, T9Q, T9y, Ta5, T9J, T9W; | |
1191 E T9M; | |
1192 { | |
1193 E T9x, T9u, T9L, T9m, T9p, T9K, T9H, T9I; | |
1194 { | |
1195 E T9Y, T9Z, T9h, T9i, Ta1, Ta2; | |
1196 T7D = FMA(KP707106781, T7C, T7B); | |
1197 T9h = FNMS(KP707106781, T7C, T7B); | |
1198 T9i = T8I - T8J; | |
1199 T8K = T8I + T8J; | |
1200 T9x = FNMS(KP923879532, T9w, T9v); | |
1201 T9Y = FMA(KP923879532, T9w, T9v); | |
1202 ro[WS(os, 63)] = FMA(KP995184726, T7A, T7z); | |
1203 ro[WS(os, 31)] = FNMS(KP995184726, T7A, T7z); | |
1204 T9V = FNMS(KP923879532, T9i, T9h); | |
1205 T9j = FMA(KP923879532, T9i, T9h); | |
1206 T9Z = FMA(KP923879532, T9t, T9s); | |
1207 T9u = FNMS(KP923879532, T9t, T9s); | |
1208 T9E = FNMS(KP923879532, T9D, T9C); | |
1209 Ta1 = FMA(KP923879532, T9D, T9C); | |
1210 Ta2 = FMA(KP923879532, T9A, T9z); | |
1211 T9B = FNMS(KP923879532, T9A, T9z); | |
1212 T9L = FNMS(KP668178637, T9k, T9l); | |
1213 T9m = FMA(KP668178637, T9l, T9k); | |
1214 Tab = FNMS(KP303346683, T9Y, T9Z); | |
1215 Ta0 = FMA(KP303346683, T9Z, T9Y); | |
1216 Taa = FMA(KP303346683, Ta1, Ta2); | |
1217 Ta3 = FNMS(KP303346683, Ta2, Ta1); | |
1218 T9p = FNMS(KP668178637, T9o, T9n); | |
1219 T9K = FMA(KP668178637, T9n, T9o); | |
1220 } | |
1221 T8H = FMA(KP707106781, T8G, T8F); | |
1222 T9H = FNMS(KP707106781, T8G, T8F); | |
1223 Ta6 = T9m + T9p; | |
1224 T9q = T9m - T9p; | |
1225 T9Q = FNMS(KP534511135, T9u, T9x); | |
1226 T9y = FMA(KP534511135, T9x, T9u); | |
1227 T9I = T7J - T7G; | |
1228 T7K = T7G + T7J; | |
1229 Ta5 = FNMS(KP923879532, T9I, T9H); | |
1230 T9J = FMA(KP923879532, T9I, T9H); | |
1231 T9W = T9L + T9K; | |
1232 T9M = T9K - T9L; | |
1233 } | |
1234 { | |
1235 E T9P, T9r, T9T, T9N, T9F, T9R; | |
1236 T9P = FNMS(KP831469612, T9q, T9j); | |
1237 T9r = FMA(KP831469612, T9q, T9j); | |
1238 T9T = FMA(KP831469612, T9M, T9J); | |
1239 T9N = FNMS(KP831469612, T9M, T9J); | |
1240 T9F = FNMS(KP534511135, T9E, T9B); | |
1241 T9R = FMA(KP534511135, T9B, T9E); | |
1242 { | |
1243 E Ta8, Ta7, Ta9, Tac, T9X, Ta4; | |
1244 Tad = FMA(KP831469612, T9W, T9V); | |
1245 T9X = FNMS(KP831469612, T9W, T9V); | |
1246 Ta4 = Ta0 - Ta3; | |
1247 Ta8 = Ta0 + Ta3; | |
1248 { | |
1249 E T9U, T9S, T9G, T9O; | |
1250 T9U = T9Q + T9R; | |
1251 T9S = T9Q - T9R; | |
1252 T9G = T9y + T9F; | |
1253 T9O = T9F - T9y; | |
1254 ro[WS(os, 21)] = FMA(KP881921264, T9S, T9P); | |
1255 ro[WS(os, 53)] = FNMS(KP881921264, T9S, T9P); | |
1256 io[WS(os, 5)] = FMA(KP881921264, T9U, T9T); | |
1257 io[WS(os, 37)] = FNMS(KP881921264, T9U, T9T); | |
1258 io[WS(os, 21)] = FMA(KP881921264, T9O, T9N); | |
1259 io[WS(os, 53)] = FNMS(KP881921264, T9O, T9N); | |
1260 ro[WS(os, 5)] = FMA(KP881921264, T9G, T9r); | |
1261 ro[WS(os, 37)] = FNMS(KP881921264, T9G, T9r); | |
1262 ro[WS(os, 45)] = FNMS(KP956940335, Ta4, T9X); | |
1263 ro[WS(os, 13)] = FMA(KP956940335, Ta4, T9X); | |
1264 } | |
1265 Ta7 = FMA(KP831469612, Ta6, Ta5); | |
1266 Ta9 = FNMS(KP831469612, Ta6, Ta5); | |
1267 Tac = Taa - Tab; | |
1268 Tae = Tab + Taa; | |
1269 io[WS(os, 13)] = FMA(KP956940335, Tac, Ta9); | |
1270 io[WS(os, 45)] = FNMS(KP956940335, Tac, Ta9); | |
1271 io[WS(os, 61)] = FMA(KP956940335, Ta8, Ta7); | |
1272 io[WS(os, 29)] = FNMS(KP956940335, Ta8, Ta7); | |
1273 } | |
1274 } | |
1275 } | |
1276 { | |
1277 E T6j, T3v, T5U, T5H, T6y, T6o, T6z, T6r, T6u, T48, T6f, T52, T6t, T67, T6k; | |
1278 E T6a; | |
1279 { | |
1280 E T51, T4O, T69, T3O, T47, T68; | |
1281 { | |
1282 E T6m, T6n, T6p, T6q; | |
1283 T51 = FNMS(KP923879532, T50, T4X); | |
1284 T6m = FMA(KP923879532, T50, T4X); | |
1285 ro[WS(os, 61)] = FMA(KP956940335, Tae, Tad); | |
1286 ro[WS(os, 29)] = FNMS(KP956940335, Tae, Tad); | |
1287 T6j = FMA(KP923879532, T3u, T3f); | |
1288 T3v = FNMS(KP923879532, T3u, T3f); | |
1289 T6n = FMA(KP923879532, T4N, T4q); | |
1290 T4O = FNMS(KP923879532, T4N, T4q); | |
1291 T5U = FNMS(KP923879532, T5T, T5Q); | |
1292 T6p = FMA(KP923879532, T5T, T5Q); | |
1293 T6q = FMA(KP923879532, T5G, T5j); | |
1294 T5H = FNMS(KP923879532, T5G, T5j); | |
1295 T69 = FMA(KP668178637, T3G, T3N); | |
1296 T3O = FNMS(KP668178637, T3N, T3G); | |
1297 T6y = FNMS(KP303346683, T6m, T6n); | |
1298 T6o = FMA(KP303346683, T6n, T6m); | |
1299 T6z = FMA(KP303346683, T6p, T6q); | |
1300 T6r = FNMS(KP303346683, T6q, T6p); | |
1301 T47 = FMA(KP668178637, T46, T3Z); | |
1302 T68 = FNMS(KP668178637, T3Z, T46); | |
1303 } | |
1304 T6u = T3O + T47; | |
1305 T48 = T3O - T47; | |
1306 T6f = FNMS(KP534511135, T4O, T51); | |
1307 T52 = FMA(KP534511135, T51, T4O); | |
1308 T6t = FMA(KP923879532, T66, T63); | |
1309 T67 = FNMS(KP923879532, T66, T63); | |
1310 T6k = T69 + T68; | |
1311 T6a = T68 - T69; | |
1312 } | |
1313 { | |
1314 E T6h, T49, T6d, T6b, T5V, T6e; | |
1315 T6h = FNMS(KP831469612, T48, T3v); | |
1316 T49 = FMA(KP831469612, T48, T3v); | |
1317 T6d = FMA(KP831469612, T6a, T67); | |
1318 T6b = FNMS(KP831469612, T6a, T67); | |
1319 T5V = FNMS(KP534511135, T5U, T5H); | |
1320 T6e = FMA(KP534511135, T5H, T5U); | |
1321 { | |
1322 E T6w, T6v, T6B, T6C, T6l, T6s; | |
1323 T6x = FNMS(KP831469612, T6k, T6j); | |
1324 T6l = FMA(KP831469612, T6k, T6j); | |
1325 T6s = T6o + T6r; | |
1326 T6w = T6r - T6o; | |
1327 { | |
1328 E T6g, T6i, T5W, T6c; | |
1329 T6g = T6e - T6f; | |
1330 T6i = T6f + T6e; | |
1331 T5W = T52 - T5V; | |
1332 T6c = T52 + T5V; | |
1333 ro[WS(os, 59)] = FMA(KP881921264, T6i, T6h); | |
1334 ro[WS(os, 27)] = FNMS(KP881921264, T6i, T6h); | |
1335 io[WS(os, 11)] = FMA(KP881921264, T6g, T6d); | |
1336 io[WS(os, 43)] = FNMS(KP881921264, T6g, T6d); | |
1337 io[WS(os, 59)] = FMA(KP881921264, T6c, T6b); | |
1338 io[WS(os, 27)] = FNMS(KP881921264, T6c, T6b); | |
1339 ro[WS(os, 11)] = FMA(KP881921264, T5W, T49); | |
1340 ro[WS(os, 43)] = FNMS(KP881921264, T5W, T49); | |
1341 ro[WS(os, 35)] = FNMS(KP956940335, T6s, T6l); | |
1342 ro[WS(os, 3)] = FMA(KP956940335, T6s, T6l); | |
1343 } | |
1344 T6v = FNMS(KP831469612, T6u, T6t); | |
1345 T6B = FMA(KP831469612, T6u, T6t); | |
1346 T6C = T6y + T6z; | |
1347 T6A = T6y - T6z; | |
1348 io[WS(os, 3)] = FMA(KP956940335, T6C, T6B); | |
1349 io[WS(os, 35)] = FNMS(KP956940335, T6C, T6B); | |
1350 io[WS(os, 19)] = FMA(KP956940335, T6w, T6v); | |
1351 io[WS(os, 51)] = FNMS(KP956940335, T6w, T6v); | |
1352 } | |
1353 } | |
1354 } | |
1355 { | |
1356 E T8X, T7L, T8C, T8v, T9c, T92, T9d, T95, T98, T80, T8T, T8k, T97, T8L, T8Y; | |
1357 E T8O; | |
1358 { | |
1359 E T8j, T8c, T8N, T7S, T7Z, T8M; | |
1360 { | |
1361 E T90, T91, T93, T94; | |
1362 T8j = FNMS(KP923879532, T8i, T8f); | |
1363 T90 = FMA(KP923879532, T8i, T8f); | |
1364 ro[WS(os, 19)] = FMA(KP956940335, T6A, T6x); | |
1365 ro[WS(os, 51)] = FNMS(KP956940335, T6A, T6x); | |
1366 T8X = FMA(KP923879532, T7K, T7D); | |
1367 T7L = FNMS(KP923879532, T7K, T7D); | |
