comparison src/fftw-3.3.3/dft/scalar/codelets/n1_32.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:35:45 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h */
29
30 /*
31 * This function contains 372 FP additions, 136 FP multiplications,
32 * (or, 236 additions, 0 multiplications, 136 fused multiply/add),
33 * 136 stack variables, 7 constants, and 128 memory accesses
34 */
35 #include "n.h"
36
37 static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
40 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
41 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
44 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
45 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
46 {
47 INT i;
48 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) {
49 E T3g, T3f, T3n, T3b, T3r, T3l, T3o, T3e, T3h, T3p;
50 {
51 E T2T, T3T, T4r, T7, T3t, T1z, T18, T4Z, Te, T50, T4s, T1f, T2W, T3u, T3U;
52 E T1G, Tm, T1n, T3X, T3y, T2Z, T1O, T53, T4w, Tt, T1u, T3W, T3B, T2Y, T1V;
53 E T52, T4z, T3O, T2t, T3L, T2K, T5F, TZ, T5I, T5X, T4R, T5k, T3M, T2E, T5j;
54 E T4W, T3P, T2N, T3H, T22, T3E, T2j, T4H, T4K, T5A, TK, T5D, T5W, T2k, T2l;
55 E T4G, T5h, T3F, T2d;
56 {
57 E Tj, T1L, Ti, T1I, T1j, Tk, T1k, T1l;
58 {
59 E T4, T1x, T3, T2R, T14, T5, T15, T16, T1C, T1F;
60 {
61 E T1, T2, T12, T13;
62 T1 = ri[0];
63 T2 = ri[WS(is, 16)];
64 T12 = ii[0];
65 T13 = ii[WS(is, 16)];
66 T4 = ri[WS(is, 8)];
67 T1x = T1 - T2;
68 T3 = T1 + T2;
69 T2R = T12 - T13;
70 T14 = T12 + T13;
71 T5 = ri[WS(is, 24)];
72 T15 = ii[WS(is, 8)];
73 T16 = ii[WS(is, 24)];
74 }
75 {
76 E Tb, T1A, Ta, T1B, T1b, Tc, T1c, T1d;
77 {
78 E T8, T9, T19, T1a;
79 T8 = ri[WS(is, 4)];
80 {
81 E T2S, T6, T1y, T17;
82 T2S = T4 - T5;
83 T6 = T4 + T5;
84 T1y = T15 - T16;
85 T17 = T15 + T16;
86 T2T = T2R - T2S;
87 T3T = T2S + T2R;
88 T4r = T3 - T6;
89 T7 = T3 + T6;
90 T3t = T1x - T1y;
91 T1z = T1x + T1y;
92 T18 = T14 + T17;
93 T4Z = T14 - T17;
94 T9 = ri[WS(is, 20)];
95 }
96 T19 = ii[WS(is, 4)];
97 T1a = ii[WS(is, 20)];
98 Tb = ri[WS(is, 28)];
99 T1A = T8 - T9;
100 Ta = T8 + T9;
101 T1B = T19 - T1a;
102 T1b = T19 + T1a;
103 Tc = ri[WS(is, 12)];
104 T1c = ii[WS(is, 28)];
105 T1d = ii[WS(is, 12)];
106 }
107 {
108 E T2U, T1D, Td, T1E, T1e, T2V;
109 T1C = T1A + T1B;
110 T2U = T1B - T1A;
111 T1D = Tb - Tc;
112 Td = Tb + Tc;
113 T1E = T1c - T1d;
114 T1e = T1c + T1d;
115 Te = Ta + Td;
116 T50 = Td - Ta;
117 T1F = T1D - T1E;
118 T2V = T1D + T1E;
119 T4s = T1b - T1e;
120 T1f = T1b + T1e;
121 T2W = T2U + T2V;
122 T3u = T2U - T2V;
123 }
124 }
125 {
126 E Tg, Th, T1h, T1i;
127 Tg = ri[WS(is, 2)];
128 T3U = T1F - T1C;
129 T1G = T1C + T1F;
130 Th = ri[WS(is, 18)];
131 T1h = ii[WS(is, 2)];
132 T1i = ii[WS(is, 18)];
133 Tj = ri[WS(is, 10)];
134 T1L = Tg - Th;
135 Ti = Tg + Th;
136 T1I = T1h - T1i;
137 T1j = T1h + T1i;
138 Tk = ri[WS(is, 26)];
139 T1k = ii[WS(is, 10)];
140 T1l = ii[WS(is, 26)];
141 }
142 }
143 {
144 E Tq, T1S, Tp, T1P, T1q, Tr, T1r, T1s;
145 {
146 E Tn, To, T1o, T1p, T1J, Tl;
147 Tn = ri[WS(is, 30)];
148 T1J = Tj - Tk;
149 Tl = Tj + Tk;
150 {
151 E T1M, T1m, T3w, T1K;
152 T1M = T1k - T1l;
153 T1m = T1k + T1l;
154 T3w = T1J + T1I;
155 T1K = T1I - T1J;
156 {
157 E T4v, T3x, T1N, T4u;
158 T4v = Ti - Tl;
159 Tm = Ti + Tl;
160 T3x = T1L - T1M;
161 T1N = T1L + T1M;
162 T4u = T1j - T1m;
163 T1n = T1j + T1m;
164 T3X = FNMS(KP414213562, T3w, T3x);
165 T3y = FMA(KP414213562, T3x, T3w);
166 T2Z = FMA(KP414213562, T1K, T1N);
167 T1O = FNMS(KP414213562, T1N, T1K);
168 T53 = T4v + T4u;
169 T4w = T4u - T4v;
170 To = ri[WS(is, 14)];
171 }
172 }
173 T1o = ii[WS(is, 30)];
174 T1p = ii[WS(is, 14)];
175 Tq = ri[WS(is, 6)];
176 T1S = Tn - To;
177 Tp = Tn + To;
178 T1P = T1o - T1p;
179 T1q = T1o + T1p;
180 Tr = ri[WS(is, 22)];
181 T1r = ii[WS(is, 6)];
182 T1s = ii[WS(is, 22)];
183 }
184 {
185 E T4S, T4V, T2L, T2M;
186 {
187 E T2G, TN, T4N, T2r, T2s, TQ, T4O, T2J, TV, T2x, TU, T4T, T2w, TW, T2A;
188 E T2B;
189 {
190 E TO, TP, T2H, T2I;
191 {
192 E TL, TM, T2p, T2q, T1Q, Ts;
193 TL = ri[WS(is, 31)];
