Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/n1_32.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:45 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h */ | |
29 | |
30 /* | |
31 * This function contains 372 FP additions, 136 FP multiplications, | |
32 * (or, 236 additions, 0 multiplications, 136 fused multiply/add), | |
33 * 136 stack variables, 7 constants, and 128 memory accesses | |
34 */ | |
35 #include "n.h" | |
36 | |
37 static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
40 DK(KP198912367, +0.198912367379658006911597622644676228597850501); | |
41 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
42 DK(KP668178637, +0.668178637919298919997757686523080761552472251); | |
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
44 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
45 DK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
46 { | |
47 INT i; | |
48 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) { | |
49 E T3g, T3f, T3n, T3b, T3r, T3l, T3o, T3e, T3h, T3p; | |
50 { | |
51 E T2T, T3T, T4r, T7, T3t, T1z, T18, T4Z, Te, T50, T4s, T1f, T2W, T3u, T3U; | |
52 E T1G, Tm, T1n, T3X, T3y, T2Z, T1O, T53, T4w, Tt, T1u, T3W, T3B, T2Y, T1V; | |
53 E T52, T4z, T3O, T2t, T3L, T2K, T5F, TZ, T5I, T5X, T4R, T5k, T3M, T2E, T5j; | |
54 E T4W, T3P, T2N, T3H, T22, T3E, T2j, T4H, T4K, T5A, TK, T5D, T5W, T2k, T2l; | |
55 E T4G, T5h, T3F, T2d; | |
56 { | |
57 E Tj, T1L, Ti, T1I, T1j, Tk, T1k, T1l; | |
58 { | |
59 E T4, T1x, T3, T2R, T14, T5, T15, T16, T1C, T1F; | |
60 { | |
61 E T1, T2, T12, T13; | |
62 T1 = ri[0]; | |
63 T2 = ri[WS(is, 16)]; | |
64 T12 = ii[0]; | |
65 T13 = ii[WS(is, 16)]; | |
66 T4 = ri[WS(is, 8)]; | |
67 T1x = T1 - T2; | |
68 T3 = T1 + T2; | |
69 T2R = T12 - T13; | |
70 T14 = T12 + T13; | |
71 T5 = ri[WS(is, 24)]; | |
72 T15 = ii[WS(is, 8)]; | |
73 T16 = ii[WS(is, 24)]; | |
74 } | |
75 { | |
76 E Tb, T1A, Ta, T1B, T1b, Tc, T1c, T1d; | |
77 { | |
78 E T8, T9, T19, T1a; | |
79 T8 = ri[WS(is, 4)]; | |
80 { | |
81 E T2S, T6, T1y, T17; | |
82 T2S = T4 - T5; | |
83 T6 = T4 + T5; | |
84 T1y = T15 - T16; | |
85 T17 = T15 + T16; | |
86 T2T = T2R - T2S; | |
87 T3T = T2S + T2R; | |
88 T4r = T3 - T6; | |
89 T7 = T3 + T6; | |
90 T3t = T1x - T1y; | |
91 T1z = T1x + T1y; | |
92 T18 = T14 + T17; | |
93 T4Z = T14 - T17; | |
94 T9 = ri[WS(is, 20)]; | |
95 } | |
96 T19 = ii[WS(is, 4)]; | |
97 T1a = ii[WS(is, 20)]; | |
98 Tb = ri[WS(is, 28)]; | |
99 T1A = T8 - T9; | |
100 Ta = T8 + T9; | |
101 T1B = T19 - T1a; | |
102 T1b = T19 + T1a; | |
103 Tc = ri[WS(is, 12)]; | |
104 T1c = ii[WS(is, 28)]; | |
105 T1d = ii[WS(is, 12)]; | |
106 } | |
107 { | |
108 E T2U, T1D, Td, T1E, T1e, T2V; | |
109 T1C = T1A + T1B; | |
110 T2U = T1B - T1A; | |
111 T1D = Tb - Tc; | |
112 Td = Tb + Tc; | |
113 T1E = T1c - T1d; | |
114 T1e = T1c + T1d; | |
115 Te = Ta + Td; | |
116 T50 = Td - Ta; | |
117 T1F = T1D - T1E; | |
118 T2V = T1D + T1E; | |
119 T4s = T1b - T1e; | |
120 T1f = T1b + T1e; | |
121 T2W = T2U + T2V; | |
122 T3u = T2U - T2V; | |
123 } | |
124 } | |
125 { | |
126 E Tg, Th, T1h, T1i; | |
127 Tg = ri[WS(is, 2)]; | |
128 T3U = T1F - T1C; | |
129 T1G = T1C + T1F; | |
130 Th = ri[WS(is, 18)]; | |
131 T1h = ii[WS(is, 2)]; | |
132 T1i = ii[WS(is, 18)]; | |
133 Tj = ri[WS(is, 10)]; | |
134 T1L = Tg - Th; | |
135 Ti = Tg + Th; | |
136 T1I = T1h - T1i; | |
137 T1j = T1h + T1i; | |
138 Tk = ri[WS(is, 26)]; | |
139 T1k = ii[WS(is, 10)]; | |
140 T1l = ii[WS(is, 26)]; | |
141 } | |
142 } | |
143 { | |
144 E Tq, T1S, Tp, T1P, T1q, Tr, T1r, T1s; | |
145 { | |
146 E Tn, To, T1o, T1p, T1J, Tl; | |
147 Tn = ri[WS(is, 30)]; | |
148 T1J = Tj - Tk; | |
149 Tl = Tj + Tk; | |
150 { | |
151 E T1M, T1m, T3w, T1K; | |
152 T1M = T1k - T1l; | |
153 T1m = T1k + T1l; | |
154 T3w = T1J + T1I; | |
155 T1K = T1I - T1J; | |
156 { | |
157 E T4v, T3x, T1N, T4u; | |
158 T4v = Ti - Tl; | |
159 Tm = Ti + Tl; | |
160 T3x = T1L - T1M; | |
161 T1N = T1L + T1M; | |
162 T4u = T1j - T1m; | |
163 T1n = T1j + T1m; | |
164 T3X = FNMS(KP414213562, T3w, T3x); | |
165 T3y = FMA(KP414213562, T3x, T3w); | |
166 T2Z = FMA(KP414213562, T1K, T1N); | |
167 T1O = FNMS(KP414213562, T1N, T1K); | |
168 T53 = T4v + T4u; | |
169 T4w = T4u - T4v; | |
170 To = ri[WS(is, 14)]; | |
171 } | |
172 } | |
173 T1o = ii[WS(is, 30)]; | |
174 T1p = ii[WS(is, 14)]; | |
175 Tq = ri[WS(is, 6)]; | |
176 T1S = Tn - To; | |
177 Tp = Tn + To; | |
178 T1P = T1o - T1p; | |
179 T1q = T1o + T1p; | |
180 Tr = ri[WS(is, 22)]; | |
181 T1r = ii[WS(is, 6)]; | |
182 T1s = ii[WS(is, 22)]; | |
183 } | |
184 { | |
185 E T4S, T4V, T2L, T2M; | |
186 { | |
187 E T2G, TN, T4N, T2r, T2s, TQ, T4O, T2J, TV, T2x, TU, T4T, T2w, TW, T2A; | |