1368 T91 = FMA(KP923879532, T8b, T84); | |
1369 T8c = FNMS(KP923879532, T8b, T84); | |
1370 T8C = FNMS(KP923879532, T8B, T8y); | |
1371 T93 = FMA(KP923879532, T8B, T8y); | |
1372 T94 = FMA(KP923879532, T8u, T8n); | |
1373 T8v = FNMS(KP923879532, T8u, T8n); | |
1374 T8N = FMA(KP198912367, T7O, T7R); | |
1375 T7S = FNMS(KP198912367, T7R, T7O); | |
1376 T9c = FNMS(KP098491403, T90, T91); | |
1377 T92 = FMA(KP098491403, T91, T90); | |
1378 T9d = FMA(KP098491403, T93, T94); | |
1379 T95 = FNMS(KP098491403, T94, T93); | |
1380 T7Z = FMA(KP198912367, T7Y, T7V); | |
1381 T8M = FNMS(KP198912367, T7V, T7Y); | |
1382 } | |
1383 T98 = T7S + T7Z; | |
1384 T80 = T7S - T7Z; | |
1385 T8T = FNMS(KP820678790, T8c, T8j); | |
1386 T8k = FMA(KP820678790, T8j, T8c); | |
1387 T97 = FMA(KP923879532, T8K, T8H); | |
1388 T8L = FNMS(KP923879532, T8K, T8H); | |
1389 T8Y = T8N + T8M; | |
1390 T8O = T8M - T8N; | |
1391 } | |
1392 { | |
1393 E T8V, T81, T8R, T8P, T8D, T8S; | |
1394 T8V = FNMS(KP980785280, T80, T7L); | |
1395 T81 = FMA(KP980785280, T80, T7L); | |
1396 T8R = FMA(KP980785280, T8O, T8L); | |
1397 T8P = FNMS(KP980785280, T8O, T8L); | |
1398 T8D = FNMS(KP820678790, T8C, T8v); | |
1399 T8S = FMA(KP820678790, T8v, T8C); | |
1400 { | |
1401 E T9a, T99, T9f, T9g, T8Z, T96; | |
1402 T9b = FNMS(KP980785280, T8Y, T8X); | |
1403 T8Z = FMA(KP980785280, T8Y, T8X); | |
1404 T96 = T92 + T95; | |
1405 T9a = T95 - T92; | |
1406 { | |
1407 E T8U, T8W, T8E, T8Q; | |
1408 T8U = T8S - T8T; | |
1409 T8W = T8T + T8S; | |
1410 T8E = T8k - T8D; | |
1411 T8Q = T8k + T8D; | |
1412 ro[WS(os, 57)] = FMA(KP773010453, T8W, T8V); | |
1413 ro[WS(os, 25)] = FNMS(KP773010453, T8W, T8V); | |
1414 io[WS(os, 9)] = FMA(KP773010453, T8U, T8R); | |
1415 io[WS(os, 41)] = FNMS(KP773010453, T8U, T8R); | |
1416 io[WS(os, 57)] = FMA(KP773010453, T8Q, T8P); | |
1417 io[WS(os, 25)] = FNMS(KP773010453, T8Q, T8P); | |
1418 ro[WS(os, 9)] = FMA(KP773010453, T8E, T81); | |
1419 ro[WS(os, 41)] = FNMS(KP773010453, T8E, T81); | |
1420 ro[WS(os, 33)] = FNMS(KP995184726, T96, T8Z); | |
1421 ro[WS(os, 1)] = FMA(KP995184726, T96, T8Z); | |
1422 } | |
1423 T99 = FNMS(KP980785280, T98, T97); | |
1424 T9f = FMA(KP980785280, T98, T97); | |
1425 T9g = T9c + T9d; | |
1426 T9e = T9c - T9d; | |
1427 io[WS(os, 1)] = FMA(KP995184726, T9g, T9f); | |
1428 io[WS(os, 33)] = FNMS(KP995184726, T9g, T9f); | |
1429 io[WS(os, 17)] = FMA(KP995184726, T9a, T99); | |
1430 io[WS(os, 49)] = FNMS(KP995184726, T9a, T99); | |
1431 } | |
1432 } | |
1433 } | |
1434 } | |
1435 } | |
1436 } | |
1437 } | |
1438 ro[WS(os, 17)] = FMA(KP995184726, T9e, T9b); | |
1439 ro[WS(os, 49)] = FNMS(KP995184726, T9e, T9b); | |
1440 } | |
1441 } | |
1442 } | |
1443 | |
1444 static const kdft_desc desc = { 64, "n1_64", {520, 0, 392, 0}, &GENUS, 0, 0, 0, 0 }; | |
1445 | |
1446 void X(codelet_n1_64) (planner *p) { | |
1447 X(kdft_register) (p, n1_64, &desc); | |
1448 } | |
1449 | |
1450 #else /* HAVE_FMA */ | |
1451 | |
1452 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include n.h */ | |
1453 | |
1454 /* | |
1455 * This function contains 912 FP additions, 248 FP multiplications, | |
1456 * (or, 808 additions, 144 multiplications, 104 fused multiply/add), | |
1457 * 172 stack variables, 15 constants, and 256 memory accesses | |
1458 */ | |
1459 #include "n.h" | |
1460 | |
1461 static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
1462 { | |
1463 DK(KP773010453, +0.773010453362736960810906609758469800971041293); | |
1464 DK(KP634393284, +0.634393284163645498215171613225493370675687095); | |
1465 DK(KP098017140, +0.098017140329560601994195563888641845861136673); | |
1466 DK(KP995184726, +0.995184726672196886244836953109479921575474869); | |
1467 DK(KP881921264, +0.881921264348355029712756863660388349508442621); | |
1468 DK(KP471396736, +0.471396736825997648556387625905254377657460319); | |
1469 DK(KP290284677, +0.290284677254462367636192375817395274691476278); | |
1470 DK(KP956940335, +0.956940335732208864935797886980269969482849206); | |
1471 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
1472 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
1473 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
1474 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
1475 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
1476 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
1477 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
1478 { | |
1479 INT i; | |
1480 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { | |
1481 E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; | |
1482 E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I; | |
1483 E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; | |
1484 E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C; | |
1485 E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; | |
1486 E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; | |
1487 E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; | |
1488 E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z; | |
1489 E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D; | |
1490 { | |
1491 E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; | |
1492 E T3c; | |
1493 { | |
1494 E T1, T2, T24, T25; | |
1495 T1 = ri[0]; | |
1496 T2 = ri[WS(is, 32)]; | |
1497 T3 = T1 + T2; | |
1498 T35 = T1 - T2; | |
1499 T24 = ii[0]; | |
1500 T25 = ii[WS(is, 32)]; | |
1501 T26 = T24 + T25; | |
1502 T5Y = T24 - T25; | |
1503 } | |
1504 { | |
1505 E T4, T5, T27, T28; | |
1506 T4 = ri[WS(is, 16)]; | |
1507 T5 = ri[WS(is, 48)]; | |
1508 T6 = T4 + T5; | |
1509 T5X = T4 - T5; | |
1510 T27 = ii[WS(is, 16)]; | |
1511 T28 = ii[WS(is, 48)]; | |
1512 T29 = T27 + T28; | |
1513 T36 = T27 - T28; | |
1514 } | |
1515 { | |
1516 E T8, T9, T2b, T2c; | |
1517 T8 = ri[WS(is, 8)]; | |
1518 T9 = ri[WS(is, 40)]; | |
1519 Ta = T8 + T9; | |
1520 T39 = T8 - T9; | |
1521 T2b = ii[WS(is, 8)]; | |
1522 T2c = ii[WS(is, 40)]; | |
1523 T2d = T2b + T2c; | |
1524 T38 = T2b - T2c; | |
1525 } | |
1526 { | |
1527 E Tb, Tc, T2e, T2f; | |
1528 Tb = ri[WS(is, 56)]; | |
1529 Tc = ri[WS(is, 24)]; | |
1530 Td = Tb + Tc; | |
1531 T3b = Tb - Tc; | |
1532 T2e = ii[WS(is, 56)]; | |
1533 T2f = ii[WS(is, 24)]; | |
1534 T2g = T2e + T2f; | |
1535 T3c = T2e - T2f; | |
1536 } | |
1537 { | |
1538 E T7, Te, T2a, T2h; | |
1539 T37 = T35 - T36; | |
1540 T7B = T35 + T36; | |
1541 T8F = T5Y - T5X; | |
1542 T5Z = T5X + T5Y; | |
1543 T7 = T3 + T6; | |
1544 Te = Ta + Td; | |
1545 Tf = T7 + Te; | |
1546 Td9 = T7 - Te; | |
1547 { | |
1548 E Tbz, TbA, T60, T61; | |
1549 Tbz = T26 - T29; | |
1550 TbA = Td - Ta; | |
1551 TbB = Tbz - TbA; | |
1552 TcB = TbA + Tbz; | |
1553 T60 = T3b - T3c; | |
1554 T61 = T39 + T38; | |
