Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/n1_14.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:35:43 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include n.h */ | |
29 | |
30 /* | |
31 * This function contains 148 FP additions, 84 FP multiplications, | |
32 * (or, 64 additions, 0 multiplications, 84 fused multiply/add), | |
33 * 80 stack variables, 6 constants, and 56 memory accesses | |
34 */ | |
35 #include "n.h" | |
36 | |
37 static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
40 DK(KP801937735, +0.801937735804838252472204639014890102331838324); | |
41 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
42 DK(KP554958132, +0.554958132087371191422194871006410481067288862); | |
43 DK(KP692021471, +0.692021471630095869627814897002069140197260599); | |
44 DK(KP356895867, +0.356895867892209443894399510021300583399127187); | |
45 { | |
46 INT i; | |
47 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) { | |
48 E Tp, T1L, T24, T1W, T1X, T28, T2a, T1Y, T29, T2b; | |
49 { | |
50 E T3, T1x, T1b, To, T1i, T1M, Ts, Ta, T1k, Tv, Th, T1j, T1K, Ty, TZ; | |
51 E T14, Tz, T1Z, T27, T2c, T1d, TI, T23, T1G, T1D, TW, T1e, T22, T1A, TP; | |
52 E T1c, T1n, T1s, T1f, T1P; | |
53 { | |
54 E T1, T2, T19, T1a; | |
55 T1 = ri[0]; | |
56 T2 = ri[WS(is, 7)]; | |
57 T19 = ii[0]; | |
58 T1a = ii[WS(is, 7)]; | |
59 { | |
60 E Tq, T6, Tr, T9, Te, Tx, Tn, Tw, Tk, Tf, Tb, Tc; | |
61 { | |
62 E Tl, Tm, Ti, Tj; | |
63 { | |
64 E T4, T5, T7, T8; | |
65 T4 = ri[WS(is, 2)]; | |
66 Tp = T1 + T2; | |
67 T3 = T1 - T2; | |
68 T1x = T19 + T1a; | |
69 T1b = T19 - T1a; | |
70 T5 = ri[WS(is, 9)]; | |
71 T7 = ri[WS(is, 12)]; | |
72 T8 = ri[WS(is, 5)]; | |
73 Tl = ri[WS(is, 8)]; | |
74 Tq = T4 + T5; | |
75 T6 = T4 - T5; | |
76 Tr = T7 + T8; | |
77 T9 = T7 - T8; | |
78 Tm = ri[WS(is, 1)]; | |
79 } | |
80 Ti = ri[WS(is, 6)]; | |
81 Tj = ri[WS(is, 13)]; | |
82 Te = ri[WS(is, 10)]; | |
83 Tx = Tl + Tm; | |
84 Tn = Tl - Tm; | |
85 Tw = Ti + Tj; | |
86 Tk = Ti - Tj; | |
87 Tf = ri[WS(is, 3)]; | |
88 Tb = ri[WS(is, 4)]; | |
89 Tc = ri[WS(is, 11)]; | |
90 } | |
91 { | |
92 E Tu, Tg, Tt, Td; | |
93 To = Tk + Tn; | |
94 T1i = Tn - Tk; | |
95 Tu = Te + Tf; | |
96 Tg = Te - Tf; | |
97 Tt = Tb + Tc; | |
98 Td = Tb - Tc; | |
99 T1M = Tr - Tq; | |
100 Ts = Tq + Tr; | |
101 Ta = T6 + T9; | |
102 T1k = T9 - T6; | |
103 T1L = Tt - Tu; | |
104 Tv = Tt + Tu; | |
105 Th = Td + Tg; | |
106 T1j = Tg - Td; | |
107 T1K = Tw - Tx; | |
108 Ty = Tw + Tx; | |
109 TZ = FNMS(KP356895867, Ta, To); | |