188 E T2B; | |
189 { | |
190 E TO, TP, T2H, T2I; | |
191 { | |
192 E TL, TM, T2p, T2q, T1Q, Ts; | |
193 TL = ri[WS(is, 31)]; | |
194 T1Q = Tq - Tr; | |
195 Ts = Tq + Tr; | |
196 { | |
197 E T1T, T1t, T3z, T1R; | |
198 T1T = T1r - T1s; | |
199 T1t = T1r + T1s; | |
200 T3z = T1Q + T1P; | |
201 T1R = T1P - T1Q; | |
202 { | |
203 E T4x, T3A, T1U, T4y; | |
204 T4x = Tp - Ts; | |
205 Tt = Tp + Ts; | |
206 T3A = T1S - T1T; | |
207 T1U = T1S + T1T; | |
208 T4y = T1q - T1t; | |
209 T1u = T1q + T1t; | |
210 T3W = FMA(KP414213562, T3z, T3A); | |
211 T3B = FNMS(KP414213562, T3A, T3z); | |
212 T2Y = FNMS(KP414213562, T1R, T1U); | |
213 T1V = FMA(KP414213562, T1U, T1R); | |
214 T52 = T4x - T4y; | |
215 T4z = T4x + T4y; | |
216 TM = ri[WS(is, 15)]; | |
217 } | |
218 } | |
219 T2p = ii[WS(is, 31)]; | |
220 T2q = ii[WS(is, 15)]; | |
221 TO = ri[WS(is, 7)]; | |
222 T2G = TL - TM; | |
223 TN = TL + TM; | |
224 T4N = T2p + T2q; | |
225 T2r = T2p - T2q; | |
226 TP = ri[WS(is, 23)]; | |
227 T2H = ii[WS(is, 7)]; | |
228 T2I = ii[WS(is, 23)]; | |
229 } | |
230 { | |
231 E TS, TT, T2u, T2v; | |
232 TS = ri[WS(is, 3)]; | |
233 T2s = TO - TP; | |
234 TQ = TO + TP; | |
235 T4O = T2H + T2I; | |
236 T2J = T2H - T2I; | |
237 TT = ri[WS(is, 19)]; | |
238 T2u = ii[WS(is, 3)]; | |
239 T2v = ii[WS(is, 19)]; | |
240 TV = ri[WS(is, 27)]; | |
241 T2x = TS - TT; | |
242 TU = TS + TT; | |
243 T4T = T2u + T2v; | |
244 T2w = T2u - T2v; | |
245 TW = ri[WS(is, 11)]; | |
246 T2A = ii[WS(is, 27)]; | |
247 T2B = ii[WS(is, 11)]; | |
248 } | |
249 } | |
250 { | |
251 E T2z, T4U, T2C, TR, TY, T4Q, TX; | |
252 T3O = T2s + T2r; | |
253 T2t = T2r - T2s; | |
254 T2z = TV - TW; | |
255 TX = TV + TW; | |
256 T4U = T2A + T2B; | |
257 T2C = T2A - T2B; | |
258 T3L = T2G - T2J; | |
259 T2K = T2G + T2J; | |
260 T4S = TN - TQ; | |
261 TR = TN + TQ; | |
262 TY = TU + TX; | |
263 T4Q = TX - TU; | |
264 { | |
265 E T4P, T5G, T5H, T2y, T2D; | |
266 T4P = T4N - T4O; | |
267 T5G = T4N + T4O; | |
268 T5H = T4T + T4U; | |
269 T4V = T4T - T4U; | |
270 T5F = TR - TY; | |
271 TZ = TR + TY; | |
272 T5I = T5G - T5H; | |
273 T5X = T5G + T5H; | |
274 T2L = T2x + T2w; | |
275 T2y = T2w - T2x; | |
276 T2D = T2z + T2C; | |
277 T2M = T2z - T2C; | |
278 T4R = T4P - T4Q; | |
279 T5k = T4Q + T4P; | |
280 T3M = T2D - T2y; | |
281 T2E = T2y + T2D; | |
282 } | |
283 } | |
284 } | |
285 { | |
286 E T2f, Ty, T4C, T20, T21, TB, T4D, T2i, TG, T26, TF, T4I, T25, TH, T29; | |
287 E T2a; | |
288 { | |
289 E Tz, TA, T2g, T2h; | |
290 { | |
291 E Tw, Tx, T1Y, T1Z; | |
292 Tw = ri[WS(is, 1)]; | |
293 T5j = T4S + T4V; | |
294 T4W = T4S - T4V; | |
295 T3P = T2L - T2M; | |
296 T2N = T2L + T2M; | |
297 Tx = ri[WS(is, 17)]; | |
298 T1Y = ii[WS(is, 1)]; | |
299 T1Z = ii[WS(is, 17)]; | |
300 Tz = ri[WS(is, 9)]; | |
301 T2f = Tw - Tx; | |
302 Ty = Tw + Tx; | |
303 T4C = T1Y + T1Z; | |
304 T20 = T1Y - T1Z; | |
305 TA = ri[WS(is, 25)]; | |
306 T2g = ii[WS(is, 9)]; | |
307 T2h = ii[WS(is, 25)]; | |
308 } | |
309 { | |
310 E TD, TE, T23, T24; | |
311 TD = ri[WS(is, 5)]; | |
312 T21 = Tz - TA; | |
313 TB = Tz + TA; | |
314 T4D = T2g + T2h; | |
315 T2i = T2g - T2h; | |
316 TE = ri[WS(is, 21)]; | |
317 T23 = ii[WS(is, 5)]; | |
318 T24 = ii[WS(is, 21)]; | |
319 TG = ri[WS(is, 29)]; | |
320 T26 = TD - TE; | |
321 TF = TD + TE; | |
322 T4I = T23 + T24; | |
323 T25 = T23 - T24; | |
324 TH = ri[WS(is, 13)]; | |
325 T29 = ii[WS(is, 29)]; | |
326 T2a = ii[WS(is, 13)]; | |
327 } | |
328 } | |
329 { | |
330 E T28, T4J, T2b, TC, TJ, T4F, TI; | |
331 T3H = T21 + T20; | |
332 T22 = T20 - T21; | |
333 T28 = TG - TH; | |
334 TI = TG + TH; | |
335 T4J = T29 + T2a; | |
336 T2b = T29 - T2a; | |
337 T3E = T2f - T2i; | |
338 T2j = T2f + T2i; | |
339 T4H = Ty - TB; | |
340 TC = Ty + TB; | |
341 TJ = TF + TI; | |
342 T4F = TI - TF; | |
343 { | |
344 E T4E, T5B, T5C, T27, T2c; | |
345 T4E = T4C - T4D; | |
346 T5B = T4C + T4D; | |
347 T5C = T4I + T4J; | |
348 T4K = T4I - T4J; | |
349 T5A = TC - TJ; | |
350 TK = TC + TJ; | |
351 T5D = T5B - T5C; | |
352 T5W = T5B + T5C; | |
353 T2k = T26 + T25; | |
354 T27 = T25 - T26; | |
355 T2c = T28 + T2b; | |
356 T2l = T28 - T2b; | |
357 T4G = T4E - T4F; | |
358 T5h = T4F + T4E; | |
359 T3F = T2c - T27; | |
360 T2d = T27 + T2c; | |
361 } | |
362 } | |
363 } | |
364 } | |
365 } | |
366 } | |
367 { | |
368 E T3I, T2m, Tv, T60, T11, T10, T5Z, T1w; | |
369 { | |
370 E T5f, T5w, T5q, T5m, T5v, T5p; | |
371 { | |
372 E T5d, T5g, T5o, T4B, T5a, T5n, T5e, T56, T4Y, T57, T55; | |
373 { | |
374 E T4X, T4M, T5b, T5c, T51, T54; | |
375 { | |
376 E T4t, T4A, T58, T59, T4L; | |
377 T5d = T4r + T4s; | |
378 T4t = T4r - T4s; | |
379 T5g = T4H + T4K; | |