1555 T62 = KP707106781 * (T60 - T61); | |
1556 T7C = KP707106781 * (T61 + T60); | |
1557 } | |
1558 T2a = T26 + T29; | |
1559 T2h = T2d + T2g; | |
1560 T2i = T2a + T2h; | |
1561 TdH = T2a - T2h; | |
1562 { | |
1563 E Taf, Tag, T3a, T3d; | |
1564 Taf = T3 - T6; | |
1565 Tag = T2d - T2g; | |
1566 Tah = Taf - Tag; | |
1567 Tcb = Taf + Tag; | |
1568 T3a = T38 - T39; | |
1569 T3d = T3b + T3c; | |
1570 T3e = KP707106781 * (T3a - T3d); | |
1571 T8G = KP707106781 * (T3a + T3d); | |
1572 } | |
1573 } | |
1574 } | |
1575 { | |
1576 E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; | |
1577 E T3r; | |
1578 { | |
1579 E Tg, Th, T2j, T2k; | |
1580 Tg = ri[WS(is, 4)]; | |
1581 Th = ri[WS(is, 36)]; | |
1582 Ti = Tg + Th; | |
1583 T3j = Tg - Th; | |
1584 T2j = ii[WS(is, 4)]; | |
1585 T2k = ii[WS(is, 36)]; | |
1586 T2l = T2j + T2k; | |
1587 T3h = T2j - T2k; | |
1588 } | |
1589 { | |
1590 E Tj, Tk, T2m, T2n; | |
1591 Tj = ri[WS(is, 20)]; | |
1592 Tk = ri[WS(is, 52)]; | |
1593 Tl = Tj + Tk; | |
1594 T3g = Tj - Tk; | |
1595 T2m = ii[WS(is, 20)]; | |
1596 T2n = ii[WS(is, 52)]; | |
1597 T2o = T2m + T2n; | |
1598 T3k = T2m - T2n; | |
1599 } | |
1600 { | |
1601 E Tn, To, T2q, T2r; | |
1602 Tn = ri[WS(is, 60)]; | |
1603 To = ri[WS(is, 28)]; | |
1604 Tp = Tn + To; | |
1605 T3q = Tn - To; | |
1606 T2q = ii[WS(is, 60)]; | |
1607 T2r = ii[WS(is, 28)]; | |
1608 T2s = T2q + T2r; | |
1609 T3o = T2q - T2r; | |
1610 } | |
1611 { | |
1612 E Tq, Tr, T2t, T2u; | |
1613 Tq = ri[WS(is, 12)]; | |
1614 Tr = ri[WS(is, 44)]; | |
1615 Ts = Tq + Tr; | |
1616 T3n = Tq - Tr; | |
1617 T2t = ii[WS(is, 12)]; | |
1618 T2u = ii[WS(is, 44)]; | |
1619 T2v = T2t + T2u; | |
1620 T3r = T2t - T2u; | |
1621 } | |
1622 { | |
1623 E Tm, Tt, Tai, Taj; | |
1624 Tm = Ti + Tl; | |
1625 Tt = Tp + Ts; | |
1626 Tu = Tm + Tt; | |
1627 TdI = Tt - Tm; | |
1628 Tai = T2l - T2o; | |
1629 Taj = Ti - Tl; | |
1630 Tak = Tai - Taj; | |
1631 TbD = Taj + Tai; | |
1632 } | |
1633 { | |
1634 E Tal, Tam, T2p, T2w; | |
1635 Tal = Tp - Ts; | |
1636 Tam = T2s - T2v; | |
1637 Tan = Tal + Tam; | |
1638 TbC = Tal - Tam; | |
1639 T2p = T2l + T2o; | |
1640 T2w = T2s + T2v; | |
1641 T2x = T2p + T2w; | |
1642 Tda = T2p - T2w; | |
1643 } | |
1644 { | |
1645 E T3i, T3l, T7E, T7F; | |
1646 T3i = T3g + T3h; | |
1647 T3l = T3j - T3k; | |
1648 T3m = FNMS(KP923879532, T3l, KP382683432 * T3i); | |
1649 T65 = FMA(KP923879532, T3i, KP382683432 * T3l); | |
1650 T7E = T3h - T3g; | |
1651 T7F = T3j + T3k; | |
1652 T7G = FNMS(KP382683432, T7F, KP923879532 * T7E); | |
1653 T8J = FMA(KP382683432, T7E, KP923879532 * T7F); | |
1654 } | |
1655 { | |
1656 E T7H, T7I, T3p, T3s; | |
1657 T7H = T3o - T3n; | |
1658 T7I = T3q + T3r; | |
1659 T7J = FMA(KP923879532, T7H, KP382683432 * T7I); | |
1660 T8I = FNMS(KP382683432, T7H, KP923879532 * T7I); | |
1661 T3p = T3n + T3o; | |
1662 T3s = T3q - T3r; | |
1663 T3t = FMA(KP382683432, T3p, KP923879532 * T3s); | |
1664 T64 = FNMS(KP923879532, T3p, KP382683432 * T3s); | |
1665 } | |
1666 } | |
1667 { | |
1668 E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I; | |
1669 E T3E; | |
1670 { | |
1671 E Tw, Tx, T2C, T2D; | |
1672 Tw = ri[WS(is, 2)]; | |
1673 Tx = ri[WS(is, 34)]; | |
1674 Ty = Tw + Tx; | |
1675 T3H = Tw - Tx; | |
1676 { | |
1677 E T2z, T2A, Tz, TA; | |
1678 T2z = ii[WS(is, 2)]; | |
1679 T2A = ii[WS(is, 34)]; | |
1680 T2B = T2z + T2A; | |
1681 T3x = T2z - T2A; | |
1682 Tz = ri[WS(is, 18)]; | |
1683 TA = ri[WS(is, 50)]; | |
1684 TB = Tz + TA; | |
1685 T3w = Tz - TA; | |
1686 } | |
1687 T2C = ii[WS(is, 18)]; | |
1688 T2D = ii[WS(is, 50)]; | |
1689 T2E = T2C + T2D; | |
1690 T3I = T2C - T2D; | |
1691 { | |
1692 E TG, TH, T3z, T2J, T2K, T3A; | |
1693 TG = ri[WS(is, 58)]; | |
1694 TH = ri[WS(is, 26)]; | |
1695 T3z = TG - TH; | |
1696 T2J = ii[WS(is, 58)]; | |
1697 T2K = ii[WS(is, 26)]; | |
1698 T3A = T2J - T2K; | |
1699 TI = TG + TH; | |
1700 T3L = T3z + T3A; | |
1701 T2L = T2J + T2K; | |
1702 T3B = T3z - T3A; | |
1703 } | |
1704 { | |
1705 E TD, TE, T3C, T2G, T2H, T3D; | |
1706 TD = ri[WS(is, 10)]; | |
1707 TE = ri[WS(is, 42)]; | |
1708 T3C = TD - TE; | |
1709 T2G = ii[WS(is, 10)]; | |
1710 T2H = ii[WS(is, 42)]; | |
1711 T3D = T2G - T2H; | |
1712 TF = TD + TE; | |
1713 T3K = T3D - T3C; | |
1714 T2I = T2G + T2H; | |
1715 T3E = T3C + T3D; | |
1716 } | |
1717 } | |
1718 { | |
1719 E TC, TJ, Taq, Tar; | |
1720 TC = Ty + TB; | |
1721 TJ = TF + TI; | |
1722 TK = TC + TJ; | |
1723 Tdd = TC - TJ; | |
1724 Taq = T2B - T2E; | |
1725 Tar = TI - TF; | |
1726 Tas = Taq - Tar; | |
1727 Tce = Tar + Taq; | |
1728 } | |
1729 { | |
1730 E Tat, Tau, T2F, T2M; | |
1731 Tat = Ty - TB; | |
1732 Tau = T2I - T2L; | |
1733 Tav = Tat - Tau; | |
1734 Tcf = Tat + Tau; | |
1735 T2F = T2B + T2E; | |
1736 T2M = T2I + T2L; | |
1737 T2N = T2F + T2M; | |
1738 Tdc = T2F - T2M; | |
1739 } | |
1740 { | |
1741 E T3y, T3F, T7M, T7N; | |
1742 T3y = T3w + T3x; | |
1743 T3F = KP707106781 * (T3B - T3E); | |
1744 T3G = T3y - T3F; | |
1745 T6G = T3y + T3F; | |
1746 T7M = T3x - T3w; | |
1747 T7N = KP707106781 * (T3K + T3L); | |
1748 T7O = T7M - T7N; | |
1749 T9k = T7M + T7N; | |
1750 } | |
1751 { | |
1752 E T7P, T7Q, T3J, T3M; | |
1753 T7P = T3H + T3I; | |
1754 T7Q = KP707106781 * (T3E + T3B); | |
1755 T7R = T7P - T7Q; | |
1756 T9l = T7P + T7Q; | |
1757 T3J = T3H - T3I; | |
1758 T3M = KP707106781 * (T3K - T3L); | |
1759 T3N = T3J - T3M; | |
1760 T6H = T3J + T3M; | |
1761 } | |
1762 } | |
1763 { | |
1764 E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c; | |
1765 E T5O; | |
1766 { | |
1767 E T1x, T1y, T54, T55; | |
1768 T1x = ri[WS(is, 63)]; | |
1769 T1y = ri[WS(is, 31)]; | |
1770 T1z = T1x + T1y; | |
1771 T53 = T1x - T1y; | |
1772 { | |
1773 E T5J, T5K, T1A, T1B; | |
1774 T5J = ii[WS(is, 63)]; | |
1775 T5K = ii[WS(is, 31)]; | |
1776 T5L = T5J - T5K; | |
1777 Tbo = T5J + T5K; | |
1778 T1A = ri[WS(is, 15)]; | |
1779 T1B = ri[WS(is, 47)]; | |
1780 T1C = T1A + T1B; | |
1781 T5I = T1A - T1B; | |
1782 } | |
1783 T54 = ii[WS(is, 15)]; | |
1784 T55 = ii[WS(is, 47)]; | |
1785 T56 = T54 - T55; | |
1786 Tbp = T54 + T55; | |
1787 { | |
1788 E T1H, T1I, T5d, T5e, T5f, T5g; | |
1789 T1H = ri[WS(is, 55)]; | |
1790 T1I = ri[WS(is, 23)]; | |
1791 T5d = T1H - T1I; | |
1792 T5e = ii[WS(is, 55)]; | |
1793 T5f = ii[WS(is, 23)]; | |
1794 T5g = T5e - T5f; | |
1795 T1J = T1H + T1I; | |
1796 Tb9 = T5e + T5f; | |
1797 T5h = T5d + T5g; | |
1798 T5N = T5d - T5g; | |
1799 } | |
1800 { | |
1801 E T1E, T1F, T5b, T58, T59, T5a; | |
1802 T1E = ri[WS(is, 7)]; | |
1803 T1F = ri[WS(is, 39)]; | |
1804 T5b = T1E - T1F; | |
1805 T58 = ii[WS(is, 7)]; | |
1806 T59 = ii[WS(is, 39)]; | |
1807 T5a = T58 - T59; | |
1808 T1G = T1E + T1F; | |
1809 Tb8 = T58 + T59; | |
1810 T5c = T5a - T5b; | |