110 T14 = FNMS(KP356895867, To, Th); | |
111 Tz = FNMS(KP356895867, Th, Ta); | |
112 T1Z = FNMS(KP356895867, Ts, Ty); | |
113 } | |
114 } | |
115 { | |
116 E T1B, TE, T1C, TH, T1F, TV, TJ, T1E, TS, T1z, TO, TK, T1y, TL; | |
117 { | |
118 E TF, TG, TT, TU, TC, TD; | |
119 TC = ii[WS(is, 4)]; | |
120 TD = ii[WS(is, 11)]; | |
121 T27 = FNMS(KP356895867, Tv, Ts); | |
122 T2c = FNMS(KP356895867, Ty, Tv); | |
123 TF = ii[WS(is, 10)]; | |
124 T1B = TC + TD; | |
125 TE = TC - TD; | |
126 TG = ii[WS(is, 3)]; | |
127 TT = ii[WS(is, 8)]; | |
128 TU = ii[WS(is, 1)]; | |
129 { | |
130 E TQ, TR, TM, TN; | |
131 TQ = ii[WS(is, 6)]; | |
132 T1C = TF + TG; | |
133 TH = TF - TG; | |
134 T1F = TT + TU; | |
135 TV = TT - TU; | |
136 TR = ii[WS(is, 13)]; | |
137 TM = ii[WS(is, 12)]; | |
138 TN = ii[WS(is, 5)]; | |
139 TJ = ii[WS(is, 2)]; | |
140 T1E = TQ + TR; | |
141 TS = TQ - TR; | |
142 T1z = TM + TN; | |
143 TO = TM - TN; | |
144 TK = ii[WS(is, 9)]; | |
145 } | |
146 } | |
147 T1d = TE + TH; | |
148 TI = TE - TH; | |
149 T23 = T1F - T1E; | |
150 T1G = T1E + T1F; | |
151 T1D = T1B + T1C; | |
152 T24 = T1C - T1B; | |
153 T1y = TJ + TK; | |
154 TL = TJ - TK; | |
155 TW = TS - TV; | |
156 T1e = TS + TV; | |
157 T22 = T1y - T1z; | |
158 T1A = T1y + T1z; | |
159 TP = TL - TO; | |
160 T1c = TL + TO; | |
161 T1n = FNMS(KP356895867, T1c, T1e); | |
162 T1s = FNMS(KP356895867, T1d, T1c); | |
163 T1f = FNMS(KP356895867, T1e, T1d); | |
164 T1P = FNMS(KP356895867, T1A, T1G); | |
165 } | |
166 } | |
167 { | |
168 E T1U, T1H, T11, T12, T1o, T1q; | |
169 ro[WS(os, 7)] = T3 + Ta + Th + To; | |
170 io[WS(os, 7)] = T1b + T1c + T1d + T1e; | |
171 T1U = FNMS(KP356895867, T1D, T1A); | |
172 T1H = FNMS(KP356895867, T1G, T1D); | |
173 ro[0] = Tp + Ts + Tv + Ty; | |
174 io[0] = T1x + T1A + T1D + T1G; | |
175 { | |
176 E TB, TY, T1u, T1w, T10; | |
177 { | |
178 E TA, TX, T1t, T1v; | |
179 TA = FNMS(KP692021471, Tz, To); | |
180 TX = FMA(KP554958132, TW, TP); | |
181 T1t = FNMS(KP692021471, T1s, T1e); | |
182 T1v = FMA(KP554958132, T1i, T1k); | |
183 TB = FNMS(KP900968867, TA, T3); | |
184 TY = FMA(KP801937735, TX, TI); | |
185 T1u = FNMS(KP900968867, T1t, T1b); | |
186 T1w = FMA(KP801937735, T1v, T1j); | |
187 } | |
188 T10 = FNMS(KP692021471, TZ, Th); | |
189 ro[WS(os, 1)] = FMA(KP974927912, TY, TB); | |
190 ro[WS(os, 13)] = FNMS(KP974927912, TY, TB); | |
191 io[WS(os, 13)] = FNMS(KP974927912, T1w, T1u); | |
192 io[WS(os, 1)] = FMA(KP974927912, T1w, T1u); | |
193 T11 = FNMS(KP900968867, T10, T3); | |
194 T12 = FMA(KP554958132, TI, TW); | |