194 T1Q = Tq - Tr;
195 Ts = Tq + Tr;
196 {
197 E T1T, T1t, T3z, T1R;
198 T1T = T1r - T1s;
199 T1t = T1r + T1s;
200 T3z = T1Q + T1P;
201 T1R = T1P - T1Q;
202 {
203 E T4x, T3A, T1U, T4y;
204 T4x = Tp - Ts;
205 Tt = Tp + Ts;
206 T3A = T1S - T1T;
207 T1U = T1S + T1T;
208 T4y = T1q - T1t;
209 T1u = T1q + T1t;
210 T3W = FMA(KP414213562, T3z, T3A);
211 T3B = FNMS(KP414213562, T3A, T3z);
212 T2Y = FNMS(KP414213562, T1R, T1U);
213 T1V = FMA(KP414213562, T1U, T1R);
214 T52 = T4x - T4y;
215 T4z = T4x + T4y;
216 TM = ri[WS(is, 15)];
217 }
218 }
219 T2p = ii[WS(is, 31)];
220 T2q = ii[WS(is, 15)];
221 TO = ri[WS(is, 7)];
222 T2G = TL - TM;
223 TN = TL + TM;
224 T4N = T2p + T2q;
225 T2r = T2p - T2q;
226 TP = ri[WS(is, 23)];
227 T2H = ii[WS(is, 7)];
228 T2I = ii[WS(is, 23)];
229 }
230 {
231 E TS, TT, T2u, T2v;
232 TS = ri[WS(is, 3)];
233 T2s = TO - TP;
234 TQ = TO + TP;
235 T4O = T2H + T2I;
236 T2J = T2H - T2I;
237 TT = ri[WS(is, 19)];
238 T2u = ii[WS(is, 3)];
239 T2v = ii[WS(is, 19)];
240 TV = ri[WS(is, 27)];
241 T2x = TS - TT;
242 TU = TS + TT;
243 T4T = T2u + T2v;
244 T2w = T2u - T2v;
245 TW = ri[WS(is, 11)];
246 T2A = ii[WS(is, 27)];
247 T2B = ii[WS(is, 11)];
248 }
249 }
250 {
251 E T2z, T4U, T2C, TR, TY, T4Q, TX;
252 T3O = T2s + T2r;
253 T2t = T2r - T2s;
254 T2z = TV - TW;
255 TX = TV + TW;
256 T4U = T2A + T2B;
257 T2C = T2A - T2B;
258 T3L = T2G - T2J;
259 T2K = T2G + T2J;
260 T4S = TN - TQ;
261 TR = TN + TQ;
262 TY = TU + TX;
263 T4Q = TX - TU;
264 {
265 E T4P, T5G, T5H, T2y, T2D;
266 T4P = T4N - T4O;
267 T5G = T4N + T4O;
268 T5H = T4T + T4U;
269 T4V = T4T - T4U;
270 T5F = TR - TY;
271 TZ = TR + TY;
272 T5I = T5G - T5H;
273 T5X = T5G + T5H;
274 T2L = T2x + T2w;
275 T2y = T2w - T2x;
276 T2D = T2z + T2C;
277 T2M = T2z - T2C;
278 T4R = T4P - T4Q;
279 T5k = T4Q + T4P;
280 T3M = T2D - T2y;
281 T2E = T2y + T2D;
282 }
283 }
284 }
285 {
286 E T2f, Ty, T4C, T20, T21, TB, T4D, T2i, TG, T26, TF, T4I, T25, TH, T29;
287 E T2a;
288 {
289 E Tz, TA, T2g, T2h;
290 {
291 E Tw, Tx, T1Y, T1Z;
292 Tw = ri[WS(is, 1)];
293 T5j = T4S + T4V;
294 T4W = T4S - T4V;
295 T3P = T2L - T2M;
296 T2N = T2L + T2M;
297 Tx = ri[WS(is, 17)];
298 T1Y = ii[WS(is, 1)];
299 T1Z = ii[WS(is, 17)];
300 Tz = ri[WS(is, 9)];
301 T2f = Tw - Tx;
302 Ty = Tw + Tx;
303 T4C = T1Y + T1Z;
304 T20 = T1Y - T1Z;
305 TA = ri[WS(is, 25)];
306 T2g = ii[WS(is, 9)];
307 T2h = ii[WS(is, 25)];
308 }
309 {
310 E TD, TE, T23, T24;
311 TD = ri[WS(is, 5)];
312 T21 = Tz - TA;
313 TB = Tz + TA;
314 T4D = T2g + T2h;
315 T2i = T2g - T2h;
316 TE = ri[WS(is, 21)];
317 T23 = ii[WS(is, 5)];
318 T24 = ii[WS(is, 21)];
319 TG = ri[WS(is, 29)];
320 T26 = TD - TE;
321 TF = TD + TE;
322 T4I = T23 + T24;
323 T25 = T23 - T24;
324 TH = ri[WS(is, 13)];
325 T29 = ii[WS(is, 29)];
326 T2a = ii[WS(is, 13)];
327 }
328 }
329 {
330 E T28, T4J, T2b, TC, TJ, T4F, TI;
331 T3H = T21 + T20;
332 T22 = T20 - T21;
333 T28 = TG - TH;
334 TI = TG + TH;
335 T4J = T29 + T2a;
336 T2b = T29 - T2a;
337 T3E = T2f - T2i;
338 T2j = T2f + T2i;
339 T4H = Ty - TB;
340 TC = Ty + TB;
341 TJ = TF + TI;
342 T4F = TI - TF;
343 {
344 E T4E, T5B, T5C, T27, T2c;
345 T4E = T4C - T4D;
346 T5B = T4C + T4D;
347 T5C = T4I + T4J;
348 T4K = T4I - T4J;
349 T5A = TC - TJ;
350 TK = TC + TJ;
351 T5D = T5B - T5C;
352 T5W = T5B + T5C;
353 T2k = T26 + T25;
354 T27 = T25 - T26;
355 T2c = T28 + T2b;
356 T2l = T28 - T2b;
357 T4G = T4E - T4F;
358 T5h = T4F + T4E;
359 T3F = T2c - T27;
360 T2d = T27 + T2c;
361 }
362 }
363 }
364 }
365 }
366 }
367 {
368 E T3I, T2m, Tv, T60, T11, T10, T5Z, T1w;
369 {
370 E T5f, T5w, T5q, T5m, T5v, T5p;
371 {
372 E T5d, T5g, T5o, T4B, T5a, T5n, T5e, T56, T4Y, T57, T55;
373 {
374 E T4X, T4M, T5b, T5c, T51, T54;
375 {
376 E T4t, T4A, T58, T59, T4L;
377 T5d = T4r + T4s;
378 T4t = T4r - T4s;
379 T5g = T4H + T4K;
380 T4L = T4H - T4K;
381 T3I = T2k - T2l;
382 T2m = T2k + T2l;
383 T4A = T4w - T4z;
384 T5o = T4w + T4z;
385 T4X = FNMS(KP414213562, T4W, T4R);
386 T58 = FMA(KP414213562, T4R, T4W);
387 T59 = FNMS(KP414213562, T4G, T4L);