1811 T5O = T5b + T5a; | |
1812 } | |
1813 } | |
1814 { | |
1815 E T1D, T1K, Tbq, Tbr; | |
1816 T1D = T1z + T1C; | |
1817 T1K = T1G + T1J; | |
1818 T1L = T1D + T1K; | |
1819 Tdv = T1D - T1K; | |
1820 Tbq = Tbo - Tbp; | |
1821 Tbr = T1J - T1G; | |
1822 Tbs = Tbq - Tbr; | |
1823 Tcw = Tbr + Tbq; | |
1824 } | |
1825 { | |
1826 E TdA, TdB, T57, T5i; | |
1827 TdA = Tbo + Tbp; | |
1828 TdB = Tb8 + Tb9; | |
1829 TdC = TdA - TdB; | |
1830 Teo = TdA + TdB; | |
1831 T57 = T53 - T56; | |
1832 T5i = KP707106781 * (T5c - T5h); | |
1833 T5j = T57 - T5i; | |
1834 T6V = T57 + T5i; | |
1835 } | |
1836 { | |
1837 E T5M, T5P, T8w, T8x; | |
1838 T5M = T5I + T5L; | |
1839 T5P = KP707106781 * (T5N - T5O); | |
1840 T5Q = T5M - T5P; | |
1841 T6Y = T5M + T5P; | |
1842 T8w = T5L - T5I; | |
1843 T8x = KP707106781 * (T5c + T5h); | |
1844 T8y = T8w - T8x; | |
1845 T9C = T8w + T8x; | |
1846 } | |
1847 { | |
1848 E Tb7, Tba, T8l, T8m; | |
1849 Tb7 = T1z - T1C; | |
1850 Tba = Tb8 - Tb9; | |
1851 Tbb = Tb7 - Tba; | |
1852 Tct = Tb7 + Tba; | |
1853 T8l = T53 + T56; | |
1854 T8m = KP707106781 * (T5O + T5N); | |
1855 T8n = T8l - T8m; | |
1856 T9z = T8l + T8m; | |
1857 } | |
1858 } | |
1859 { | |
1860 E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X; | |
1861 E T3X; | |
1862 { | |
1863 E TL, TM, T2R, T2S; | |
1864 TL = ri[WS(is, 62)]; | |
1865 TM = ri[WS(is, 30)]; | |
1866 TN = TL + TM; | |
1867 T40 = TL - TM; | |
1868 { | |
1869 E T2O, T2P, TO, TP; | |
1870 T2O = ii[WS(is, 62)]; | |
1871 T2P = ii[WS(is, 30)]; | |
1872 T2Q = T2O + T2P; | |
1873 T3Q = T2O - T2P; | |
1874 TO = ri[WS(is, 14)]; | |
1875 TP = ri[WS(is, 46)]; | |
1876 TQ = TO + TP; | |
1877 T3P = TO - TP; | |
1878 } | |
1879 T2R = ii[WS(is, 14)]; | |
1880 T2S = ii[WS(is, 46)]; | |
1881 T2T = T2R + T2S; | |
1882 T41 = T2R - T2S; | |
1883 { | |
1884 E TV, TW, T3S, T2Y, T2Z, T3T; | |
1885 TV = ri[WS(is, 54)]; | |
1886 TW = ri[WS(is, 22)]; | |
1887 T3S = TV - TW; | |
1888 T2Y = ii[WS(is, 54)]; | |
1889 T2Z = ii[WS(is, 22)]; | |
1890 T3T = T2Y - T2Z; | |
1891 TX = TV + TW; | |
1892 T44 = T3S + T3T; | |
1893 T30 = T2Y + T2Z; | |
1894 T3U = T3S - T3T; | |
1895 } | |
1896 { | |
1897 E TS, TT, T3V, T2V, T2W, T3W; | |
1898 TS = ri[WS(is, 6)]; | |
1899 TT = ri[WS(is, 38)]; | |
1900 T3V = TS - TT; | |
1901 T2V = ii[WS(is, 6)]; | |
1902 T2W = ii[WS(is, 38)]; | |
1903 T3W = T2V - T2W; | |
1904 TU = TS + TT; | |
1905 T43 = T3W - T3V; | |
1906 T2X = T2V + T2W; | |
1907 T3X = T3V + T3W; | |
1908 } | |
1909 } | |
1910 { | |
1911 E TR, TY, Tax, Tay; | |
1912 TR = TN + TQ; | |
1913 TY = TU + TX; | |
1914 TZ = TR + TY; | |
1915 Tdf = TR - TY; | |
1916 Tax = T2Q - T2T; | |
1917 Tay = TX - TU; | |
1918 Taz = Tax - Tay; | |
1919 Tch = Tay + Tax; | |
1920 } | |
1921 { | |
1922 E TaA, TaB, T2U, T31; | |
1923 TaA = TN - TQ; | |
1924 TaB = T2X - T30; | |
1925 TaC = TaA - TaB; | |
1926 Tci = TaA + TaB; | |
1927 T2U = T2Q + T2T; | |
1928 T31 = T2X + T30; | |
1929 T32 = T2U + T31; | |
1930 Tdg = T2U - T31; | |
1931 } | |
1932 { | |
1933 E T3R, T3Y, T7T, T7U; | |
1934 T3R = T3P + T3Q; | |
1935 T3Y = KP707106781 * (T3U - T3X); | |
1936 T3Z = T3R - T3Y; | |
1937 T6J = T3R + T3Y; | |
1938 T7T = T40 + T41; | |
1939 T7U = KP707106781 * (T3X + T3U); | |
1940 T7V = T7T - T7U; | |
1941 T9n = T7T + T7U; | |
1942 } | |
1943 { | |
1944 E T7W, T7X, T42, T45; | |
1945 T7W = T3Q - T3P; | |
1946 T7X = KP707106781 * (T43 + T44); | |
1947 T7Y = T7W - T7X; | |
1948 T9o = T7W + T7X; | |
1949 T42 = T40 - T41; | |
1950 T45 = KP707106781 * (T43 - T44); | |
1951 T46 = T42 - T45; | |
1952 T6K = T42 + T45; | |
1953 } | |
1954 } | |
1955 { | |
1956 E T14, T4P, T4d, TaG, T17, T4a, T4S, TaH, T1e, TaZ, T4j, T4V, T1b, TaY, T4o; | |
1957 E T4U; | |
1958 { | |
1959 E T12, T13, T4Q, T4R; | |
1960 T12 = ri[WS(is, 1)]; | |
1961 T13 = ri[WS(is, 33)]; | |
1962 T14 = T12 + T13; | |
1963 T4P = T12 - T13; | |
1964 { | |
1965 E T4b, T4c, T15, T16; | |
1966 T4b = ii[WS(is, 1)]; | |
1967 T4c = ii[WS(is, 33)]; | |
1968 T4d = T4b - T4c; | |
1969 TaG = T4b + T4c; | |
1970 T15 = ri[WS(is, 17)]; | |
1971 T16 = ri[WS(is, 49)]; | |
1972 T17 = T15 + T16; | |
1973 T4a = T15 - T16; | |
1974 } | |
1975 T4Q = ii[WS(is, 17)]; | |
1976 T4R = ii[WS(is, 49)]; | |
1977 T4S = T4Q - T4R; | |
1978 TaH = T4Q + T4R; | |
1979 { | |
1980 E T1c, T1d, T4f, T4g, T4h, T4i; | |
1981 T1c = ri[WS(is, 57)]; | |
1982 T1d = ri[WS(is, 25)]; | |
1983 T4f = T1c - T1d; | |
1984 T4g = ii[WS(is, 57)]; | |
1985 T4h = ii[WS(is, 25)]; | |
1986 T4i = T4g - T4h; | |
1987 T1e = T1c + T1d; | |
1988 TaZ = T4g + T4h; | |
1989 T4j = T4f - T4i; | |
1990 T4V = T4f + T4i; | |
1991 } | |
1992 { | |
1993 E T19, T1a, T4k, T4l, T4m, T4n; | |
1994 T19 = ri[WS(is, 9)]; | |
1995 T1a = ri[WS(is, 41)]; | |
1996 T4k = T19 - T1a; | |
1997 T4l = ii[WS(is, 9)]; | |
1998 T4m = ii[WS(is, 41)]; | |
1999 T4n = T4l - T4m; | |
2000 T1b = T19 + T1a; | |
2001 TaY = T4l + T4m; | |
2002 T4o = T4k + T4n; | |
2003 T4U = T4n - T4k; | |
2004 } | |
2005 } | |
2006 { | |
2007 E T18, T1f, TaX, Tb0; | |
2008 T18 = T14 + T17; | |
2009 T1f = T1b + T1e; | |
2010 T1g = T18 + T1f; | |
2011 Tdp = T18 - T1f; | |
2012 TaX = T14 - T17; | |
2013 Tb0 = TaY - TaZ; | |
2014 Tb1 = TaX - Tb0; | |
2015 Tcm = TaX + Tb0; | |
2016 } | |
2017 { | |
2018 E Tdk, Tdl, T4e, T4p; | |
2019 Tdk = TaG + TaH; | |
2020 Tdl = TaY + TaZ; | |
2021 Tdm = Tdk - Tdl; | |
2022 Tej = Tdk + Tdl; | |
2023 T4e = T4a + T4d; | |
2024 T4p = KP707106781 * (T4j - T4o); | |
2025 T4q = T4e - T4p; | |
2026 T6R = T4e + T4p; | |
2027 } | |
2028 { | |
2029 E T4T, T4W, T8d, T8e; | |
2030 T4T = T4P - T4S; | |
2031 T4W = KP707106781 * (T4U - T4V); | |
2032 T4X = T4T - T4W; | |
2033 T6O = T4T + T4W; | |
2034 T8d = T4P + T4S; | |
2035 T8e = KP707106781 * (T4o + T4j); | |
2036 T8f = T8d - T8e; | |
2037 T9s = T8d + T8e; | |
2038 } | |
2039 { | |
2040 E TaI, TaJ, T82, T83; | |
2041 TaI = TaG - TaH; | |
2042 TaJ = T1e - T1b; | |
2043 TaK = TaI - TaJ; | |
2044 Tcp = TaJ + TaI; | |
2045 T82 = T4d - T4a; | |
2046 T83 = KP707106781 * (T4U + T4V); | |
2047 T84 = T82 - T83; | |
2048 T9v = T82 + T83; | |
2049 } | |
2050 } | |
2051 { | |
2052 E T1j, TaR, T1m, TaS, T4G, T4L, TaT, TaQ, T89, T88, T1q, TaM, T1t, TaN, T4v; | |
2053 E T4A, TaO, TaL, T86, T85; | |
2054 { | |
2055 E T4H, T4F, T4C, T4K; | |
2056 { | |
2057 E T1h, T1i, T4D, T4E; | |
2058 T1h = ri[WS(is, 5)]; | |
2059 T1i = ri[WS(is, 37)]; | |
2060 T1j = T1h + T1i; | |
2061 T4H = T1h - T1i; | |
2062 T4D = ii[WS(is, 5)]; | |
2063 T4E = ii[WS(is, 37)]; | |
2064 T4F = T4D - T4E; | |
2065 TaR = T4D + T4E; | |
2066 } | |
2067 { | |
2068 E T1k, T1l, T4I, T4J; | |
2069 T1k = ri[WS(is, 21)]; | |
2070 T1l = ri[WS(is, 53)]; | |
2071 T1m = T1k + T1l; | |
2072 T4C = T1k - T1l; | |
2073 T4I = ii[WS(is, 21)]; | |