195 T1o = FNMS(KP692021471, T1n, T1d); | |
196 T1q = FMA(KP554958132, T1j, T1i); | |
197 } | |
198 { | |
199 E T1J, T1N, T2d, T2f; | |
200 { | |
201 E T16, T17, T1g, T1l; | |
202 { | |
203 E T13, T1p, T1r, T15; | |
204 T15 = FNMS(KP692021471, T14, Ta); | |
205 T13 = FNMS(KP801937735, T12, TP); | |
206 T1p = FNMS(KP900968867, T1o, T1b); | |
207 T1r = FNMS(KP801937735, T1q, T1k); | |
208 T16 = FNMS(KP900968867, T15, T3); | |
209 ro[WS(os, 9)] = FMA(KP974927912, T13, T11); | |
210 ro[WS(os, 5)] = FNMS(KP974927912, T13, T11); | |
211 io[WS(os, 9)] = FMA(KP974927912, T1r, T1p); | |
212 io[WS(os, 5)] = FNMS(KP974927912, T1r, T1p); | |
213 T17 = FNMS(KP554958132, TP, TI); | |
214 } | |
215 T1g = FNMS(KP692021471, T1f, T1c); | |
216 T1l = FNMS(KP554958132, T1k, T1j); | |
217 { | |
218 E T18, T1h, T1m, T1I; | |
219 T1I = FNMS(KP692021471, T1H, T1A); | |
220 T18 = FNMS(KP801937735, T17, TW); | |
221 T1h = FNMS(KP900968867, T1g, T1b); | |
222 T1m = FNMS(KP801937735, T1l, T1i); | |
223 T1J = FNMS(KP900968867, T1I, T1x); | |
224 ro[WS(os, 3)] = FMA(KP974927912, T18, T16); | |
225 ro[WS(os, 11)] = FNMS(KP974927912, T18, T16); | |
226 io[WS(os, 11)] = FNMS(KP974927912, T1m, T1h); | |
227 io[WS(os, 3)] = FMA(KP974927912, T1m, T1h); | |
228 T1N = FMA(KP554958132, T1M, T1L); | |
229 } | |
230 T2d = FNMS(KP692021471, T2c, Ts); | |
231 T2f = FMA(KP554958132, T22, T24); | |
232 } | |
233 { | |
234 E T1R, T1S, T20, T25; | |
235 { | |
236 E T1O, T2e, T2g, T1Q; | |
237 T1Q = FNMS(KP692021471, T1P, T1D); | |
238 T1O = FNMS(KP801937735, T1N, T1K); | |
239 T2e = FNMS(KP900968867, T2d, Tp); | |
240 T2g = FNMS(KP801937735, T2f, T23); | |
241 T1R = FNMS(KP900968867, T1Q, T1x); | |
242 io[WS(os, 10)] = FNMS(KP974927912, T1O, T1J); | |
243 io[WS(os, 4)] = FMA(KP974927912, T1O, T1J); | |
244 ro[WS(os, 4)] = FMA(KP974927912, T2g, T2e); | |
245 ro[WS(os, 10)] = FNMS(KP974927912, T2g, T2e); | |
246 T1S = FMA(KP554958132, T1L, T1K); | |
247 } | |
248 T20 = FNMS(KP692021471, T1Z, Tv); | |
249 T25 = FMA(KP554958132, T24, T23); | |
250 { | |
251 E T1T, T21, T26, T1V; | |
252 T1V = FNMS(KP692021471, T1U, T1G); | |
253 T1T = FMA(KP801937735, T1S, T1M); | |
254 T21 = FNMS(KP900968867, T20, Tp); | |
255 T26 = FMA(KP801937735, T25, T22); | |
256 T1W = FNMS(KP900968867, T1V, T1x); | |
257 io[WS(os, 12)] = FNMS(KP974927912, T1T, T1R); | |
258 io[WS(os, 2)] = FMA(KP974927912, T1T, T1R); | |
259 ro[WS(os, 2)] = FMA(KP974927912, T26, T21); | |
260 ro[WS(os, 12)] = FNMS(KP974927912, T26, T21); | |
261 T1X = FNMS(KP554958132, T1K, T1M); | |