388 T4M = FMA(KP414213562, T4L, T4G);
389 T5b = FNMS(KP707106781, T4A, T4t);
390 T4B = FMA(KP707106781, T4A, T4t);
391 T5c = T59 + T58;
392 T5a = T58 - T59;
393 T5n = T50 + T4Z;
394 T51 = T4Z - T50;
395 T54 = T52 - T53;
396 T5e = T53 + T52;
397 }
398 ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b);
399 T56 = T4M + T4X;
400 T4Y = T4M - T4X;
401 T57 = FMA(KP707106781, T54, T51);
402 T55 = FNMS(KP707106781, T54, T51);
403 ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b);
404 }
405 ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B);
406 ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B);
407 io[WS(os, 6)] = FMA(KP923879532, T5a, T57);
408 io[WS(os, 22)] = FNMS(KP923879532, T5a, T57);
409 io[WS(os, 30)] = FMA(KP923879532, T56, T55);
410 io[WS(os, 14)] = FNMS(KP923879532, T56, T55);
411 {
412 E T5i, T5l, T5r, T5u, T5s, T5t;
413 T5i = FMA(KP414213562, T5h, T5g);
414 T5s = FNMS(KP414213562, T5g, T5h);
415 T5t = FMA(KP414213562, T5j, T5k);
416 T5l = FNMS(KP414213562, T5k, T5j);
417 T5r = FNMS(KP707106781, T5e, T5d);
418 T5f = FMA(KP707106781, T5e, T5d);
419 T5w = T5s + T5t;
420 T5u = T5s - T5t;
421 ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r);
422 T5q = T5l - T5i;
423 T5m = T5i + T5l;
424 T5v = FMA(KP707106781, T5o, T5n);
425 T5p = FNMS(KP707106781, T5o, T5n);
426 ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r);
427 }
428 }
429 ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f);
430 ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f);
431 io[WS(os, 2)] = FMA(KP923879532, T5w, T5v);
432 io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v);
433 io[WS(os, 10)] = FMA(KP923879532, T5q, T5p);
434 io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p);
435 {
436 E Tf, T1v, T5z, T5U, T1g, Tu, T5O, T5K, T5T, T5N, T5V, T5Y;
437 {
438 E T5E, T5J, T5P, T5S, T5L, T5M;
439 {
440 E T5x, T5y, T5Q, T5R;
441 Tf = T7 + Te;
442 T5x = T7 - Te;
443 T5y = T1n - T1u;
444 T1v = T1n + T1u;
445 T5E = T5A + T5D;
446 T5Q = T5D - T5A;
447 T5R = T5F + T5I;
448 T5J = T5F - T5I;
449 T5P = T5x - T5y;
450 T5z = T5x + T5y;
451 T5U = T5Q + T5R;
452 T5S = T5Q - T5R;
453 T1g = T18 + T1f;
454 T5L = T18 - T1f;
455 T5M = Tt - Tm;
456 Tu = Tm + Tt;
457 }
458 ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P);
459 T5O = T5J - T5E;
460 T5K = T5E + T5J;
461 T5T = T5M + T5L;
462 T5N = T5L - T5M;
463 ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P);
464 }
465 ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z);
466 ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z);
467 io[WS(os, 4)] = FMA(KP707106781, T5U, T5T);
468 io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T);
469 io[WS(os, 12)] = FMA(KP707106781, T5O, T5N);
470 io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N);
471 T5V = Tf - Tu;
472 Tv = Tf + Tu;
473 T60 = T5W + T5X;
474 T5Y = T5W - T5X;
475 ro[WS(os, 8)] = T5V + T5Y;
476 T11 = TZ - TK;
477 T10 = TK + TZ;
478 T5Z = T1g + T1v;
479 T1w = T1g - T1v;
480 ro[WS(os, 24)] = T5V - T5Y;
481 }
482 }
483 ro[0] = Tv + T10;
484 ro[WS(os, 16)] = Tv - T10;
485 io[0] = T5Z + T60;
486 io[WS(os, 16)] = T5Z - T60;
487 io[WS(os, 24)] = T1w - T11;
488 io[WS(os, 8)] = T11 + T1w;
489 {
490 E T39, T3k, T3j, T3a, T3d, T3c, T47, T4i, T4h, T41, T3D, T48, T4b, T4a, T4e;
491 E T3N, T45, T3Z, T42, T3K, T3Q, T4d;
492 {
493 E T2e, T37, T1X, T33, T31, T2n, T2F, T2O;
494 {
495 E T1H, T1W, T2X, T30;
496 T39 = FMA(KP707106781, T1G, T1z);
497 T1H = FNMS(KP707106781, T1G, T1z);
498 T1W = T1O - T1V;
499 T3k = T1O + T1V;
500 T3j = FMA(KP707106781, T2W, T2T);
501 T2X = FNMS(KP707106781, T2W, T2T);
502 T30 = T2Y - T2Z;
503 T3a = T2Z + T2Y;
504 T3d = FMA(KP707106781, T2d, T22);
505 T2e = FNMS(KP707106781, T2d, T22);
506 T37 = FNMS(KP923879532, T1W, T1H);
507 T1X = FMA(KP923879532, T1W, T1H);
508 T33 = FMA(KP923879532, T30, T2X);
509 T31 = FNMS(KP923879532, T30, T2X);
510 T2n = FNMS(KP707106781, T2m, T2j);
511 T3c = FMA(KP707106781, T2m, T2j);
512 T3g = FMA(KP707106781, T2E, T2t);