2074 T4J = ii[WS(is, 53)]; | |
2075 T4K = T4I - T4J; | |
2076 TaS = T4I + T4J; | |
2077 } | |
2078 T4G = T4C + T4F; | |
2079 T4L = T4H - T4K; | |
2080 TaT = TaR - TaS; | |
2081 TaQ = T1j - T1m; | |
2082 T89 = T4H + T4K; | |
2083 T88 = T4F - T4C; | |
2084 } | |
2085 { | |
2086 E T4r, T4z, T4w, T4u; | |
2087 { | |
2088 E T1o, T1p, T4x, T4y; | |
2089 T1o = ri[WS(is, 61)]; | |
2090 T1p = ri[WS(is, 29)]; | |
2091 T1q = T1o + T1p; | |
2092 T4r = T1o - T1p; | |
2093 T4x = ii[WS(is, 61)]; | |
2094 T4y = ii[WS(is, 29)]; | |
2095 T4z = T4x - T4y; | |
2096 TaM = T4x + T4y; | |
2097 } | |
2098 { | |
2099 E T1r, T1s, T4s, T4t; | |
2100 T1r = ri[WS(is, 13)]; | |
2101 T1s = ri[WS(is, 45)]; | |
2102 T1t = T1r + T1s; | |
2103 T4w = T1r - T1s; | |
2104 T4s = ii[WS(is, 13)]; | |
2105 T4t = ii[WS(is, 45)]; | |
2106 T4u = T4s - T4t; | |
2107 TaN = T4s + T4t; | |
2108 } | |
2109 T4v = T4r - T4u; | |
2110 T4A = T4w + T4z; | |
2111 TaO = TaM - TaN; | |
2112 TaL = T1q - T1t; | |
2113 T86 = T4z - T4w; | |
2114 T85 = T4r + T4u; | |
2115 } | |
2116 { | |
2117 E T1n, T1u, Tb2, Tb3; | |
2118 T1n = T1j + T1m; | |
2119 T1u = T1q + T1t; | |
2120 T1v = T1n + T1u; | |
2121 Tdn = T1u - T1n; | |
2122 Tb2 = TaT - TaQ; | |
2123 Tb3 = TaL + TaO; | |
2124 Tb4 = KP707106781 * (Tb2 - Tb3); | |
2125 Tcq = KP707106781 * (Tb2 + Tb3); | |
2126 } | |
2127 { | |
2128 E Tdq, Tdr, T4B, T4M; | |
2129 Tdq = TaR + TaS; | |
2130 Tdr = TaM + TaN; | |
2131 Tds = Tdq - Tdr; | |
2132 Tek = Tdq + Tdr; | |
2133 T4B = FNMS(KP923879532, T4A, KP382683432 * T4v); | |
2134 T4M = FMA(KP923879532, T4G, KP382683432 * T4L); | |
2135 T4N = T4B - T4M; | |
2136 T6P = T4M + T4B; | |
2137 } | |
2138 { | |
2139 E T4Y, T4Z, T8g, T8h; | |
2140 T4Y = FNMS(KP923879532, T4L, KP382683432 * T4G); | |
2141 T4Z = FMA(KP382683432, T4A, KP923879532 * T4v); | |
2142 T50 = T4Y - T4Z; | |
2143 T6S = T4Y + T4Z; | |
2144 T8g = FNMS(KP382683432, T89, KP923879532 * T88); | |
2145 T8h = FMA(KP923879532, T86, KP382683432 * T85); | |
2146 T8i = T8g - T8h; | |
2147 T9w = T8g + T8h; | |
2148 } | |
2149 { | |
2150 E TaP, TaU, T87, T8a; | |
2151 TaP = TaL - TaO; | |
2152 TaU = TaQ + TaT; | |
2153 TaV = KP707106781 * (TaP - TaU); | |
2154 Tcn = KP707106781 * (TaU + TaP); | |
2155 T87 = FNMS(KP382683432, T86, KP923879532 * T85); | |
2156 T8a = FMA(KP382683432, T88, KP923879532 * T89); | |
2157 T8b = T87 - T8a; | |
2158 T9t = T8a + T87; | |
2159 } | |
2160 } | |
2161 { | |
2162 E T1O, Tbc, T1R, Tbd, T5o, T5t, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5z; | |
2163 E T5E, Tbk, Tbh, T8s, T8r; | |
2164 { | |
2165 E T5p, T5n, T5k, T5s; | |
2166 { | |
2167 E T1M, T1N, T5l, T5m; | |
2168 T1M = ri[WS(is, 3)]; | |
2169 T1N = ri[WS(is, 35)]; | |
2170 T1O = T1M + T1N; | |
2171 T5p = T1M - T1N; | |
2172 T5l = ii[WS(is, 3)]; | |
2173 T5m = ii[WS(is, 35)]; | |
2174 T5n = T5l - T5m; | |
2175 Tbc = T5l + T5m; | |
2176 } | |
2177 { | |
2178 E T1P, T1Q, T5q, T5r; | |
2179 T1P = ri[WS(is, 19)]; | |
2180 T1Q = ri[WS(is, 51)]; | |
2181 T1R = T1P + T1Q; | |
2182 T5k = T1P - T1Q; | |
2183 T5q = ii[WS(is, 19)]; | |
2184 T5r = ii[WS(is, 51)]; | |
2185 T5s = T5q - T5r; | |
2186 Tbd = T5q + T5r; | |
2187 } | |
2188 T5o = T5k + T5n; | |
2189 T5t = T5p - T5s; | |
2190 Tbf = T1O - T1R; | |
2191 Tbe = Tbc - Tbd; | |
2192 T8p = T5p + T5s; | |
2193 T8o = T5n - T5k; | |
2194 } | |
2195 { | |
2196 E T5A, T5y, T5v, T5D; | |
2197 { | |
2198 E T1T, T1U, T5w, T5x; | |
2199 T1T = ri[WS(is, 59)]; | |
2200 T1U = ri[WS(is, 27)]; | |
2201 T1V = T1T + T1U; | |
2202 T5A = T1T - T1U; | |
2203 T5w = ii[WS(is, 59)]; | |
2204 T5x = ii[WS(is, 27)]; | |
2205 T5y = T5w - T5x; | |
2206 Tbi = T5w + T5x; | |
2207 } | |
2208 { | |
2209 E T1W, T1X, T5B, T5C; | |
2210 T1W = ri[WS(is, 11)]; | |
2211 T1X = ri[WS(is, 43)]; | |
2212 T1Y = T1W + T1X; | |
2213 T5v = T1W - T1X; | |
2214 T5B = ii[WS(is, 11)]; | |
2215 T5C = ii[WS(is, 43)]; | |
2216 T5D = T5B - T5C; | |
2217 Tbj = T5B + T5C; | |
2218 } | |
2219 T5z = T5v + T5y; | |
2220 T5E = T5A - T5D; | |
2221 Tbk = Tbi - Tbj; | |
2222 Tbh = T1V - T1Y; | |
2223 T8s = T5A + T5D; | |
2224 T8r = T5y - T5v; | |
2225 } | |
2226 { | |
2227 E T1S, T1Z, Tbt, Tbu; | |
2228 T1S = T1O + T1R; | |
2229 T1Z = T1V + T1Y; | |
2230 T20 = T1S + T1Z; | |
2231 TdD = T1Z - T1S; | |
2232 Tbt = Tbh - Tbk; | |
2233 Tbu = Tbf + Tbe; | |
2234 Tbv = KP707106781 * (Tbt - Tbu); | |
2235 Tcu = KP707106781 * (Tbu + Tbt); | |
2236 } | |
2237 { | |
2238 E Tdw, Tdx, T5u, T5F; | |
2239 Tdw = Tbc + Tbd; | |
2240 Tdx = Tbi + Tbj; | |
2241 Tdy = Tdw - Tdx; | |
2242 Tep = Tdw + Tdx; | |
2243 T5u = FNMS(KP923879532, T5t, KP382683432 * T5o); | |
2244 T5F = FMA(KP382683432, T5z, KP923879532 * T5E); | |
2245 T5G = T5u - T5F; | |
2246 T6Z = T5u + T5F; | |
2247 } | |
2248 { | |
2249 E T5R, T5S, T8z, T8A; | |
2250 T5R = FNMS(KP923879532, T5z, KP382683432 * T5E); | |
2251 T5S = FMA(KP923879532, T5o, KP382683432 * T5t); | |
2252 T5T = T5R - T5S; | |
2253 T6W = T5S + T5R; | |
2254 T8z = FNMS(KP382683432, T8r, KP923879532 * T8s); | |
2255 T8A = FMA(KP382683432, T8o, KP923879532 * T8p); | |
2256 T8B = T8z - T8A; | |
2257 T9A = T8A + T8z; | |
2258 } | |
2259 { | |
2260 E Tbg, Tbl, T8q, T8t; | |
2261 Tbg = Tbe - Tbf; | |
2262 Tbl = Tbh + Tbk; | |
2263 Tbm = KP707106781 * (Tbg - Tbl); | |
2264 Tcx = KP707106781 * (Tbg + Tbl); | |
2265 T8q = FNMS(KP382683432, T8p, KP923879532 * T8o); | |
2266 T8t = FMA(KP923879532, T8r, KP382683432 * T8s); | |
2267 T8u = T8q - T8t; | |
2268 T9D = T8q + T8t; | |
2269 } | |
2270 } | |
2271 { | |
2272 E T11, TeD, TeG, TeI, T22, T23, T34, TeH; | |
2273 { | |
2274 E Tv, T10, TeE, TeF; | |
2275 Tv = Tf + Tu; | |
2276 T10 = TK + TZ; | |
2277 T11 = Tv + T10; | |
2278 TeD = Tv - T10; | |
2279 TeE = Tej + Tek; | |
2280 TeF = Teo + Tep; | |
2281 TeG = TeE - TeF; | |
2282 TeI = TeE + TeF; | |
2283 } | |
2284 { | |
2285 E T1w, T21, T2y, T33; | |
2286 T1w = T1g + T1v; | |
2287 T21 = T1L + T20; | |
2288 T22 = T1w + T21; | |
2289 T23 = T21 - T1w; | |
2290 T2y = T2i + T2x; | |
2291 T33 = T2N + T32; | |
2292 T34 = T2y - T33; | |
2293 TeH = T2y + T33; | |
2294 } | |
2295 ro[WS(os, 32)] = T11 - T22; | |
2296 io[WS(os, 32)] = TeH - TeI; | |
2297 ro[0] = T11 + T22; | |
2298 io[0] = TeH + TeI; | |
2299 io[WS(os, 16)] = T23 + T34; | |
2300 ro[WS(os, 16)] = TeD + TeG; | |
2301 io[WS(os, 48)] = T34 - T23; | |
2302 ro[WS(os, 48)] = TeD - TeG; | |
2303 } | |
2304 { | |
2305 E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; | |
2306 { | |
2307 E Tef, Teg, Tet, Teu; | |
2308 Tef = Tf - Tu; | |
2309 Teg = T2N - T32; | |
2310 Teh = Tef + Teg; | |
2311 Tex = Tef - Teg; | |
2312 Tet = T2i - T2x; | |
2313 Teu = TZ - TK; | |
2314 Tev = Tet - Teu; | |
2315 TeB = Teu + Tet; | |
2316 } | |
2317 { | |
2318 E Tei, Tel, Ten, Teq; | |