262 } | |
263 T28 = FNMS(KP692021471, T27, Ty); | |
264 T2a = FNMS(KP554958132, T23, T22); | |
265 } | |
266 } | |
267 } | |
268 } | |
269 T1Y = FNMS(KP801937735, T1X, T1L); | |
270 T29 = FNMS(KP900968867, T28, Tp); | |
271 T2b = FNMS(KP801937735, T2a, T24); | |
272 io[WS(os, 8)] = FNMS(KP974927912, T1Y, T1W); | |
273 io[WS(os, 6)] = FMA(KP974927912, T1Y, T1W); | |
274 ro[WS(os, 6)] = FMA(KP974927912, T2b, T29); | |
275 ro[WS(os, 8)] = FNMS(KP974927912, T2b, T29); | |
276 } | |
277 } | |
278 } | |
279 | |
280 static const kdft_desc desc = { 14, "n1_14", {64, 0, 84, 0}, &GENUS, 0, 0, 0, 0 }; | |
281 | |
282 void X(codelet_n1_14) (planner *p) { | |
283 X(kdft_register) (p, n1_14, &desc); | |
284 } | |
285 | |
286 #else /* HAVE_FMA */ | |
287 | |
288 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include n.h */ | |
289 | |
290 /* | |
291 * This function contains 148 FP additions, 72 FP multiplications, | |
292 * (or, 100 additions, 24 multiplications, 48 fused multiply/add), | |
293 * 43 stack variables, 6 constants, and 56 memory accesses | |
294 */ | |
295 #include "n.h" | |
296 | |
297 static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
298 { | |
299 DK(KP222520933, +0.222520933956314404288902564496794759466355569); | |
300 DK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
301 DK(KP623489801, +0.623489801858733530525004884004239810632274731); | |
302 DK(KP433883739, +0.433883739117558120475768332848358754609990728); | |
303 DK(KP781831482, +0.781831482468029808708444526674057750232334519); | |
304 DK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
305 { | |
306 INT i; | |
307 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) { | |
308 E T3, Tp, T16, T1f, Ta, T1q, Ts, T10, TG, T1z, T19, T1i, Th, T1s, Tv; | |
309 E T12, TU, T1B, T17, T1o, To, T1r, Ty, T11, TN, T1A, T18, T1l; | |
310 { | |
311 E T1, T2, T14, T15; | |
312 T1 = ri[0]; | |
313 T2 = ri[WS(is, 7)]; | |
314 T3 = T1 - T2; | |
315 Tp = T1 + T2; | |
316 T14 = ii[0]; | |
317 T15 = ii[WS(is, 7)]; | |
318 T16 = T14 - T15; | |
319 T1f = T14 + T15; | |
320 } | |
321 { | |
322 E T6, Tq, T9, Tr; | |
323 { | |
324 E T4, T5, T7, T8; | |
325 T4 = ri[WS(is, 2)]; | |
326 T5 = ri[WS(is, 9)]; | |
327 T6 = T4 - T5; | |
328 Tq = T4 + T5; | |
329 T7 = ri[WS(is, 12)]; | |
330 T8 = ri[WS(is, 5)]; | |
331 T9 = T7 - T8; | |
332 Tr = T7 + T8; | |
333 } | |
334 Ta = T6 + T9; | |
335 T1q = Tr - Tq; | |
336 Ts = Tq + Tr; | |
337 T10 = T9 - T6; | |
338 } | |
339 { | |
340 E TC, T1g, TF, T1h; | |
341 { | |