513 T2F = FNMS(KP707106781, T2E, T2t);
514 T2O = FNMS(KP707106781, T2N, T2K);
515 T3f = FMA(KP707106781, T2N, T2K);
516 }
517 {
518 E T3V, T3Y, T3G, T3J;
519 {
520 E T3v, T35, T2o, T34, T2P, T3C;
521 T47 = FNMS(KP707106781, T3u, T3t);
522 T3v = FMA(KP707106781, T3u, T3t);
523 T35 = FNMS(KP668178637, T2e, T2n);
524 T2o = FMA(KP668178637, T2n, T2e);
525 T34 = FMA(KP668178637, T2F, T2O);
526 T2P = FNMS(KP668178637, T2O, T2F);
527 T3C = T3y - T3B;
528 T4i = T3y + T3B;
529 T4h = FNMS(KP707106781, T3U, T3T);
530 T3V = FMA(KP707106781, T3U, T3T);
531 {
532 E T38, T36, T32, T2Q;
533 T38 = T35 + T34;
534 T36 = T34 - T35;
535 T32 = T2o + T2P;
536 T2Q = T2o - T2P;
537 T41 = FNMS(KP923879532, T3C, T3v);
538 T3D = FMA(KP923879532, T3C, T3v);
539 ro[WS(os, 29)] = FMA(KP831469612, T38, T37);
540 ro[WS(os, 13)] = FNMS(KP831469612, T38, T37);
541 io[WS(os, 5)] = FMA(KP831469612, T36, T33);
542 io[WS(os, 21)] = FNMS(KP831469612, T36, T33);
543 io[WS(os, 29)] = FMA(KP831469612, T32, T31);
544 io[WS(os, 13)] = FNMS(KP831469612, T32, T31);
545 ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X);
546 ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X);
547 T3Y = T3W - T3X;
548 T48 = T3X + T3W;
549 }
550 }
551 T4b = FMA(KP707106781, T3F, T3E);
552 T3G = FNMS(KP707106781, T3F, T3E);
553 T3J = FNMS(KP707106781, T3I, T3H);
554 T4a = FMA(KP707106781, T3I, T3H);
555 T4e = FMA(KP707106781, T3M, T3L);
556 T3N = FNMS(KP707106781, T3M, T3L);
557 T45 = FMA(KP923879532, T3Y, T3V);
558 T3Z = FNMS(KP923879532, T3Y, T3V);
559 T42 = FNMS(KP668178637, T3G, T3J);
560 T3K = FMA(KP668178637, T3J, T3G);
561 T3Q = FNMS(KP707106781, T3P, T3O);
562 T4d = FMA(KP707106781, T3P, T3O);
563 }
564 }
565 {
566 E T4p, T49, T4l, T4j, T4n, T4c, T43, T3R, T4m, T4f;
567 T43 = FMA(KP668178637, T3N, T3Q);
568 T3R = FNMS(KP668178637, T3Q, T3N);
569 T4p = FMA(KP923879532, T48, T47);
570 T49 = FNMS(KP923879532, T48, T47);
571 {
572 E T44, T46, T40, T3S;
573 T44 = T42 - T43;
574 T46 = T42 + T43;
575 T40 = T3R - T3K;
576 T3S = T3K + T3R;
577 ro[WS(os, 11)] = FMA(KP831469612, T44, T41);
578 ro[WS(os, 27)] = FNMS(KP831469612, T44, T41);
579 io[WS(os, 3)] = FMA(KP831469612, T46, T45);
580 io[WS(os, 19)] = FNMS(KP831469612, T46, T45);
581 io[WS(os, 11)] = FMA(KP831469612, T40, T3Z);
582 io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z);
583 ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D);
584 ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D);
585 }
586 T4l = FNMS(KP923879532, T4i, T4h);
587 T4j = FMA(KP923879532, T4i, T4h);
588 T4n = FNMS(KP198912367, T4a, T4b);
589 T4c = FMA(KP198912367, T4b, T4a);
590 T4m = FMA(KP198912367, T4d, T4e);
591 T4f = FNMS(KP198912367, T4e, T4d);
592 T3n = FNMS(KP923879532, T3a, T39);
593 T3b = FMA(KP923879532, T3a, T39);
594 {
595 E T4q, T4o, T4k, T4g;
596 T4q = T4n + T4m;
597 T4o = T4m - T4n;
598 T4k = T4c + T4f;
599 T4g = T4c - T4f;
600 ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p);
601 ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p);
602 io[WS(os, 7)] = FMA(KP980785280, T4o, T4l);
603 io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l);
604 io[WS(os, 31)] = FMA(KP980785280, T4k, T4j);
605 io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j);
606 ro[WS(os, 7)] = FMA(KP980785280, T4g, T49);
607 ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49);
608 }
609 T3r = FMA(KP923879532, T3k, T3j);
610 T3l = FNMS(KP923879532, T3k, T3j);
611 T3o = FNMS(KP198912367, T3c, T3d);
612 T3e = FMA(KP198912367, T3d, T3c);
613 }
614 }
615 }
616 }
617 T3h = FNMS(KP198912367, T3g, T3f);
618 T3p = FMA(KP198912367, T3f, T3g);
619 {
620 E T3s, T3q, T3i, T3m;
621 T3s = T3o + T3p;
622 T3q = T3o - T3p;
623 T3i = T3e + T3h;
624 T3m = T3h - T3e;
625 ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n);
626 ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n);
627 io[WS(os, 1)] = FMA(KP980785280, T3s, T3r);
628 io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r);
629 io[WS(os, 9)] = FMA(KP980785280, T3m, T3l);