380 T4L = T4H - T4K; | |
381 T3I = T2k - T2l; | |
382 T2m = T2k + T2l; | |
383 T4A = T4w - T4z; | |
384 T5o = T4w + T4z; | |
385 T4X = FNMS(KP414213562, T4W, T4R); | |
386 T58 = FMA(KP414213562, T4R, T4W); | |
387 T59 = FNMS(KP414213562, T4G, T4L); | |
388 T4M = FMA(KP414213562, T4L, T4G); | |
389 T5b = FNMS(KP707106781, T4A, T4t); | |
390 T4B = FMA(KP707106781, T4A, T4t); | |
391 T5c = T59 + T58; | |
392 T5a = T58 - T59; | |
393 T5n = T50 + T4Z; | |
394 T51 = T4Z - T50; | |
395 T54 = T52 - T53; | |
396 T5e = T53 + T52; | |
397 } | |
398 ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b); | |
399 T56 = T4M + T4X; | |
400 T4Y = T4M - T4X; | |
401 T57 = FMA(KP707106781, T54, T51); | |
402 T55 = FNMS(KP707106781, T54, T51); | |
403 ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b); | |
404 } | |
405 ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B); | |
406 ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B); | |
407 io[WS(os, 6)] = FMA(KP923879532, T5a, T57); | |
408 io[WS(os, 22)] = FNMS(KP923879532, T5a, T57); | |
409 io[WS(os, 30)] = FMA(KP923879532, T56, T55); | |
410 io[WS(os, 14)] = FNMS(KP923879532, T56, T55); | |
411 { | |
412 E T5i, T5l, T5r, T5u, T5s, T5t; | |
413 T5i = FMA(KP414213562, T5h, T5g); | |
414 T5s = FNMS(KP414213562, T5g, T5h); | |
415 T5t = FMA(KP414213562, T5j, T5k); | |
416 T5l = FNMS(KP414213562, T5k, T5j); | |
417 T5r = FNMS(KP707106781, T5e, T5d); | |
418 T5f = FMA(KP707106781, T5e, T5d); | |
419 T5w = T5s + T5t; | |
420 T5u = T5s - T5t; | |
421 ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r); | |
422 T5q = T5l - T5i; | |
423 T5m = T5i + T5l; | |
424 T5v = FMA(KP707106781, T5o, T5n); | |
425 T5p = FNMS(KP707106781, T5o, T5n); | |
426 ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r); | |
427 } | |
428 } | |
429 ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f); | |
430 ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f); | |
431 io[WS(os, 2)] = FMA(KP923879532, T5w, T5v); | |
432 io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v); | |
433 io[WS(os, 10)] = FMA(KP923879532, T5q, T5p); | |
434 io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p); | |
435 { | |
436 E Tf, T1v, T5z, T5U, T1g, Tu, T5O, T5K, T5T, T5N, T5V, T5Y; | |
437 { | |
438 E T5E, T5J, T5P, T5S, T5L, T5M; | |
439 { | |
440 E T5x, T5y, T5Q, T5R; | |
441 Tf = T7 + Te; | |
442 T5x = T7 - Te; | |
443 T5y = T1n - T1u; | |
444 T1v = T1n + T1u; | |
445 T5E = T5A + T5D; | |
446 T5Q = T5D - T5A; | |
447 T5R = T5F + T5I; | |
448 T5J = T5F - T5I; | |
449 T5P = T5x - T5y; | |
450 T5z = T5x + T5y; | |
451 T5U = T5Q + T5R; | |
452 T5S = T5Q - T5R; | |
453 T1g = T18 + T1f; | |
454 T5L = T18 - T1f; | |
455 T5M = Tt - Tm; | |
456 Tu = Tm + Tt; | |
457 } | |
458 ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P); | |
459 T5O = T5J - T5E; | |
460 T5K = T5E + T5J; | |
461 T5T = T5M + T5L; | |
462 T5N = T5L - T5M; | |
463 ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P); | |
464 } | |
465 ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z); | |
466 ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z); | |
467 io[WS(os, 4)] = FMA(KP707106781, T5U, T5T); | |
468 io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T); | |
469 io[WS(os, 12)] = FMA(KP707106781, T5O, T5N); | |
470 io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N); | |
471 T5V = Tf - Tu; | |
472 Tv = Tf + Tu; | |
473 T60 = T5W + T5X; | |
474 T5Y = T5W - T5X; | |
475 ro[WS(os, 8)] = T5V + T5Y; | |
476 T11 = TZ - TK; | |
477 T10 = TK + TZ; | |
478 T5Z = T1g + T1v; | |
479 T1w = T1g - T1v; | |
480 ro[WS(os, 24)] = T5V - T5Y; | |
481 } | |
482 } | |
483 ro[0] = Tv + T10; | |
484 ro[WS(os, 16)] = Tv - T10; | |
485 io[0] = T5Z + T60; | |
486 io[WS(os, 16)] = T5Z - T60; | |
487 io[WS(os, 24)] = T1w - T11; | |
488 io[WS(os, 8)] = T11 + T1w; | |
489 { | |
490 E T39, T3k, T3j, T3a, T3d, T3c, T47, T4i, T4h, T41, T3D, T48, T4b, T4a, T4e; | |
491 E T3N, T45, T3Z, T42, T3K, T3Q, T4d; | |
492 { | |
493 E T2e, T37, T1X, T33, T31, T2n, T2F, T2O; | |
494 { | |
495 E T1H, T1W, T2X, T30; | |
496 T39 = FMA(KP707106781, T1G, T1z); | |
497 T1H = FNMS(KP707106781, T1G, T1z); | |
498 T1W = T1O - T1V; | |
499 T3k = T1O + T1V; | |
500 T3j = FMA(KP707106781, T2W, T2T); | |
501 T2X = FNMS(KP707106781, T2W, T2T); | |
502 T30 = T2Y - T2Z; | |
503 T3a = T2Z + T2Y; | |
504 T3d = FMA(KP707106781, T2d, T22); | |
505 T2e = FNMS(KP707106781, T2d, T22); | |
506 T37 = FNMS(KP923879532, T1W, T1H); | |
507 T1X = FMA(KP923879532, T1W, T1H); | |
508 T33 = FMA(KP923879532, T30, T2X); | |
509 T31 = FNMS(KP923879532, T30, T2X); | |
510 T2n = FNMS(KP707106781, T2m, T2j); | |