2319 Tei = T1g - T1v; | |
2320 Tel = Tej - Tek; | |
2321 Tem = Tei + Tel; | |
2322 Tey = Tel - Tei; | |
2323 Ten = T1L - T20; | |
2324 Teq = Teo - Tep; | |
2325 Ter = Ten - Teq; | |
2326 Tez = Ten + Teq; | |
2327 } | |
2328 { | |
2329 E Tes, TeC, Tew, TeA; | |
2330 Tes = KP707106781 * (Tem + Ter); | |
2331 ro[WS(os, 40)] = Teh - Tes; | |
2332 ro[WS(os, 8)] = Teh + Tes; | |
2333 TeC = KP707106781 * (Tey + Tez); | |
2334 io[WS(os, 40)] = TeB - TeC; | |
2335 io[WS(os, 8)] = TeB + TeC; | |
2336 Tew = KP707106781 * (Ter - Tem); | |
2337 io[WS(os, 56)] = Tev - Tew; | |
2338 io[WS(os, 24)] = Tev + Tew; | |
2339 TeA = KP707106781 * (Tey - Tez); | |
2340 ro[WS(os, 56)] = Tex - TeA; | |
2341 ro[WS(os, 24)] = Tex + TeA; | |
2342 } | |
2343 } | |
2344 { | |
2345 E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdQ, Te0, Tea, TdF; | |
2346 E TdR; | |
2347 { | |
2348 E Tde, Tdh, Tdo, Tdt; | |
2349 Tdb = Td9 - Tda; | |
2350 TdV = Td9 + Tda; | |
2351 Te5 = TdI + TdH; | |
2352 TdJ = TdH - TdI; | |
2353 Tde = Tdc - Tdd; | |
2354 Tdh = Tdf + Tdg; | |
2355 Tdi = KP707106781 * (Tde - Tdh); | |
2356 Te6 = KP707106781 * (Tde + Tdh); | |
2357 { | |
2358 E Te1, Te2, TdK, TdL; | |
2359 Te1 = Tdv + Tdy; | |
2360 Te2 = TdD + TdC; | |
2361 Te3 = FNMS(KP382683432, Te2, KP923879532 * Te1); | |
2362 Teb = FMA(KP923879532, Te2, KP382683432 * Te1); | |
2363 TdK = Tdf - Tdg; | |
2364 TdL = Tdd + Tdc; | |
2365 TdM = KP707106781 * (TdK - TdL); | |
2366 TdW = KP707106781 * (TdL + TdK); | |
2367 } | |
2368 Tdo = Tdm - Tdn; | |
2369 Tdt = Tdp - Tds; | |
2370 Tdu = FMA(KP923879532, Tdo, KP382683432 * Tdt); | |
2371 TdQ = FNMS(KP923879532, Tdt, KP382683432 * Tdo); | |
2372 { | |
2373 E TdY, TdZ, Tdz, TdE; | |
2374 TdY = Tdn + Tdm; | |
2375 TdZ = Tdp + Tds; | |
2376 Te0 = FMA(KP382683432, TdY, KP923879532 * TdZ); | |
2377 Tea = FNMS(KP382683432, TdZ, KP923879532 * TdY); | |
2378 Tdz = Tdv - Tdy; | |
2379 TdE = TdC - TdD; | |
2380 TdF = FNMS(KP923879532, TdE, KP382683432 * Tdz); | |
2381 TdR = FMA(KP382683432, TdE, KP923879532 * Tdz); | |
2382 } | |
2383 } | |
2384 { | |
2385 E Tdj, TdG, TdT, TdU; | |
2386 Tdj = Tdb + Tdi; | |
2387 TdG = Tdu + TdF; | |
2388 ro[WS(os, 44)] = Tdj - TdG; | |
2389 ro[WS(os, 12)] = Tdj + TdG; | |
2390 TdT = TdJ + TdM; | |
2391 TdU = TdQ + TdR; | |
2392 io[WS(os, 44)] = TdT - TdU; | |
2393 io[WS(os, 12)] = TdT + TdU; | |
2394 } | |
2395 { | |
2396 E TdN, TdO, TdP, TdS; | |
2397 TdN = TdJ - TdM; | |
2398 TdO = TdF - Tdu; | |
2399 io[WS(os, 60)] = TdN - TdO; | |
2400 io[WS(os, 28)] = TdN + TdO; | |
2401 TdP = Tdb - Tdi; | |
2402 TdS = TdQ - TdR; | |
2403 ro[WS(os, 60)] = TdP - TdS; | |
2404 ro[WS(os, 28)] = TdP + TdS; | |
2405 } | |
2406 { | |
2407 E TdX, Te4, Ted, Tee; | |
2408 TdX = TdV + TdW; | |
2409 Te4 = Te0 + Te3; | |
2410 ro[WS(os, 36)] = TdX - Te4; | |
2411 ro[WS(os, 4)] = TdX + Te4; | |
2412 Ted = Te5 + Te6; | |
2413 Tee = Tea + Teb; | |
2414 io[WS(os, 36)] = Ted - Tee; | |
2415 io[WS(os, 4)] = Ted + Tee; | |
2416 } | |
2417 { | |
2418 E Te7, Te8, Te9, Tec; | |
2419 Te7 = Te5 - Te6; | |
2420 Te8 = Te3 - Te0; | |
2421 io[WS(os, 52)] = Te7 - Te8; | |
2422 io[WS(os, 20)] = Te7 + Te8; | |
2423 Te9 = TdV - TdW; | |
2424 Tec = Tea - Teb; | |
2425 ro[WS(os, 52)] = Te9 - Tec; | |
2426 ro[WS(os, 20)] = Te9 + Tec; | |
2427 } | |
2428 } | |
2429 { | |
2430 E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td5, Tcs, TcK, TcG, TcQ, TcU, Td4, Tcz; | |
2431 E TcL, Tcc, TcC; | |
2432 Tcc = KP707106781 * (TbD + TbC); | |
2433 Tcd = Tcb - Tcc; | |
2434 TcP = Tcb + Tcc; | |
2435 TcC = KP707106781 * (Tak + Tan); | |
2436 TcD = TcB - TcC; | |
2437 TcZ = TcB + TcC; | |
2438 { | |
2439 E Tcg, Tcj, TcV, TcW; | |
2440 Tcg = FNMS(KP382683432, Tcf, KP923879532 * Tce); | |
2441 Tcj = FMA(KP923879532, Tch, KP382683432 * Tci); | |
2442 Tck = Tcg - Tcj; | |
2443 Td0 = Tcg + Tcj; | |
2444 TcV = Tct + Tcu; | |
2445 TcW = Tcw + Tcx; | |
2446 TcX = FNMS(KP195090322, TcW, KP980785280 * TcV); | |
2447 Td5 = FMA(KP195090322, TcV, KP980785280 * TcW); | |
2448 } | |
2449 { | |
2450 E Tco, Tcr, TcE, TcF; | |
2451 Tco = Tcm - Tcn; | |
2452 Tcr = Tcp - Tcq; | |
2453 Tcs = FMA(KP555570233, Tco, KP831469612 * Tcr); | |
2454 TcK = FNMS(KP831469612, Tco, KP555570233 * Tcr); | |
2455 TcE = FNMS(KP382683432, Tch, KP923879532 * Tci); | |
2456 TcF = FMA(KP382683432, Tce, KP923879532 * Tcf); | |
2457 TcG = TcE - TcF; | |
2458 TcQ = TcF + TcE; | |
2459 } | |
2460 { | |
2461 E TcS, TcT, Tcv, Tcy; | |
2462 TcS = Tcm + Tcn; | |
2463 TcT = Tcp + Tcq; | |
2464 TcU = FMA(KP980785280, TcS, KP195090322 * TcT); | |
2465 Td4 = FNMS(KP195090322, TcS, KP980785280 * TcT); | |
2466 Tcv = Tct - Tcu; | |
2467 Tcy = Tcw - Tcx; | |
2468 Tcz = FNMS(KP831469612, Tcy, KP555570233 * Tcv); | |
2469 TcL = FMA(KP831469612, Tcv, KP555570233 * Tcy); | |
2470 } | |
2471 { | |
2472 E Tcl, TcA, TcN, TcO; | |
2473 Tcl = Tcd + Tck; | |
2474 TcA = Tcs + Tcz; | |
2475 ro[WS(os, 42)] = Tcl - TcA; | |
2476 ro[WS(os, 10)] = Tcl + TcA; | |
2477 TcN = TcD + TcG; | |
2478 TcO = TcK + TcL; | |
2479 io[WS(os, 42)] = TcN - TcO; | |
2480 io[WS(os, 10)] = TcN + TcO; | |
2481 } | |
2482 { | |
2483 E TcH, TcI, TcJ, TcM; | |
2484 TcH = TcD - TcG; | |
2485 TcI = Tcz - Tcs; | |
2486 io[WS(os, 58)] = TcH - TcI; | |
2487 io[WS(os, 26)] = TcH + TcI; | |
2488 TcJ = Tcd - Tck; | |
2489 TcM = TcK - TcL; | |
2490 ro[WS(os, 58)] = TcJ - TcM; | |
2491 ro[WS(os, 26)] = TcJ + TcM; | |
2492 } | |
2493 { | |
2494 E TcR, TcY, Td7, Td8; | |
2495 TcR = TcP + TcQ; | |
2496 TcY = TcU + TcX; | |
2497 ro[WS(os, 34)] = TcR - TcY; | |
2498 ro[WS(os, 2)] = TcR + TcY; | |
2499 Td7 = TcZ + Td0; | |
2500 Td8 = Td4 + Td5; | |
2501 io[WS(os, 34)] = Td7 - Td8; | |
2502 io[WS(os, 2)] = Td7 + Td8; | |
2503 } | |
2504 { | |
2505 E Td1, Td2, Td3, Td6; | |
2506 Td1 = TcZ - Td0; | |
2507 Td2 = TcX - TcU; | |
2508 io[WS(os, 50)] = Td1 - Td2; | |
2509 io[WS(os, 18)] = Td1 + Td2; | |
2510 Td3 = TcP - TcQ; | |
2511 Td6 = Td4 - Td5; | |
2512 ro[WS(os, 50)] = Td3 - Td6; | |
2513 ro[WS(os, 18)] = Td3 + Td6; | |
2514 } | |
2515 } | |
2516 { | |
2517 E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbM, TbI, TbS, TbW, Tc6, Tbx; | |
2518 E TbN, Tao, TbE; | |
2519 Tao = KP707106781 * (Tak - Tan); | |
2520 Tap = Tah - Tao; | |
2521 TbR = Tah + Tao; | |
2522 TbE = KP707106781 * (TbC - TbD); | |
2523 TbF = TbB - TbE; | |
2524 Tc1 = TbB + TbE; | |
2525 { | |
2526 E Taw, TaD, TbX, TbY; | |
2527 Taw = FNMS(KP923879532, Tav, KP382683432 * Tas); | |
2528 TaD = FMA(KP382683432, Taz, KP923879532 * TaC); | |
2529 TaE = Taw - TaD; | |
2530 Tc2 = Taw + TaD; | |
2531 TbX = Tbb + Tbm; | |
2532 TbY = Tbs + Tbv; | |
2533 TbZ = FNMS(KP555570233, TbY, KP831469612 * TbX); | |
2534 Tc7 = FMA(KP831469612, TbY, KP555570233 * TbX); | |