630 io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l);
631 ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b);
632 ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b);
633 }
634 }
635 }
636 }
637
638 static const kdft_desc desc = { 32, "n1_32", {236, 0, 136, 0}, &GENUS, 0, 0, 0, 0 };
639
640 void X(codelet_n1_32) (planner *p) {
641 X(kdft_register) (p, n1_32, &desc);
642 }
643
644 #else /* HAVE_FMA */
645
646 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h */
647
648 /*
649 * This function contains 372 FP additions, 84 FP multiplications,
650 * (or, 340 additions, 52 multiplications, 32 fused multiply/add),
651 * 100 stack variables, 7 constants, and 128 memory accesses
652 */
653 #include "n.h"
654
655 static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
656 {
657 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
658 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
659 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
660 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
661 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
662 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
663 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
664 {
665 INT i;
666 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) {
667 E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;
668 E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;
669 E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E;
670 E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;
671 E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I;
672 {
673 E T3, T1x, T14, T2S, T6, T2R, T17, T1y;
674 {
675 E T1, T2, T12, T13;
676 T1 = ri[0];
677 T2 = ri[WS(is, 16)];
678 T3 = T1 + T2;
679 T1x = T1 - T2;
680 T12 = ii[0];
681 T13 = ii[WS(is, 16)];
682 T14 = T12 + T13;
683 T2S = T12 - T13;
684 }
685 {
686 E T4, T5, T15, T16;
687 T4 = ri[WS(is, 8)];
688 T5 = ri[WS(is, 24)];
689 T6 = T4 + T5;
690 T2R = T4 - T5;
691 T15 = ii[WS(is, 8)];
692 T16 = ii[WS(is, 24)];
693 T17 = T15 + T16;
694 T1y = T15 - T16;
695 }
696 T7 = T3 + T6;
697 T4r = T3 - T6;
698 T4Z = T14 - T17;
699 T18 = T14 + T17;
700 T1z = T1x - T1y;
701 T3t = T1x + T1y;
702 T3T = T2S - T2R;
703 T2T = T2R + T2S;
704 }
705 {
706 E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E;
707 {
708 E T8, T9, T19, T1a;
709 T8 = ri[WS(is, 4)];
710 T9 = ri[WS(is, 20)];
711 Ta = T8 + T9;
712 T1B = T8 - T9;
713 T19 = ii[WS(is, 4)];
714 T1a = ii[WS(is, 20)];
715 T1b = T19 + T1a;
716 T1A = T19 - T1a;
717 }
718 {
719 E Tb, Tc, T1c, T1d;
720 Tb = ri[WS(is, 28)];
721 Tc = ri[WS(is, 12)];
722 Td = Tb + Tc;
723 T1D = Tb - Tc;
724 T1c = ii[WS(is, 28)];
725 T1d = ii[WS(is, 12)];
726 T1e = T1c + T1d;
727 T1E = T1c - T1d;
728 }
729 Te = Ta + Td;
730 T1f = T1b + T1e;
731 T50 = Td - Ta;
732 T4s = T1b - T1e;
733 {
734 E T2U, T2V, T1C, T1F;
735 T2U = T1D - T1E;
736 T2V = T1B + T1A;
737 T2W = KP707106781 * (T2U - T2V);
738 T3u = KP707106781 * (T2V + T2U);
739 T1C = T1A - T1B;
740 T1F = T1D + T1E;
741 T1G = KP707106781 * (T1C - T1F);
742 T3U = KP707106781 * (T1C + T1F);
743 }
744 }
745 {
746 E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N;
747 {
748 E Tg, Th, T1h, T1i;
749 Tg = ri[WS(is, 2)];
750 Th = ri[WS(is, 18)];
751 Ti = Tg + Th;
752 T1L = Tg - Th;
753 T1h = ii[WS(is, 2)];
754 T1i = ii[WS(is, 18)];
755 T1j = T1h + T1i;
756 T1J = T1h - T1i;
757 }
758 {
759 E Tj, Tk, T1k, T1l;
760 Tj = ri[WS(is, 10)];
761 Tk = ri[WS(is, 26)];
762 Tl = Tj + Tk;
763 T1I = Tj - Tk;
764 T1k = ii[WS(is, 10)];
765 T1l = ii[WS(is, 26)];
766 T1m = T1k + T1l;
767 T1M = T1k - T1l;
768 }
769 Tm = Ti + Tl;
770 T1n = T1j + T1m;
771 T1K = T1I + T1J;
772 T1N = T1L - T1M;
773 T1O = FNMS(KP923879532, T1N, KP382683432 * T1K);
774 T2Z = FMA(KP923879532, T1K, KP382683432 * T1N);
775 {
776 E T3w, T3x, T4u, T4v;
777 T3w = T1J - T1I;
778 T3x = T1L + T1M;
779 T3y = FNMS(KP382683432, T3x, KP923879532 * T3w);
780 T3X = FMA(KP382683432, T3w, KP923879532 * T3x);
781 T4u = T1j - T1m;
782 T4v = Ti - Tl;
783 T4w = T4u - T4v;