511 T3c = FMA(KP707106781, T2m, T2j); | |
512 T3g = FMA(KP707106781, T2E, T2t); | |
513 T2F = FNMS(KP707106781, T2E, T2t); | |
514 T2O = FNMS(KP707106781, T2N, T2K); | |
515 T3f = FMA(KP707106781, T2N, T2K); | |
516 } | |
517 { | |
518 E T3V, T3Y, T3G, T3J; | |
519 { | |
520 E T3v, T35, T2o, T34, T2P, T3C; | |
521 T47 = FNMS(KP707106781, T3u, T3t); | |
522 T3v = FMA(KP707106781, T3u, T3t); | |
523 T35 = FNMS(KP668178637, T2e, T2n); | |
524 T2o = FMA(KP668178637, T2n, T2e); | |
525 T34 = FMA(KP668178637, T2F, T2O); | |
526 T2P = FNMS(KP668178637, T2O, T2F); | |
527 T3C = T3y - T3B; | |
528 T4i = T3y + T3B; | |
529 T4h = FNMS(KP707106781, T3U, T3T); | |
530 T3V = FMA(KP707106781, T3U, T3T); | |
531 { | |
532 E T38, T36, T32, T2Q; | |
533 T38 = T35 + T34; | |
534 T36 = T34 - T35; | |
535 T32 = T2o + T2P; | |
536 T2Q = T2o - T2P; | |
537 T41 = FNMS(KP923879532, T3C, T3v); | |
538 T3D = FMA(KP923879532, T3C, T3v); | |
539 ro[WS(os, 29)] = FMA(KP831469612, T38, T37); | |
540 ro[WS(os, 13)] = FNMS(KP831469612, T38, T37); | |
541 io[WS(os, 5)] = FMA(KP831469612, T36, T33); | |
542 io[WS(os, 21)] = FNMS(KP831469612, T36, T33); | |
543 io[WS(os, 29)] = FMA(KP831469612, T32, T31); | |
544 io[WS(os, 13)] = FNMS(KP831469612, T32, T31); | |
545 ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X); | |
546 ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X); | |
547 T3Y = T3W - T3X; | |
548 T48 = T3X + T3W; | |
549 } | |
550 } | |
551 T4b = FMA(KP707106781, T3F, T3E); | |
552 T3G = FNMS(KP707106781, T3F, T3E); | |
553 T3J = FNMS(KP707106781, T3I, T3H); | |
554 T4a = FMA(KP707106781, T3I, T3H); | |
555 T4e = FMA(KP707106781, T3M, T3L); | |
556 T3N = FNMS(KP707106781, T3M, T3L); | |
557 T45 = FMA(KP923879532, T3Y, T3V); | |
558 T3Z = FNMS(KP923879532, T3Y, T3V); | |
559 T42 = FNMS(KP668178637, T3G, T3J); | |
560 T3K = FMA(KP668178637, T3J, T3G); | |
561 T3Q = FNMS(KP707106781, T3P, T3O); | |
562 T4d = FMA(KP707106781, T3P, T3O); | |
563 } | |
564 } | |
565 { | |
566 E T4p, T49, T4l, T4j, T4n, T4c, T43, T3R, T4m, T4f; | |
567 T43 = FMA(KP668178637, T3N, T3Q); | |
568 T3R = FNMS(KP668178637, T3Q, T3N); | |
569 T4p = FMA(KP923879532, T48, T47); | |
570 T49 = FNMS(KP923879532, T48, T47); | |
571 { | |
572 E T44, T46, T40, T3S; | |
573 T44 = T42 - T43; | |
574 T46 = T42 + T43; | |
575 T40 = T3R - T3K; | |
576 T3S = T3K + T3R; | |
577 ro[WS(os, 11)] = FMA(KP831469612, T44, T41); | |
578 ro[WS(os, 27)] = FNMS(KP831469612, T44, T41); | |
579 io[WS(os, 3)] = FMA(KP831469612, T46, T45); | |
580 io[WS(os, 19)] = FNMS(KP831469612, T46, T45); | |
581 io[WS(os, 11)] = FMA(KP831469612, T40, T3Z); | |
582 io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z); | |
583 ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D); | |
584 ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D); | |
585 } | |
586 T4l = FNMS(KP923879532, T4i, T4h); | |
587 T4j = FMA(KP923879532, T4i, T4h); | |
588 T4n = FNMS(KP198912367, T4a, T4b); | |
589 T4c = FMA(KP198912367, T4b, T4a); | |
590 T4m = FMA(KP198912367, T4d, T4e); | |
591 T4f = FNMS(KP198912367, T4e, T4d); | |
592 T3n = FNMS(KP923879532, T3a, T39); | |
593 T3b = FMA(KP923879532, T3a, T39); | |
594 { | |
595 E T4q, T4o, T4k, T4g; | |
596 T4q = T4n + T4m; | |
597 T4o = T4m - T4n; | |
598 T4k = T4c + T4f; | |
599 T4g = T4c - T4f; | |
600 ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p); | |
601 ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p); | |
602 io[WS(os, 7)] = FMA(KP980785280, T4o, T4l); | |
603 io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l); | |
604 io[WS(os, 31)] = FMA(KP980785280, T4k, T4j); | |
605 io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j); | |
606 ro[WS(os, 7)] = FMA(KP980785280, T4g, T49); | |
607 ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49); | |
608 } | |
609 T3r = FMA(KP923879532, T3k, T3j); | |
610 T3l = FNMS(KP923879532, T3k, T3j); | |
611 T3o = FNMS(KP198912367, T3c, T3d); | |
612 T3e = FMA(KP198912367, T3d, T3c); | |
613 } | |
614 } | |
615 } | |
616 } | |
617 T3h = FNMS(KP198912367, T3g, T3f); | |
618 T3p = FMA(KP198912367, T3f, T3g); | |
619 { | |
620 E T3s, T3q, T3i, T3m; | |
621 T3s = T3o + T3p; | |
622 T3q = T3o - T3p; | |
623 T3i = T3e + T3h; | |
624 T3m = T3h - T3e; | |
625 ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n); | |
626 ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n); | |
627 io[WS(os, 1)] = FMA(KP980785280, T3s, T3r); | |
628 io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r); | |
629 io[WS(os, 9)] = FMA(KP980785280, T3m, T3l); | |
630 io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l); | |