2535 } | |
2536 { | |
2537 E TaW, Tb5, TbG, TbH; | |
2538 TaW = TaK - TaV; | |
2539 Tb5 = Tb1 - Tb4; | |
2540 Tb6 = FMA(KP980785280, TaW, KP195090322 * Tb5); | |
2541 TbM = FNMS(KP980785280, Tb5, KP195090322 * TaW); | |
2542 TbG = FNMS(KP923879532, Taz, KP382683432 * TaC); | |
2543 TbH = FMA(KP923879532, Tas, KP382683432 * Tav); | |
2544 TbI = TbG - TbH; | |
2545 TbS = TbH + TbG; | |
2546 } | |
2547 { | |
2548 E TbU, TbV, Tbn, Tbw; | |
2549 TbU = TaK + TaV; | |
2550 TbV = Tb1 + Tb4; | |
2551 TbW = FMA(KP555570233, TbU, KP831469612 * TbV); | |
2552 Tc6 = FNMS(KP555570233, TbV, KP831469612 * TbU); | |
2553 Tbn = Tbb - Tbm; | |
2554 Tbw = Tbs - Tbv; | |
2555 Tbx = FNMS(KP980785280, Tbw, KP195090322 * Tbn); | |
2556 TbN = FMA(KP195090322, Tbw, KP980785280 * Tbn); | |
2557 } | |
2558 { | |
2559 E TaF, Tby, TbP, TbQ; | |
2560 TaF = Tap + TaE; | |
2561 Tby = Tb6 + Tbx; | |
2562 ro[WS(os, 46)] = TaF - Tby; | |
2563 ro[WS(os, 14)] = TaF + Tby; | |
2564 TbP = TbF + TbI; | |
2565 TbQ = TbM + TbN; | |
2566 io[WS(os, 46)] = TbP - TbQ; | |
2567 io[WS(os, 14)] = TbP + TbQ; | |
2568 } | |
2569 { | |
2570 E TbJ, TbK, TbL, TbO; | |
2571 TbJ = TbF - TbI; | |
2572 TbK = Tbx - Tb6; | |
2573 io[WS(os, 62)] = TbJ - TbK; | |
2574 io[WS(os, 30)] = TbJ + TbK; | |
2575 TbL = Tap - TaE; | |
2576 TbO = TbM - TbN; | |
2577 ro[WS(os, 62)] = TbL - TbO; | |
2578 ro[WS(os, 30)] = TbL + TbO; | |
2579 } | |
2580 { | |
2581 E TbT, Tc0, Tc9, Tca; | |
2582 TbT = TbR + TbS; | |
2583 Tc0 = TbW + TbZ; | |
2584 ro[WS(os, 38)] = TbT - Tc0; | |
2585 ro[WS(os, 6)] = TbT + Tc0; | |
2586 Tc9 = Tc1 + Tc2; | |
2587 Tca = Tc6 + Tc7; | |
2588 io[WS(os, 38)] = Tc9 - Tca; | |
2589 io[WS(os, 6)] = Tc9 + Tca; | |
2590 } | |
2591 { | |
2592 E Tc3, Tc4, Tc5, Tc8; | |
2593 Tc3 = Tc1 - Tc2; | |
2594 Tc4 = TbZ - TbW; | |
2595 io[WS(os, 54)] = Tc3 - Tc4; | |
2596 io[WS(os, 22)] = Tc3 + Tc4; | |
2597 Tc5 = TbR - TbS; | |
2598 Tc8 = Tc6 - Tc7; | |
2599 ro[WS(os, 54)] = Tc5 - Tc8; | |
2600 ro[WS(os, 22)] = Tc5 + Tc8; | |
2601 } | |
2602 } | |
2603 { | |
2604 E T6F, T7h, T7m, T7w, T7p, T7x, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; | |
2605 E T7d; | |
2606 { | |
2607 E T6D, T6E, T7k, T7l; | |
2608 T6D = T37 + T3e; | |
2609 T6E = T65 + T64; | |
2610 T6F = T6D - T6E; | |
2611 T7h = T6D + T6E; | |
2612 T7k = T6O + T6P; | |
2613 T7l = T6R + T6S; | |
2614 T7m = FMA(KP956940335, T7k, KP290284677 * T7l); | |
2615 T7w = FNMS(KP290284677, T7k, KP956940335 * T7l); | |
2616 } | |
2617 { | |
2618 E T7n, T7o, T6I, T6L; | |
2619 T7n = T6V + T6W; | |
2620 T7o = T6Y + T6Z; | |
2621 T7p = FNMS(KP290284677, T7o, KP956940335 * T7n); | |
2622 T7x = FMA(KP290284677, T7n, KP956940335 * T7o); | |
2623 T6I = FNMS(KP555570233, T6H, KP831469612 * T6G); | |
2624 T6L = FMA(KP831469612, T6J, KP555570233 * T6K); | |
2625 T6M = T6I - T6L; | |
2626 T7s = T6I + T6L; | |
2627 } | |
2628 { | |
2629 E T6Q, T6T, T73, T74; | |
2630 T6Q = T6O - T6P; | |
2631 T6T = T6R - T6S; | |
2632 T6U = FMA(KP471396736, T6Q, KP881921264 * T6T); | |
2633 T7c = FNMS(KP881921264, T6Q, KP471396736 * T6T); | |
2634 T73 = T5Z + T62; | |
2635 T74 = T3m + T3t; | |
2636 T75 = T73 - T74; | |
2637 T7r = T73 + T74; | |
2638 } | |
2639 { | |
2640 E T76, T77, T6X, T70; | |
2641 T76 = FNMS(KP555570233, T6J, KP831469612 * T6K); | |
2642 T77 = FMA(KP555570233, T6G, KP831469612 * T6H); | |
2643 T78 = T76 - T77; | |
2644 T7i = T77 + T76; | |
2645 T6X = T6V - T6W; | |
2646 T70 = T6Y - T6Z; | |
2647 T71 = FNMS(KP881921264, T70, KP471396736 * T6X); | |
2648 T7d = FMA(KP881921264, T6X, KP471396736 * T70); | |
2649 } | |
2650 { | |
2651 E T6N, T72, T7f, T7g; | |
2652 T6N = T6F + T6M; | |
2653 T72 = T6U + T71; | |
2654 ro[WS(os, 43)] = T6N - T72; | |
2655 ro[WS(os, 11)] = T6N + T72; | |
2656 T7f = T75 + T78; | |
2657 T7g = T7c + T7d; | |
2658 io[WS(os, 43)] = T7f - T7g; | |
2659 io[WS(os, 11)] = T7f + T7g; | |
2660 } | |
2661 { | |
2662 E T79, T7a, T7b, T7e; | |
2663 T79 = T75 - T78; | |
2664 T7a = T71 - T6U; | |
2665 io[WS(os, 59)] = T79 - T7a; | |
2666 io[WS(os, 27)] = T79 + T7a; | |
2667 T7b = T6F - T6M; | |
2668 T7e = T7c - T7d; | |
2669 ro[WS(os, 59)] = T7b - T7e; | |
2670 ro[WS(os, 27)] = T7b + T7e; | |
2671 } | |
2672 { | |
2673 E T7j, T7q, T7z, T7A; | |
2674 T7j = T7h + T7i; | |
2675 T7q = T7m + T7p; | |
2676 ro[WS(os, 35)] = T7j - T7q; | |
2677 ro[WS(os, 3)] = T7j + T7q; | |
2678 T7z = T7r + T7s; | |
2679 T7A = T7w + T7x; | |
2680 io[WS(os, 35)] = T7z - T7A; | |
2681 io[WS(os, 3)] = T7z + T7A; | |
2682 } | |
2683 { | |
2684 E T7t, T7u, T7v, T7y; | |
2685 T7t = T7r - T7s; | |
2686 T7u = T7p - T7m; | |
2687 io[WS(os, 51)] = T7t - T7u; | |
2688 io[WS(os, 19)] = T7t + T7u; | |
2689 T7v = T7h - T7i; | |
2690 T7y = T7w - T7x; | |
2691 ro[WS(os, 51)] = T7v - T7y; | |
2692 ro[WS(os, 19)] = T7v + T7y; | |
2693 } | |
2694 } | |
2695 { | |
2696 E T9j, T9V, Ta0, Taa, Ta3, Tab, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; | |
2697 E T9R; | |
2698 { | |
2699 E T9h, T9i, T9Y, T9Z; | |
2700 T9h = T7B + T7C; | |
2701 T9i = T8J + T8I; | |
2702 T9j = T9h - T9i; | |
2703 T9V = T9h + T9i; | |
2704 T9Y = T9s + T9t; | |
2705 T9Z = T9v + T9w; | |
2706 Ta0 = FMA(KP995184726, T9Y, KP098017140 * T9Z); | |
2707 Taa = FNMS(KP098017140, T9Y, KP995184726 * T9Z); | |
2708 } | |
2709 { | |
2710 E Ta1, Ta2, T9m, T9p; | |
2711 Ta1 = T9z + T9A; | |
2712 Ta2 = T9C + T9D; | |
2713 Ta3 = FNMS(KP098017140, Ta2, KP995184726 * Ta1); | |
2714 Tab = FMA(KP098017140, Ta1, KP995184726 * Ta2); | |
2715 T9m = FNMS(KP195090322, T9l, KP980785280 * T9k); | |
2716 T9p = FMA(KP195090322, T9n, KP980785280 * T9o); | |
2717 T9q = T9m - T9p; | |
2718 Ta6 = T9m + T9p; | |
2719 } | |
2720 { | |
2721 E T9u, T9x, T9H, T9I; | |
2722 T9u = T9s - T9t; | |
2723 T9x = T9v - T9w; | |
2724 T9y = FMA(KP634393284, T9u, KP773010453 * T9x); | |
2725 T9Q = FNMS(KP773010453, T9u, KP634393284 * T9x); | |
2726 T9H = T8F + T8G; | |
2727 T9I = T7G + T7J; | |
2728 T9J = T9H - T9I; | |
2729 Ta5 = T9H + T9I; | |
2730 } | |
2731 { | |
2732 E T9K, T9L, T9B, T9E; | |
2733 T9K = FNMS(KP195090322, T9o, KP980785280 * T9n); | |
2734 T9L = FMA(KP980785280, T9l, KP195090322 * T9k); | |
2735 T9M = T9K - T9L; | |
2736 T9W = T9L + T9K; | |
2737 T9B = T9z - T9A; | |
2738 T9E = T9C - T9D; | |
2739 T9F = FNMS(KP773010453, T9E, KP634393284 * T9B); | |
2740 T9R = FMA(KP773010453, T9B, KP634393284 * T9E); | |
2741 } | |
2742 { | |
2743 E T9r, T9G, T9T, T9U; | |
2744 T9r = T9j + T9q; | |
2745 T9G = T9y + T9F; | |
2746 ro[WS(os, 41)] = T9r - T9G; | |
2747 ro[WS(os, 9)] = T9r + T9G; | |
2748 T9T = T9J + T9M; | |
2749 T9U = T9Q + T9R; | |
2750 io[WS(os, 41)] = T9T - T9U; | |
2751 io[WS(os, 9)] = T9T + T9U; | |
2752 } | |
2753 { | |
2754 E T9N, T9O, T9P, T9S; | |
2755 T9N = T9J - T9M; | |