784 T53 = T4v + T4u;
785 }
786 }
787 {
788 E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U;
789 {
790 E Tn, To, T1o, T1p;
791 Tn = ri[WS(is, 30)];
792 To = ri[WS(is, 14)];
793 Tp = Tn + To;
794 T1S = Tn - To;
795 T1o = ii[WS(is, 30)];
796 T1p = ii[WS(is, 14)];
797 T1q = T1o + T1p;
798 T1Q = T1o - T1p;
799 }
800 {
801 E Tq, Tr, T1r, T1s;
802 Tq = ri[WS(is, 6)];
803 Tr = ri[WS(is, 22)];
804 Ts = Tq + Tr;
805 T1P = Tq - Tr;
806 T1r = ii[WS(is, 6)];
807 T1s = ii[WS(is, 22)];
808 T1t = T1r + T1s;
809 T1T = T1r - T1s;
810 }
811 Tt = Tp + Ts;
812 T1u = T1q + T1t;
813 T1R = T1P + T1Q;
814 T1U = T1S - T1T;
815 T1V = FMA(KP382683432, T1R, KP923879532 * T1U);
816 T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U);
817 {
818 E T3z, T3A, T4x, T4y;
819 T3z = T1Q - T1P;
820 T3A = T1S + T1T;
821 T3B = FMA(KP923879532, T3z, KP382683432 * T3A);
822 T3W = FNMS(KP382683432, T3z, KP923879532 * T3A);
823 T4x = Tp - Ts;
824 T4y = T1q - T1t;
825 T4z = T4x + T4y;
826 T52 = T4x - T4y;
827 }
828 }
829 {
830 E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C;
831 E T4P;
832 {
833 E TL, TM, T2H, T2I;
834 TL = ri[WS(is, 31)];
835 TM = ri[WS(is, 15)];
836 TN = TL + TM;
837 T2p = TL - TM;
838 T2H = ii[WS(is, 31)];
839 T2I = ii[WS(is, 15)];
840 T2J = T2H - T2I;
841 T4S = T2H + T2I;
842 }
843 {
844 E TO, TP, T2q, T2r;
845 TO = ri[WS(is, 7)];
846 TP = ri[WS(is, 23)];
847 TQ = TO + TP;
848 T2G = TO - TP;
849 T2q = ii[WS(is, 7)];
850 T2r = ii[WS(is, 23)];
851 T2s = T2q - T2r;
852 T4T = T2q + T2r;
853 }
854 {
855 E TS, TT, T2u, T2v;
856 TS = ri[WS(is, 3)];
857 TT = ri[WS(is, 19)];
858 TU = TS + TT;
859 T2x = TS - TT;
860 T2u = ii[WS(is, 3)];
861 T2v = ii[WS(is, 19)];
862 T2w = T2u - T2v;
863 T4O = T2u + T2v;
864 }
865 {
866 E TV, TW, T2A, T2B;
867 TV = ri[WS(is, 27)];
868 TW = ri[WS(is, 11)];
869 TX = TV + TW;
870 T2z = TV - TW;
871 T2A = ii[WS(is, 27)];
872 T2B = ii[WS(is, 11)];
873 T2C = T2A - T2B;
874 T4P = T2A + T2B;
875 }
876 T2t = T2p - T2s;
877 T3L = T2p + T2s;
878 T3O = T2J - T2G;
879 T2K = T2G + T2J;
880 TR = TN + TQ;
881 TY = TU + TX;
882 T5F = TR - TY;
883 {
884 E T4N, T4Q, T2y, T2D;
885 T5G = T4S + T4T;
886 T5H = T4O + T4P;
887 T5I = T5G - T5H;
888 T4N = TN - TQ;
889 T4Q = T4O - T4P;
890 T4R = T4N - T4Q;
891 T5j = T4N + T4Q;
892 T2y = T2w - T2x;
893 T2D = T2z + T2C;
894 T2E = KP707106781 * (T2y - T2D);
895 T3P = KP707106781 * (T2y + T2D);
896 {
897 E T4U, T4V, T2L, T2M;
898 T4U = T4S - T4T;
899 T4V = TX - TU;
900 T4W = T4U - T4V;
901 T5k = T4V + T4U;
902 T2L = T2z - T2C;
903 T2M = T2x + T2w;
904 T2N = KP707106781 * (T2L - T2M);
905 T3M = KP707106781 * (T2M + T2L);
906 }
907 }
908 }
909 {
910 E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26;
911 E T4J;
912 {
913 E Tw, Tx, T1Z, T20;
914 Tw = ri[WS(is, 1)];
915 Tx = ri[WS(is, 17)];
916 Ty = Tw + Tx;
917 T2f = Tw - Tx;
918 T1Z = ii[WS(is, 1)];
919 T20 = ii[WS(is, 17)];
920 T21 = T1Z - T20;
921 T4C = T1Z + T20;
922 }
923 {
924 E Tz, TA, T2g, T2h;
925 Tz = ri[WS(is, 9)];
926 TA = ri[WS(is, 25)];
927 TB = Tz + TA;
928 T1Y = Tz - TA;
929 T2g = ii[WS(is, 9)];
930 T2h = ii[WS(is, 25)];
931 T2i = T2g - T2h;
932 T4D = T2g + T2h;
933 }
934 {
935 E TD, TE, T29, T2a;
936 TD = ri[WS(is, 5)];
937 TE = ri[WS(is, 21)];
938 TF = TD + TE;
939 T28 = TD - TE;
940 T29 = ii[WS(is, 5)];
941 T2a = ii[WS(is, 21)];
942 T2b = T29 - T2a;
943 T4I = T29 + T2a;
944 }
945 {
946 E TG, TH, T24, T25;
947 TG = ri[WS(is, 29)];
948 TH = ri[WS(is, 13)];
949 TI = TG + TH;
950 T23 = TG - TH;
951 T24 = ii[WS(is, 29)];
952 T25 = ii[WS(is, 13)];
953 T26 = T24 - T25;
954 T4J = T24 + T25;
955 }
956 T22 = T1Y + T21;
957 T3E = T2f + T2i;
958 T3H = T21 - T1Y;
959 T2j = T2f - T2i;
960 TC = Ty + TB;
961 TJ = TF + TI;
962 T5A = TC - TJ;
963 {
964 E T4E, T4F, T27, T2c;
965 T5B = T4C + T4D;
966 T5C = T4I + T4J;
967 T5D = T5B - T5C;
968 T4E = T4C - T4D;
969 T4F = TI - TF;
970 T4G = T4E - T4F;
971 T5g = T4F + T4E;
972 T27 = T23 - T26;
973 T2c = T28 + T2b;
974 T2d = KP707106781 * (T27 - T2c);