631 ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b); | |
632 ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b); | |
633 } | |
634 } | |
635 } | |
636 } | |
637 | |
638 static const kdft_desc desc = { 32, "n1_32", {236, 0, 136, 0}, &GENUS, 0, 0, 0, 0 }; | |
639 | |
640 void X(codelet_n1_32) (planner *p) { | |
641 X(kdft_register) (p, n1_32, &desc); | |
642 } | |
643 | |
644 #else /* HAVE_FMA */ | |
645 | |
646 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h */ | |
647 | |
648 /* | |
649 * This function contains 372 FP additions, 84 FP multiplications, | |
650 * (or, 340 additions, 52 multiplications, 32 fused multiply/add), | |
651 * 100 stack variables, 7 constants, and 128 memory accesses | |
652 */ | |
653 #include "n.h" | |
654 | |
655 static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
656 { | |
657 DK(KP831469612, +0.831469612302545237078788377617905756738560812); | |
658 DK(KP555570233, +0.555570233019602224742830813948532874374937191); | |
659 DK(KP195090322, +0.195090322016128267848284868477022240927691618); | |
660 DK(KP980785280, +0.980785280403230449126182236134239036973933731); | |
661 DK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
662 DK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
663 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
664 { | |
665 INT i; | |
666 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) { | |
667 E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G; | |
668 E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W; | |
669 E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E; | |
670 E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D; | |
671 E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I; | |
672 { | |
673 E T3, T1x, T14, T2S, T6, T2R, T17, T1y; | |
674 { | |
675 E T1, T2, T12, T13; | |
676 T1 = ri[0]; | |
677 T2 = ri[WS(is, 16)]; | |
678 T3 = T1 + T2; | |
679 T1x = T1 - T2; | |
680 T12 = ii[0]; | |
681 T13 = ii[WS(is, 16)]; | |
682 T14 = T12 + T13; | |
683 T2S = T12 - T13; | |
684 } | |
685 { | |
686 E T4, T5, T15, T16; | |
687 T4 = ri[WS(is, 8)]; | |
688 T5 = ri[WS(is, 24)]; | |
689 T6 = T4 + T5; | |
690 T2R = T4 - T5; | |
691 T15 = ii[WS(is, 8)]; | |
692 T16 = ii[WS(is, 24)]; | |
693 T17 = T15 + T16; | |
694 T1y = T15 - T16; | |
695 } | |
696 T7 = T3 + T6; | |
697 T4r = T3 - T6; | |
698 T4Z = T14 - T17; | |
699 T18 = T14 + T17; | |
700 T1z = T1x - T1y; | |
701 T3t = T1x + T1y; | |
702 T3T = T2S - T2R; | |
703 T2T = T2R + T2S; | |
704 } | |
705 { | |
706 E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E; | |
707 { | |
708 E T8, T9, T19, T1a; | |
709 T8 = ri[WS(is, 4)]; | |
710 T9 = ri[WS(is, 20)]; | |
711 Ta = T8 + T9; | |
712 T1B = T8 - T9; | |
713 T19 = ii[WS(is, 4)]; | |
714 T1a = ii[WS(is, 20)]; | |
715 T1b = T19 + T1a; | |
716 T1A = T19 - T1a; | |
717 } | |
718 { | |
719 E Tb, Tc, T1c, T1d; | |
720 Tb = ri[WS(is, 28)]; | |
721 Tc = ri[WS(is, 12)]; | |
722 Td = Tb + Tc; | |
723 T1D = Tb - Tc; | |
724 T1c = ii[WS(is, 28)]; | |
725 T1d = ii[WS(is, 12)]; | |
726 T1e = T1c + T1d; | |
727 T1E = T1c - T1d; | |
728 } | |
729 Te = Ta + Td; | |
730 T1f = T1b + T1e; | |
731 T50 = Td - Ta; | |
732 T4s = T1b - T1e; | |
733 { | |
734 E T2U, T2V, T1C, T1F; | |
735 T2U = T1D - T1E; | |
736 T2V = T1B + T1A; | |
737 T2W = KP707106781 * (T2U - T2V); | |
738 T3u = KP707106781 * (T2V + T2U); | |
739 T1C = T1A - T1B; | |
740 T1F = T1D + T1E; | |
741 T1G = KP707106781 * (T1C - T1F); | |
742 T3U = KP707106781 * (T1C + T1F); | |
743 } | |
744 } | |
745 { | |
746 E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N; | |
747 { | |
748 E Tg, Th, T1h, T1i; | |
749 Tg = ri[WS(is, 2)]; | |
750 Th = ri[WS(is, 18)]; | |
751 Ti = Tg + Th; | |
752 T1L = Tg - Th; | |
753 T1h = ii[WS(is, 2)]; | |
754 T1i = ii[WS(is, 18)]; | |
755 T1j = T1h + T1i; | |
756 T1J = T1h - T1i; | |
757 } | |
758 { | |
759 E Tj, Tk, T1k, T1l; | |
760 Tj = ri[WS(is, 10)]; | |
761 Tk = ri[WS(is, 26)]; | |
762 Tl = Tj + Tk; | |
763 T1I = Tj - Tk; | |
764 T1k = ii[WS(is, 10)]; | |
765 T1l = ii[WS(is, 26)]; | |
766 T1m = T1k + T1l; | |
767 T1M = T1k - T1l; | |
768 } | |
769 Tm = Ti + Tl; | |
770 T1n = T1j + T1m; | |
771 T1K = T1I + T1J; | |
772 T1N = T1L - T1M; | |
773 T1O = FNMS(KP923879532, T1N, KP382683432 * T1K); | |
774 T2Z = FMA(KP923879532, T1K, KP382683432 * T1N); | |
775 { | |
776 E T3w, T3x, T4u, T4v; | |
777 T3w = T1J - T1I; | |
778 T3x = T1L + T1M; | |
779 T3y = FNMS(KP382683432, T3x, KP923879532 * T3w); | |
780 T3X = FMA(KP382683432, T3w, KP923879532 * T3x); | |
781 T4u = T1j - T1m; | |
782 T4v = Ti - Tl; | |
783 T4w = T4u - T4v; | |
784 T53 = T4v + T4u; | |
785 } | |
786 } | |
787 { | |