2756 T9O = T9F - T9y; | |
2757 io[WS(os, 57)] = T9N - T9O; | |
2758 io[WS(os, 25)] = T9N + T9O; | |
2759 T9P = T9j - T9q; | |
2760 T9S = T9Q - T9R; | |
2761 ro[WS(os, 57)] = T9P - T9S; | |
2762 ro[WS(os, 25)] = T9P + T9S; | |
2763 } | |
2764 { | |
2765 E T9X, Ta4, Tad, Tae; | |
2766 T9X = T9V + T9W; | |
2767 Ta4 = Ta0 + Ta3; | |
2768 ro[WS(os, 33)] = T9X - Ta4; | |
2769 ro[WS(os, 1)] = T9X + Ta4; | |
2770 Tad = Ta5 + Ta6; | |
2771 Tae = Taa + Tab; | |
2772 io[WS(os, 33)] = Tad - Tae; | |
2773 io[WS(os, 1)] = Tad + Tae; | |
2774 } | |
2775 { | |
2776 E Ta7, Ta8, Ta9, Tac; | |
2777 Ta7 = Ta5 - Ta6; | |
2778 Ta8 = Ta3 - Ta0; | |
2779 io[WS(os, 49)] = Ta7 - Ta8; | |
2780 io[WS(os, 17)] = Ta7 + Ta8; | |
2781 Ta9 = T9V - T9W; | |
2782 Tac = Taa - Tab; | |
2783 ro[WS(os, 49)] = Ta9 - Tac; | |
2784 ro[WS(os, 17)] = Ta9 + Tac; | |
2785 } | |
2786 } | |
2787 { | |
2788 E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6e, T67, T6t, T6a, T6k, T5V; | |
2789 E T6f; | |
2790 { | |
2791 E T3f, T3u, T6m, T6n; | |
2792 T3f = T37 - T3e; | |
2793 T3u = T3m - T3t; | |
2794 T3v = T3f - T3u; | |
2795 T6j = T3f + T3u; | |
2796 T6m = T4q + T4N; | |
2797 T6n = T4X + T50; | |
2798 T6o = FMA(KP634393284, T6m, KP773010453 * T6n); | |
2799 T6y = FNMS(KP634393284, T6n, KP773010453 * T6m); | |
2800 } | |
2801 { | |
2802 E T6p, T6q, T3O, T47; | |
2803 T6p = T5j + T5G; | |
2804 T6q = T5Q + T5T; | |
2805 T6r = FNMS(KP634393284, T6q, KP773010453 * T6p); | |
2806 T6z = FMA(KP773010453, T6q, KP634393284 * T6p); | |
2807 T3O = FNMS(KP980785280, T3N, KP195090322 * T3G); | |
2808 T47 = FMA(KP195090322, T3Z, KP980785280 * T46); | |
2809 T48 = T3O - T47; | |
2810 T6u = T3O + T47; | |
2811 } | |
2812 { | |
2813 E T4O, T51, T63, T66; | |
2814 T4O = T4q - T4N; | |
2815 T51 = T4X - T50; | |
2816 T52 = FMA(KP995184726, T4O, KP098017140 * T51); | |
2817 T6e = FNMS(KP995184726, T51, KP098017140 * T4O); | |
2818 T63 = T5Z - T62; | |
2819 T66 = T64 - T65; | |
2820 T67 = T63 - T66; | |
2821 T6t = T63 + T66; | |
2822 } | |
2823 { | |
2824 E T68, T69, T5H, T5U; | |
2825 T68 = FNMS(KP980785280, T3Z, KP195090322 * T46); | |
2826 T69 = FMA(KP980785280, T3G, KP195090322 * T3N); | |
2827 T6a = T68 - T69; | |
2828 T6k = T69 + T68; | |
2829 T5H = T5j - T5G; | |
2830 T5U = T5Q - T5T; | |
2831 T5V = FNMS(KP995184726, T5U, KP098017140 * T5H); | |
2832 T6f = FMA(KP098017140, T5U, KP995184726 * T5H); | |
2833 } | |
2834 { | |
2835 E T49, T5W, T6h, T6i; | |
2836 T49 = T3v + T48; | |
2837 T5W = T52 + T5V; | |
2838 ro[WS(os, 47)] = T49 - T5W; | |
2839 ro[WS(os, 15)] = T49 + T5W; | |
2840 T6h = T67 + T6a; | |
2841 T6i = T6e + T6f; | |
2842 io[WS(os, 47)] = T6h - T6i; | |
2843 io[WS(os, 15)] = T6h + T6i; | |
2844 } | |
2845 { | |
2846 E T6b, T6c, T6d, T6g; | |
2847 T6b = T67 - T6a; | |
2848 T6c = T5V - T52; | |
2849 io[WS(os, 63)] = T6b - T6c; | |
2850 io[WS(os, 31)] = T6b + T6c; | |
2851 T6d = T3v - T48; | |
2852 T6g = T6e - T6f; | |
2853 ro[WS(os, 63)] = T6d - T6g; | |
2854 ro[WS(os, 31)] = T6d + T6g; | |
2855 } | |
2856 { | |
2857 E T6l, T6s, T6B, T6C; | |
2858 T6l = T6j + T6k; | |
2859 T6s = T6o + T6r; | |
2860 ro[WS(os, 39)] = T6l - T6s; | |
2861 ro[WS(os, 7)] = T6l + T6s; | |
2862 T6B = T6t + T6u; | |
2863 T6C = T6y + T6z; | |
2864 io[WS(os, 39)] = T6B - T6C; | |
2865 io[WS(os, 7)] = T6B + T6C; | |
2866 } | |
2867 { | |
2868 E T6v, T6w, T6x, T6A; | |
2869 T6v = T6t - T6u; | |
2870 T6w = T6r - T6o; | |
2871 io[WS(os, 55)] = T6v - T6w; | |
2872 io[WS(os, 23)] = T6v + T6w; | |
2873 T6x = T6j - T6k; | |
2874 T6A = T6y - T6z; | |
2875 ro[WS(os, 55)] = T6x - T6A; | |
2876 ro[WS(os, 23)] = T6x + T6A; | |
2877 } | |
2878 } | |
2879 { | |
2880 E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8S, T8L, T97, T8O, T8Y, T8D; | |
2881 E T8T; | |
2882 { | |
2883 E T7D, T7K, T90, T91; | |
2884 T7D = T7B - T7C; | |
2885 T7K = T7G - T7J; | |
2886 T7L = T7D - T7K; | |
2887 T8X = T7D + T7K; | |
2888 T90 = T84 + T8b; | |
2889 T91 = T8f + T8i; | |
2890 T92 = FMA(KP471396736, T90, KP881921264 * T91); | |
2891 T9c = FNMS(KP471396736, T91, KP881921264 * T90); | |
2892 } | |
2893 { | |
2894 E T93, T94, T7S, T7Z; | |
2895 T93 = T8n + T8u; | |
2896 T94 = T8y + T8B; | |
2897 T95 = FNMS(KP471396736, T94, KP881921264 * T93); | |
2898 T9d = FMA(KP881921264, T94, KP471396736 * T93); | |
2899 T7S = FNMS(KP831469612, T7R, KP555570233 * T7O); | |
2900 T7Z = FMA(KP831469612, T7V, KP555570233 * T7Y); | |
2901 T80 = T7S - T7Z; | |
2902 T98 = T7S + T7Z; | |
2903 } | |
2904 { | |
2905 E T8c, T8j, T8H, T8K; | |
2906 T8c = T84 - T8b; | |
2907 T8j = T8f - T8i; | |
2908 T8k = FMA(KP956940335, T8c, KP290284677 * T8j); | |
2909 T8S = FNMS(KP956940335, T8j, KP290284677 * T8c); | |
2910 T8H = T8F - T8G; | |
2911 T8K = T8I - T8J; | |
2912 T8L = T8H - T8K; | |
2913 T97 = T8H + T8K; | |
2914 } | |
2915 { | |
2916 E T8M, T8N, T8v, T8C; | |
2917 T8M = FNMS(KP831469612, T7Y, KP555570233 * T7V); | |
2918 T8N = FMA(KP555570233, T7R, KP831469612 * T7O); | |
2919 T8O = T8M - T8N; | |
2920 T8Y = T8N + T8M; | |
2921 T8v = T8n - T8u; | |
2922 T8C = T8y - T8B; | |
2923 T8D = FNMS(KP956940335, T8C, KP290284677 * T8v); | |
2924 T8T = FMA(KP290284677, T8C, KP956940335 * T8v); | |
2925 } | |
2926 { | |
2927 E T81, T8E, T8V, T8W; | |
2928 T81 = T7L + T80; | |
2929 T8E = T8k + T8D; | |
2930 ro[WS(os, 45)] = T81 - T8E; | |
2931 ro[WS(os, 13)] = T81 + T8E; | |
2932 T8V = T8L + T8O; | |
2933 T8W = T8S + T8T; | |
2934 io[WS(os, 45)] = T8V - T8W; | |
2935 io[WS(os, 13)] = T8V + T8W; | |
2936 } | |
2937 { | |
2938 E T8P, T8Q, T8R, T8U; | |
2939 T8P = T8L - T8O; | |
2940 T8Q = T8D - T8k; | |
2941 io[WS(os, 61)] = T8P - T8Q; | |
2942 io[WS(os, 29)] = T8P + T8Q; | |
2943 T8R = T7L - T80; | |
2944 T8U = T8S - T8T; | |
2945 ro[WS(os, 61)] = T8R - T8U; | |
2946 ro[WS(os, 29)] = T8R + T8U; | |
2947 } | |
2948 { | |
2949 E T8Z, T96, T9f, T9g; | |
2950 T8Z = T8X + T8Y; | |
2951 T96 = T92 + T95; | |
2952 ro[WS(os, 37)] = T8Z - T96; | |
2953 ro[WS(os, 5)] = T8Z + T96; | |
2954 T9f = T97 + T98; | |
2955 T9g = T9c + T9d; | |
2956 io[WS(os, 37)] = T9f - T9g; | |
2957 io[WS(os, 5)] = T9f + T9g; | |
2958 } | |
2959 { | |
2960 E T99, T9a, T9b, T9e; | |
2961 T99 = T97 - T98; | |
2962 T9a = T95 - T92; | |
2963 io[WS(os, 53)] = T99 - T9a; | |
2964 io[WS(os, 21)] = T99 + T9a; | |
2965 T9b = T8X - T8Y; | |
2966 T9e = T9c - T9d; | |
2967 ro[WS(os, 53)] = T9b - T9e; | |
2968 ro[WS(os, 21)] = T9b + T9e; | |
2969 } | |
2970 } | |
2971 } | |
2972 } | |
2973 } | |
2974 | |
2975 static const kdft_desc desc = { 64, "n1_64", {808, 144, 104, 0}, &GENUS, 0, 0, 0, 0 }; | |
2976 | |
2977 void X(codelet_n1_64) (planner *p) { | |
2978 X(kdft_register) (p, n1_64, &desc); | |
2979 } | |
2980 | |
2981 #endif /* HAVE_FMA */ |