975 T3F = KP707106781 * (T2c + T27);
976 {
977 E T4H, T4K, T2k, T2l;
978 T4H = Ty - TB;
979 T4K = T4I - T4J;
980 T4L = T4H - T4K;
981 T5h = T4H + T4K;
982 T2k = T2b - T28;
983 T2l = T23 + T26;
984 T2m = KP707106781 * (T2k - T2l);
985 T3I = KP707106781 * (T2k + T2l);
986 }
987 }
988 }
989 {
990 E T4B, T57, T5a, T5c, T4Y, T56, T55, T5b;
991 {
992 E T4t, T4A, T58, T59;
993 T4t = T4r - T4s;
994 T4A = KP707106781 * (T4w - T4z);
995 T4B = T4t + T4A;
996 T57 = T4t - T4A;
997 T58 = FNMS(KP923879532, T4L, KP382683432 * T4G);
998 T59 = FMA(KP382683432, T4W, KP923879532 * T4R);
999 T5a = T58 - T59;
1000 T5c = T58 + T59;
1001 }
1002 {
1003 E T4M, T4X, T51, T54;
1004 T4M = FMA(KP923879532, T4G, KP382683432 * T4L);
1005 T4X = FNMS(KP923879532, T4W, KP382683432 * T4R);
1006 T4Y = T4M + T4X;
1007 T56 = T4X - T4M;
1008 T51 = T4Z - T50;
1009 T54 = KP707106781 * (T52 - T53);
1010 T55 = T51 - T54;
1011 T5b = T51 + T54;
1012 }
1013 ro[WS(os, 22)] = T4B - T4Y;
1014 io[WS(os, 22)] = T5b - T5c;
1015 ro[WS(os, 6)] = T4B + T4Y;
1016 io[WS(os, 6)] = T5b + T5c;
1017 io[WS(os, 30)] = T55 - T56;
1018 ro[WS(os, 30)] = T57 - T5a;
1019 io[WS(os, 14)] = T55 + T56;
1020 ro[WS(os, 14)] = T57 + T5a;
1021 }
1022 {
1023 E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v;
1024 {
1025 E T5d, T5e, T5s, T5t;
1026 T5d = T4r + T4s;
1027 T5e = KP707106781 * (T53 + T52);
1028 T5f = T5d + T5e;
1029 T5r = T5d - T5e;
1030 T5s = FNMS(KP382683432, T5h, KP923879532 * T5g);
1031 T5t = FMA(KP923879532, T5k, KP382683432 * T5j);
1032 T5u = T5s - T5t;
1033 T5w = T5s + T5t;
1034 }
1035 {
1036 E T5i, T5l, T5n, T5o;
1037 T5i = FMA(KP382683432, T5g, KP923879532 * T5h);
1038 T5l = FNMS(KP382683432, T5k, KP923879532 * T5j);
1039 T5m = T5i + T5l;
1040 T5q = T5l - T5i;
1041 T5n = T50 + T4Z;
1042 T5o = KP707106781 * (T4w + T4z);
1043 T5p = T5n - T5o;
1044 T5v = T5n + T5o;
1045 }
1046 ro[WS(os, 18)] = T5f - T5m;
1047 io[WS(os, 18)] = T5v - T5w;
1048 ro[WS(os, 2)] = T5f + T5m;
1049 io[WS(os, 2)] = T5v + T5w;
1050 io[WS(os, 26)] = T5p - T5q;
1051 ro[WS(os, 26)] = T5r - T5u;
1052 io[WS(os, 10)] = T5p + T5q;
1053 ro[WS(os, 10)] = T5r + T5u;
1054 }
1055 {
1056 E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T;
1057 {
1058 E T5x, T5y, T5Q, T5R;
1059 T5x = T7 - Te;
1060 T5y = T1n - T1u;
1061 T5z = T5x + T5y;
1062 T5P = T5x - T5y;
1063 T5Q = T5D - T5A;
1064 T5R = T5F + T5I;
1065 T5S = KP707106781 * (T5Q - T5R);
1066 T5U = KP707106781 * (T5Q + T5R);
1067 }
1068 {
1069 E T5E, T5J, T5L, T5M;
1070 T5E = T5A + T5D;
1071 T5J = T5F - T5I;
1072 T5K = KP707106781 * (T5E + T5J);
1073 T5O = KP707106781 * (T5J - T5E);
1074 T5L = T18 - T1f;
1075 T5M = Tt - Tm;
1076 T5N = T5L - T5M;
1077 T5T = T5M + T5L;
1078 }
1079 ro[WS(os, 20)] = T5z - T5K;
1080 io[WS(os, 20)] = T5T - T5U;
1081 ro[WS(os, 4)] = T5z + T5K;
1082 io[WS(os, 4)] = T5T + T5U;
1083 io[WS(os, 28)] = T5N - T5O;
1084 ro[WS(os, 28)] = T5P - T5S;
1085 io[WS(os, 12)] = T5N + T5O;
1086 ro[WS(os, 12)] = T5P + T5S;
1087 }
1088 {
1089 E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z;
1090 {
1091 E Tf, Tu, T5W, T5X;
1092 Tf = T7 + Te;
1093 Tu = Tm + Tt;
1094 Tv = Tf + Tu;
1095 T5V = Tf - Tu;
1096 T5W = T5B + T5C;
1097 T5X = T5G + T5H;
1098 T5Y = T5W - T5X;
1099 T60 = T5W + T5X;
1100 }
1101 {
1102 E TK, TZ, T1g, T1v;
1103 TK = TC + TJ;
1104 TZ = TR + TY;
1105 T10 = TK + TZ;
1106 T11 = TZ - TK;
1107 T1g = T18 + T1f;
1108 T1v = T1n + T1u;
1109 T1w = T1g - T1v;
1110 T5Z = T1g + T1v;
1111 }
1112 ro[WS(os, 16)] = Tv - T10;
1113 io[WS(os, 16)] = T5Z - T60;
1114 ro[0] = Tv + T10;
1115 io[0] = T5Z + T60;
1116 io[WS(os, 8)] = T11 + T1w;
1117 ro[WS(os, 8)] = T5V + T5Y;
1118 io[WS(os, 24)] = T1w - T11;
1119 ro[WS(os, 24)] = T5V - T5Y;
1120 }
1121 {
1122 E T1X, T33, T31, T37, T2o, T34, T2P, T35;
1123 {
1124 E T1H, T1W, T2X, T30;
1125 T1H = T1z - T1G;
1126 T1W = T1O - T1V;
1127 T1X = T1H + T1W;
1128 T33 = T1H - T1W;
1129 T2X = T2T - T2W;
1130 T30 = T2Y - T2Z;
1131 T31 = T2X - T30;
1132 T37 = T2X + T30;
1133 }
1134 {
1135 E T2e, T2n, T2F, T2O;
1136 T2e = T22 - T2d;