788 E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U; | |
789 { | |
790 E Tn, To, T1o, T1p; | |
791 Tn = ri[WS(is, 30)]; | |
792 To = ri[WS(is, 14)]; | |
793 Tp = Tn + To; | |
794 T1S = Tn - To; | |
795 T1o = ii[WS(is, 30)]; | |
796 T1p = ii[WS(is, 14)]; | |
797 T1q = T1o + T1p; | |
798 T1Q = T1o - T1p; | |
799 } | |
800 { | |
801 E Tq, Tr, T1r, T1s; | |
802 Tq = ri[WS(is, 6)]; | |
803 Tr = ri[WS(is, 22)]; | |
804 Ts = Tq + Tr; | |
805 T1P = Tq - Tr; | |
806 T1r = ii[WS(is, 6)]; | |
807 T1s = ii[WS(is, 22)]; | |
808 T1t = T1r + T1s; | |
809 T1T = T1r - T1s; | |
810 } | |
811 Tt = Tp + Ts; | |
812 T1u = T1q + T1t; | |
813 T1R = T1P + T1Q; | |
814 T1U = T1S - T1T; | |
815 T1V = FMA(KP382683432, T1R, KP923879532 * T1U); | |
816 T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U); | |
817 { | |
818 E T3z, T3A, T4x, T4y; | |
819 T3z = T1Q - T1P; | |
820 T3A = T1S + T1T; | |
821 T3B = FMA(KP923879532, T3z, KP382683432 * T3A); | |
822 T3W = FNMS(KP382683432, T3z, KP923879532 * T3A); | |
823 T4x = Tp - Ts; | |
824 T4y = T1q - T1t; | |
825 T4z = T4x + T4y; | |
826 T52 = T4x - T4y; | |
827 } | |
828 } | |
829 { | |
830 E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C; | |
831 E T4P; | |
832 { | |
833 E TL, TM, T2H, T2I; | |
834 TL = ri[WS(is, 31)]; | |
835 TM = ri[WS(is, 15)]; | |
836 TN = TL + TM; | |
837 T2p = TL - TM; | |
838 T2H = ii[WS(is, 31)]; | |
839 T2I = ii[WS(is, 15)]; | |
840 T2J = T2H - T2I; | |
841 T4S = T2H + T2I; | |
842 } | |
843 { | |
844 E TO, TP, T2q, T2r; | |
845 TO = ri[WS(is, 7)]; | |
846 TP = ri[WS(is, 23)]; | |
847 TQ = TO + TP; | |
848 T2G = TO - TP; | |
849 T2q = ii[WS(is, 7)]; | |
850 T2r = ii[WS(is, 23)]; | |
851 T2s = T2q - T2r; | |
852 T4T = T2q + T2r; | |
853 } | |
854 { | |
855 E TS, TT, T2u, T2v; | |
856 TS = ri[WS(is, 3)]; | |
857 TT = ri[WS(is, 19)]; | |
858 TU = TS + TT; | |
859 T2x = TS - TT; | |
860 T2u = ii[WS(is, 3)]; | |
861 T2v = ii[WS(is, 19)]; | |
862 T2w = T2u - T2v; | |
863 T4O = T2u + T2v; | |
864 } | |
865 { | |
866 E TV, TW, T2A, T2B; | |
867 TV = ri[WS(is, 27)]; | |
868 TW = ri[WS(is, 11)]; | |
869 TX = TV + TW; | |
870 T2z = TV - TW; | |
871 T2A = ii[WS(is, 27)]; | |
872 T2B = ii[WS(is, 11)]; | |
873 T2C = T2A - T2B; | |
874 T4P = T2A + T2B; | |
875 } | |
876 T2t = T2p - T2s; | |
877 T3L = T2p + T2s; | |
878 T3O = T2J - T2G; | |
879 T2K = T2G + T2J; | |
880 TR = TN + TQ; | |
881 TY = TU + TX; | |
882 T5F = TR - TY; | |
883 { | |
884 E T4N, T4Q, T2y, T2D; | |
885 T5G = T4S + T4T; | |
886 T5H = T4O + T4P; | |
887 T5I = T5G - T5H; | |
888 T4N = TN - TQ; | |
889 T4Q = T4O - T4P; | |
890 T4R = T4N - T4Q; | |
891 T5j = T4N + T4Q; | |
892 T2y = T2w - T2x; | |
893 T2D = T2z + T2C; | |
894 T2E = KP707106781 * (T2y - T2D); | |
895 T3P = KP707106781 * (T2y + T2D); | |
896 { | |
897 E T4U, T4V, T2L, T2M; | |
898 T4U = T4S - T4T; | |
899 T4V = TX - TU; | |
900 T4W = T4U - T4V; | |
901 T5k = T4V + T4U; | |
902 T2L = T2z - T2C; | |
903 T2M = T2x + T2w; | |
904 T2N = KP707106781 * (T2L - T2M); | |
905 T3M = KP707106781 * (T2M + T2L); | |
906 } | |
907 } | |
908 } | |
909 { | |
910 E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26; | |
911 E T4J; | |
912 { | |
913 E Tw, Tx, T1Z, T20; | |
914 Tw = ri[WS(is, 1)]; | |
915 Tx = ri[WS(is, 17)]; | |
916 Ty = Tw + Tx; | |
917 T2f = Tw - Tx; | |
918 T1Z = ii[WS(is, 1)]; | |
919 T20 = ii[WS(is, 17)]; | |
920 T21 = T1Z - T20; | |
921 T4C = T1Z + T20; | |
922 } | |
923 { | |
924 E Tz, TA, T2g, T2h; | |
925 Tz = ri[WS(is, 9)]; | |
926 TA = ri[WS(is, 25)]; | |
927 TB = Tz + TA; | |
928 T1Y = Tz - TA; | |
929 T2g = ii[WS(is, 9)]; | |
930 T2h = ii[WS(is, 25)]; | |
931 T2i = T2g - T2h; | |
932 T4D = T2g + T2h; | |
933 } | |
934 { | |
935 E TD, TE, T29, T2a; | |
936 TD = ri[WS(is, 5)]; | |
937 TE = ri[WS(is, 21)]; | |
938 TF = TD + TE; | |
939 T28 = TD - TE; | |
940 T29 = ii[WS(is, 5)]; | |
941 T2a = ii[WS(is, 21)]; | |
942 T2b = T29 - T2a; | |
943 T4I = T29 + T2a; | |
944 } | |
945 { | |
946 E TG, TH, T24, T25; | |
947 TG = ri[WS(is, 29)]; | |
948 TH = ri[WS(is, 13)]; | |
949 TI = TG + TH; | |
950 T23 = TG - TH; | |
951 T24 = ii[WS(is, 29)]; | |
952 T25 = ii[WS(is, 13)]; | |
953 T26 = T24 - T25; | |
954 T4J = T24 + T25; | |
955 } | |
956 T22 = T1Y + T21; | |
957 T3E = T2f + T2i; | |
958 T3H = T21 - T1Y; | |
959 T2j = T2f - T2i; | |
960 TC = Ty + TB; | |
961 TJ = TF + TI; | |
962 T5A = TC - TJ; | |
963 { | |
964 E T4E, T4F, T27, T2c; | |
965 T5B = T4C + T4D; | |
966 T5C = T4I + T4J; | |
967 T5D = T5B - T5C; | |
968 T4E = T4C - T4D; | |
969 T4F = TI - TF; | |
970 T4G = T4E - T4F; | |
971 T5g = T4F + T4E; | |
972 T27 = T23 - T26; | |
973 T2c = T28 + T2b; | |
974 T2d = KP707106781 * (T27 - T2c); | |
975 T3F = KP707106781 * (T2c + T27); | |
976 { | |
977 E T4H, T4K, T2k, T2l; | |
978 T4H = Ty - TB; | |
979 T4K = T4I - T4J; | |
980 T4L = T4H - T4K; | |
981 T5h = T4H + T4K; | |
982 T2k = T2b - T28; | |
983 T2l = T23 + T26; | |
984 T2m = KP707106781 * (T2k - T2l); | |
985 T3I = KP707106781 * (T2k + T2l); | |
986 } | |
987 } | |
988 } | |
989 { | |
990 E T4B, T57, T5a, T5c, T4Y, T56, T55, T5b; | |
991 { | |
992 E T4t, T4A, T58, T59; | |
993 T4t = T4r - T4s; | |
994 T4A = KP707106781 * (T4w - T4z); | |
995 T4B = T4t + T4A; | |
996 T57 = T4t - T4A; | |
997 T58 = FNMS(KP923879532, T4L, KP382683432 * T4G); | |
998 T59 = FMA(KP382683432, T4W, KP923879532 * T4R); | |
999 T5a = T58 - T59; | |
1000 T5c = T58 + T59; | |
1001 } | |
1002 { | |
1003 E T4M, T4X, T51, T54; | |
1004 T4M = FMA(KP923879532, T4G, KP382683432 * T4L); | |
1005 T4X = FNMS(KP923879532, T4W, KP382683432 * T4R); | |
1006 T4Y = T4M + T4X; | |
1007 T56 = T4X - T4M; | |
1008 T51 = T4Z - T50; | |
1009 T54 = KP707106781 * (T52 - T53); | |
1010 T55 = T51 - T54; | |
1011 T5b = T51 + T54; | |
1012 } | |
1013 ro[WS(os, 22)] = T4B - T4Y; | |
1014 io[WS(os, 22)] = T5b - T5c; | |
1015 ro[WS(os, 6)] = T4B + T4Y; | |
1016 io[WS(os, 6)] = T5b + T5c; | |
1017 io[WS(os, 30)] = T55 - T56; | |
1018 ro[WS(os, 30)] = T57 - T5a; | |
1019 io[WS(os, 14)] = T55 + T56; | |
1020 ro[WS(os, 14)] = T57 + T5a; | |
1021 } | |
1022 { | |
1023 E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v; | |
1024 { | |
1025 E T5d, T5e, T5s, T5t; | |
1026 T5d = T4r + T4s; | |
1027 T5e = KP707106781 * (T53 + T52); | |
1028 T5f = T5d + T5e; | |
1029 T5r = T5d - T5e; | |
1030 T5s = FNMS(KP382683432, T5h, KP923879532 * T5g); | |
1031 T5t = FMA(KP923879532, T5k, KP382683432 * T5j); | |
1032 T5u = T5s - T5t; | |
1033 T5w = T5s + T5t; | |
1034 } | |
1035 { | |
1036 E T5i, T5l, T5n, T5o; | |
1037 T5i = FMA(KP382683432, T5g, KP923879532 * T5h); | |
1038 T5l = FNMS(KP382683432, T5k, KP923879532 * T5j); | |
1039 T5m = T5i + T5l; | |
1040 T5q = T5l - T5i; | |
1041 T5n = T50 + T4Z; | |
1042 T5o = KP707106781 * (T4w + T4z); | |
1043 T5p = T5n - T5o; | |
1044 T5v = T5n + T5o; | |
1045 } | |
1046 ro[WS(os, 18)] = T5f - T5m; | |
1047 io[WS(os, 18)] = T5v - T5w; | |
1048 ro[WS(os, 2)] = T5f + T5m; | |
1049 io[WS(os, 2)] = T5v + T5w; | |
1050 io[WS(os, 26)] = T5p - T5q; | |
1051 ro[WS(os, 26)] = T5r - T5u; | |
1052 io[WS(os, 10)] = T5p + T5q; | |
1053 ro[WS(os, 10)] = T5r + T5u; | |
1054 } | |
1055 { | |
1056 E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T; | |
1057 { | |
1058 E T5x, T5y, T5Q, T5R; | |
1059 T5x = T7 - Te; | |
1060 T5y = T1n - T1u; | |
1061 T5z = T5x + T5y; | |
1062 T5P = T5x - T5y; | |
1063 T5Q = T5D - T5A; | |
1064 T5R = T5F + T5I; | |
1065 T5S = KP707106781 * (T5Q - T5R); | |
1066 T5U = KP707106781 * (T5Q + T5R); | |
1067 } | |
1068 { | |
1069 E T5E, T5J, T5L, T5M; | |
1070 T5E = T5A + T5D; | |
1071 T5J = T5F - T5I; | |
1072 T5K = KP707106781 * (T5E + T5J); | |
1073 T5O = KP707106781 * (T5J - T5E); | |
1074 T5L = T18 - T1f; | |
1075 T5M = Tt - Tm; | |
1076 T5N = T5L - T5M; | |
1077 T5T = T5M + T5L; | |
1078 } | |
1079 ro[WS(os, 20)] = T5z - T5K; | |
1080 io[WS(os, 20)] = T5T - T5U; | |
1081 ro[WS(os, 4)] = T5z + T5K; | |
1082 io[WS(os, 4)] = T5T + T5U; | |
1083 io[WS(os, 28)] = T5N - T5O; | |
1084 ro[WS(os, 28)] = T5P - T5S; | |
1085 io[WS(os, 12)] = T5N + T5O; | |
1086 ro[WS(os, 12)] = T5P + T5S; | |
1087 } | |
1088 { | |
1089 E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z; | |
1090 { | |
1091 E Tf, Tu, T5W, T5X; | |
1092 Tf = T7 + Te; | |
1093 Tu = Tm + Tt; | |
1094 Tv = Tf + Tu; | |
1095 T5V = Tf - Tu; | |
1096 T5W = T5B + T5C; | |
1097 T5X = T5G + T5H; | |
1098 T5Y = T5W - T5X; | |
1099 T60 = T5W + T5X; | |
1100 } | |
1101 { | |
1102 E TK, TZ, T1g, T1v; | |
1103 TK = TC + TJ; | |
1104 TZ = TR + TY; | |
1105 T10 = TK + TZ; | |
1106 T11 = TZ - TK; | |
1107 T1g = T18 + T1f; | |
1108 T1v = T1n + T1u; | |
1109 T1w = T1g - T1v; | |
1110 T5Z = T1g + T1v; | |
1111 } | |
1112 ro[WS(os, 16)] = Tv - T10; | |
1113 io[WS(os, 16)] = T5Z - T60; | |
1114 ro[0] = Tv + T10; | |
1115 io[0] = T5Z + T60; | |
1116 io[WS(os, 8)] = T11 + T1w; | |
1117 ro[WS(os, 8)] = T5V + T5Y; | |
1118 io[WS(os, 24)] = T1w - T11; | |
1119 ro[WS(os, 24)] = T5V - T5Y; | |
1120 } | |
1121 { | |
1122 E T1X, T33, T31, T37, T2o, T34, T2P, T35; | |
1123 { | |
1124 E T1H, T1W, T2X, T30; | |
1125 T1H = T1z - T1G; | |
1126 T1W = T1O - T1V; | |
1127 T1X = T1H + T1W; | |
1128 T33 = T1H - T1W; | |
1129 T2X = T2T - T2W; | |
1130 T30 = T2Y - T2Z; | |
1131 T31 = T2X - T30; | |
1132 T37 = T2X + T30; | |
1133 } | |
1134 { | |
1135 E T2e, T2n, T2F, T2O; | |