1137 T2n = T2j - T2m;
1138 T2o = FMA(KP980785280, T2e, KP195090322 * T2n);
1139 T34 = FNMS(KP980785280, T2n, KP195090322 * T2e);
1140 T2F = T2t - T2E;
1141 T2O = T2K - T2N;
1142 T2P = FNMS(KP980785280, T2O, KP195090322 * T2F);
1143 T35 = FMA(KP195090322, T2O, KP980785280 * T2F);
1144 }
1145 {
1146 E T2Q, T38, T32, T36;
1147 T2Q = T2o + T2P;
1148 ro[WS(os, 23)] = T1X - T2Q;
1149 ro[WS(os, 7)] = T1X + T2Q;
1150 T38 = T34 + T35;
1151 io[WS(os, 23)] = T37 - T38;
1152 io[WS(os, 7)] = T37 + T38;
1153 T32 = T2P - T2o;
1154 io[WS(os, 31)] = T31 - T32;
1155 io[WS(os, 15)] = T31 + T32;
1156 T36 = T34 - T35;
1157 ro[WS(os, 31)] = T33 - T36;
1158 ro[WS(os, 15)] = T33 + T36;
1159 }
1160 }
1161 {
1162 E T3D, T41, T3Z, T45, T3K, T42, T3R, T43;
1163 {
1164 E T3v, T3C, T3V, T3Y;
1165 T3v = T3t - T3u;
1166 T3C = T3y - T3B;
1167 T3D = T3v + T3C;
1168 T41 = T3v - T3C;
1169 T3V = T3T - T3U;
1170 T3Y = T3W - T3X;
1171 T3Z = T3V - T3Y;
1172 T45 = T3V + T3Y;
1173 }
1174 {
1175 E T3G, T3J, T3N, T3Q;
1176 T3G = T3E - T3F;
1177 T3J = T3H - T3I;
1178 T3K = FMA(KP555570233, T3G, KP831469612 * T3J);
1179 T42 = FNMS(KP831469612, T3G, KP555570233 * T3J);
1180 T3N = T3L - T3M;
1181 T3Q = T3O - T3P;
1182 T3R = FNMS(KP831469612, T3Q, KP555570233 * T3N);
1183 T43 = FMA(KP831469612, T3N, KP555570233 * T3Q);
1184 }
1185 {
1186 E T3S, T46, T40, T44;
1187 T3S = T3K + T3R;
1188 ro[WS(os, 21)] = T3D - T3S;
1189 ro[WS(os, 5)] = T3D + T3S;
1190 T46 = T42 + T43;
1191 io[WS(os, 21)] = T45 - T46;
1192 io[WS(os, 5)] = T45 + T46;
1193 T40 = T3R - T3K;
1194 io[WS(os, 29)] = T3Z - T40;
1195 io[WS(os, 13)] = T3Z + T40;
1196 T44 = T42 - T43;
1197 ro[WS(os, 29)] = T41 - T44;
1198 ro[WS(os, 13)] = T41 + T44;
1199 }
1200 }
1201 {
1202 E T49, T4l, T4j, T4p, T4c, T4m, T4f, T4n;
1203 {
1204 E T47, T48, T4h, T4i;
1205 T47 = T3t + T3u;
1206 T48 = T3X + T3W;
1207 T49 = T47 + T48;
1208 T4l = T47 - T48;
1209 T4h = T3T + T3U;
1210 T4i = T3y + T3B;
1211 T4j = T4h - T4i;
1212 T4p = T4h + T4i;
1213 }
1214 {
1215 E T4a, T4b, T4d, T4e;
1216 T4a = T3E + T3F;
1217 T4b = T3H + T3I;
1218 T4c = FMA(KP980785280, T4a, KP195090322 * T4b);
1219 T4m = FNMS(KP195090322, T4a, KP980785280 * T4b);
1220 T4d = T3L + T3M;
1221 T4e = T3O + T3P;
1222 T4f = FNMS(KP195090322, T4e, KP980785280 * T4d);
1223 T4n = FMA(KP195090322, T4d, KP980785280 * T4e);
1224 }
1225 {
1226 E T4g, T4q, T4k, T4o;
1227 T4g = T4c + T4f;
1228 ro[WS(os, 17)] = T49 - T4g;
1229 ro[WS(os, 1)] = T49 + T4g;
1230 T4q = T4m + T4n;
1231 io[WS(os, 17)] = T4p - T4q;
1232 io[WS(os, 1)] = T4p + T4q;
1233 T4k = T4f - T4c;
1234 io[WS(os, 25)] = T4j - T4k;
1235 io[WS(os, 9)] = T4j + T4k;
1236 T4o = T4m - T4n;
1237 ro[WS(os, 25)] = T4l - T4o;
1238 ro[WS(os, 9)] = T4l + T4o;
1239 }
1240 }
1241 {
1242 E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p;
1243 {
1244 E T39, T3a, T3j, T3k;
1245 T39 = T1z + T1G;
1246 T3a = T2Z + T2Y;
1247 T3b = T39 + T3a;
1248 T3n = T39 - T3a;
1249 T3j = T2T + T2W;
1250 T3k = T1O + T1V;
1251 T3l = T3j - T3k;
1252 T3r = T3j + T3k;
1253 }
1254 {
1255 E T3c, T3d, T3f, T3g;
1256 T3c = T22 + T2d;
1257 T3d = T2j + T2m;
1258 T3e = FMA(KP555570233, T3c, KP831469612 * T3d);
1259 T3o = FNMS(KP555570233, T3d, KP831469612 * T3c);
1260 T3f = T2t + T2E;
1261 T3g = T2K + T2N;
1262 T3h = FNMS(KP555570233, T3g, KP831469612 * T3f);
1263 T3p = FMA(KP831469612, T3g, KP555570233 * T3f);
1264 }
1265 {
1266 E T3i, T3s, T3m, T3q;
1267 T3i = T3e + T3h;
1268 ro[WS(os, 19)] = T3b - T3i;
1269 ro[WS(os, 3)] = T3b + T3i;
1270 T3s = T3o + T3p;
1271 io[WS(os, 19)] = T3r - T3s;
1272 io[WS(os, 3)] = T3r + T3s;
1273 T3m = T3h - T3e;
1274 io[WS(os, 27)] = T3l - T3m;
1275 io[WS(os, 11)] = T3l + T3m;
1276 T3q = T3o - T3p;
1277 ro[WS(os, 27)] = T3n - T3q;
1278 ro[WS(os, 11)] = T3n + T3q;
1279 }
1280 }
1281 }
1282 }
1283 }
1284
1285 static const kdft_desc desc = { 32, "n1_32", {340, 52, 32, 0}, &GENUS, 0, 0, 0, 0 };
1286
1287 void X(codelet_n1_32) (planner *p) {
1288 X(kdft_register) (p, n1_32, &desc);
1289 }
1290
1291 #endif /* HAVE_FMA */