1136 T2e = T22 - T2d; | |
1137 T2n = T2j - T2m; | |
1138 T2o = FMA(KP980785280, T2e, KP195090322 * T2n); | |
1139 T34 = FNMS(KP980785280, T2n, KP195090322 * T2e); | |
1140 T2F = T2t - T2E; | |
1141 T2O = T2K - T2N; | |
1142 T2P = FNMS(KP980785280, T2O, KP195090322 * T2F); | |
1143 T35 = FMA(KP195090322, T2O, KP980785280 * T2F); | |
1144 } | |
1145 { | |
1146 E T2Q, T38, T32, T36; | |
1147 T2Q = T2o + T2P; | |
1148 ro[WS(os, 23)] = T1X - T2Q; | |
1149 ro[WS(os, 7)] = T1X + T2Q; | |
1150 T38 = T34 + T35; | |
1151 io[WS(os, 23)] = T37 - T38; | |
1152 io[WS(os, 7)] = T37 + T38; | |
1153 T32 = T2P - T2o; | |
1154 io[WS(os, 31)] = T31 - T32; | |
1155 io[WS(os, 15)] = T31 + T32; | |
1156 T36 = T34 - T35; | |
1157 ro[WS(os, 31)] = T33 - T36; | |
1158 ro[WS(os, 15)] = T33 + T36; | |
1159 } | |
1160 } | |
1161 { | |
1162 E T3D, T41, T3Z, T45, T3K, T42, T3R, T43; | |
1163 { | |
1164 E T3v, T3C, T3V, T3Y; | |
1165 T3v = T3t - T3u; | |
1166 T3C = T3y - T3B; | |
1167 T3D = T3v + T3C; | |
1168 T41 = T3v - T3C; | |
1169 T3V = T3T - T3U; | |
1170 T3Y = T3W - T3X; | |
1171 T3Z = T3V - T3Y; | |
1172 T45 = T3V + T3Y; | |
1173 } | |
1174 { | |
1175 E T3G, T3J, T3N, T3Q; | |
1176 T3G = T3E - T3F; | |
1177 T3J = T3H - T3I; | |
1178 T3K = FMA(KP555570233, T3G, KP831469612 * T3J); | |
1179 T42 = FNMS(KP831469612, T3G, KP555570233 * T3J); | |
1180 T3N = T3L - T3M; | |
1181 T3Q = T3O - T3P; | |
1182 T3R = FNMS(KP831469612, T3Q, KP555570233 * T3N); | |
1183 T43 = FMA(KP831469612, T3N, KP555570233 * T3Q); | |
1184 } | |
1185 { | |
1186 E T3S, T46, T40, T44; | |
1187 T3S = T3K + T3R; | |
1188 ro[WS(os, 21)] = T3D - T3S; | |
1189 ro[WS(os, 5)] = T3D + T3S; | |
1190 T46 = T42 + T43; | |
1191 io[WS(os, 21)] = T45 - T46; | |
1192 io[WS(os, 5)] = T45 + T46; | |
1193 T40 = T3R - T3K; | |
1194 io[WS(os, 29)] = T3Z - T40; | |
1195 io[WS(os, 13)] = T3Z + T40; | |
1196 T44 = T42 - T43; | |
1197 ro[WS(os, 29)] = T41 - T44; | |
1198 ro[WS(os, 13)] = T41 + T44; | |
1199 } | |
1200 } | |
1201 { | |
1202 E T49, T4l, T4j, T4p, T4c, T4m, T4f, T4n; | |
1203 { | |
1204 E T47, T48, T4h, T4i; | |
1205 T47 = T3t + T3u; | |
1206 T48 = T3X + T3W; | |
1207 T49 = T47 + T48; | |
1208 T4l = T47 - T48; | |
1209 T4h = T3T + T3U; | |
1210 T4i = T3y + T3B; | |
1211 T4j = T4h - T4i; | |
1212 T4p = T4h + T4i; | |
1213 } | |
1214 { | |
1215 E T4a, T4b, T4d, T4e; | |
1216 T4a = T3E + T3F; | |
1217 T4b = T3H + T3I; | |
1218 T4c = FMA(KP980785280, T4a, KP195090322 * T4b); | |
1219 T4m = FNMS(KP195090322, T4a, KP980785280 * T4b); | |
1220 T4d = T3L + T3M; | |
1221 T4e = T3O + T3P; | |
1222 T4f = FNMS(KP195090322, T4e, KP980785280 * T4d); | |
1223 T4n = FMA(KP195090322, T4d, KP980785280 * T4e); | |
1224 } | |
1225 { | |
1226 E T4g, T4q, T4k, T4o; | |
1227 T4g = T4c + T4f; | |
1228 ro[WS(os, 17)] = T49 - T4g; | |
1229 ro[WS(os, 1)] = T49 + T4g; | |
1230 T4q = T4m + T4n; | |
1231 io[WS(os, 17)] = T4p - T4q; | |
1232 io[WS(os, 1)] = T4p + T4q; | |
1233 T4k = T4f - T4c; | |
1234 io[WS(os, 25)] = T4j - T4k; | |
1235 io[WS(os, 9)] = T4j + T4k; | |
1236 T4o = T4m - T4n; | |
1237 ro[WS(os, 25)] = T4l - T4o; | |
1238 ro[WS(os, 9)] = T4l + T4o; | |
1239 } | |
1240 } | |
1241 { | |
1242 E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p; | |
1243 { | |
1244 E T39, T3a, T3j, T3k; | |
1245 T39 = T1z + T1G; | |
1246 T3a = T2Z + T2Y; | |
1247 T3b = T39 + T3a; | |
1248 T3n = T39 - T3a; | |
1249 T3j = T2T + T2W; | |
1250 T3k = T1O + T1V; | |
1251 T3l = T3j - T3k; | |
1252 T3r = T3j + T3k; | |
1253 } | |
1254 { | |
1255 E T3c, T3d, T3f, T3g; | |
1256 T3c = T22 + T2d; | |
1257 T3d = T2j + T2m; | |
1258 T3e = FMA(KP555570233, T3c, KP831469612 * T3d); | |
1259 T3o = FNMS(KP555570233, T3d, KP831469612 * T3c); | |
1260 T3f = T2t + T2E; | |
1261 T3g = T2K + T2N; | |
1262 T3h = FNMS(KP555570233, T3g, KP831469612 * T3f); | |
1263 T3p = FMA(KP831469612, T3g, KP555570233 * T3f); | |
1264 } | |
1265 { | |
1266 E T3i, T3s, T3m, T3q; | |
1267 T3i = T3e + T3h; | |
1268 ro[WS(os, 19)] = T3b - T3i; | |
1269 ro[WS(os, 3)] = T3b + T3i; | |
1270 T3s = T3o + T3p; | |
1271 io[WS(os, 19)] = T3r - T3s; | |
1272 io[WS(os, 3)] = T3r + T3s; | |
1273 T3m = T3h - T3e; | |
1274 io[WS(os, 27)] = T3l - T3m; | |
1275 io[WS(os, 11)] = T3l + T3m; | |
1276 T3q = T3o - T3p; | |
1277 ro[WS(os, 27)] = T3n - T3q; | |
1278 ro[WS(os, 11)] = T3n + T3q; | |
1279 } | |
1280 } | |
1281 } | |
1282 } | |
1283 } | |
1284 | |
1285 static const kdft_desc desc = { 32, "n1_32", {340, 52, 32, 0}, &GENUS, 0, 0, 0, 0 }; | |
1286 | |
1287 void X(codelet_n1_32) (planner *p) { | |
1288 X(kdft_register) (p, n1_32, &desc); | |
1289 } | |
1290 | |
1291 #endif /* HAVE_FMA */ |