342 E TA, TB, TD, TE; | |
343 TA = ii[WS(is, 2)]; | |
344 TB = ii[WS(is, 9)]; | |
345 TC = TA - TB; | |
346 T1g = TA + TB; | |
347 TD = ii[WS(is, 12)]; | |
348 TE = ii[WS(is, 5)]; | |
349 TF = TD - TE; | |
350 T1h = TD + TE; | |
351 } | |
352 TG = TC - TF; | |
353 T1z = T1g - T1h; | |
354 T19 = TC + TF; | |
355 T1i = T1g + T1h; | |
356 } | |
357 { | |
358 E Td, Tt, Tg, Tu; | |
359 { | |
360 E Tb, Tc, Te, Tf; | |
361 Tb = ri[WS(is, 4)]; | |
362 Tc = ri[WS(is, 11)]; | |
363 Td = Tb - Tc; | |
364 Tt = Tb + Tc; | |
365 Te = ri[WS(is, 10)]; | |
366 Tf = ri[WS(is, 3)]; | |
367 Tg = Te - Tf; | |
368 Tu = Te + Tf; | |
369 } | |
370 Th = Td + Tg; | |
371 T1s = Tt - Tu; | |
372 Tv = Tt + Tu; | |
373 T12 = Tg - Td; | |
374 } | |
375 { | |
376 E TQ, T1m, TT, T1n; | |
377 { | |
378 E TO, TP, TR, TS; | |
379 TO = ii[WS(is, 4)]; | |
380 TP = ii[WS(is, 11)]; | |
381 TQ = TO - TP; | |
382 T1m = TO + TP; | |
383 TR = ii[WS(is, 10)]; | |
384 TS = ii[WS(is, 3)]; | |
385 TT = TR - TS; | |
386 T1n = TR + TS; | |
387 } | |
388 TU = TQ - TT; | |
389 T1B = T1n - T1m; | |
390 T17 = TQ + TT; | |
391 T1o = T1m + T1n; | |
392 } | |
393 { | |
394 E Tk, Tw, Tn, Tx; | |
395 { | |
396 E Ti, Tj, Tl, Tm; | |
397 Ti = ri[WS(is, 6)]; | |
398 Tj = ri[WS(is, 13)]; | |
399 Tk = Ti - Tj; | |
400 Tw = Ti + Tj; | |
401 Tl = ri[WS(is, 8)]; | |
402 Tm = ri[WS(is, 1)]; | |
403 Tn = Tl - Tm; | |
404 Tx = Tl + Tm; | |
405 } | |
406 To = Tk + Tn; | |
407 T1r = Tw - Tx; | |
408 Ty = Tw + Tx; | |
409 T11 = Tn - Tk; | |
410 } | |
411 { | |
412 E TJ, T1j, TM, T1k; | |
413 { | |
414 E TH, TI, TK, TL; | |
415 TH = ii[WS(is, 6)]; | |
416 TI = ii[WS(is, 13)]; | |
417 TJ = TH - TI; | |
418 T1j = TH + TI; | |
419 TK = ii[WS(is, 8)]; | |
420 TL = ii[WS(is, 1)]; | |
421 TM = TK - TL; | |
422 T1k = TK + TL; | |
423 } | |
424 TN = TJ - TM; | |
425 T1A = T1k - T1j; | |
426 T18 = TJ + TM; | |
427 T1l = T1j + T1k; | |
428 } | |
429 ro[WS(os, 7)] = T3 + Ta + Th + To; | |
430 io[WS(os, 7)] = T16 + T19 + T17 + T18; | |
431 ro[0] = Tp + Ts + Tv + Ty; | |
432 io[0] = T1f + T1i + T1o + T1l; | |
433 { | |
434 E TV, Tz, T1e, T1d; | |
435 TV = FNMS(KP781831482, TN, KP974927912 * TG) - (KP433883739 * TU); | |
436 Tz = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta); | |
437 ro[WS(os, 5)] = Tz - TV; | |
438 ro[WS(os, 9)] = Tz + TV; | |
439 T1e = FNMS(KP781831482, T11, KP974927912 * T10) - (KP433883739 * T12); | |
440 T1d = FMA(KP623489801, T18, T16) + FNMA(KP900968867, T17, KP222520933 * T19); | |
441 io[WS(os, 5)] = T1d - T1e; | |
442 io[WS(os, 9)] = T1e + T1d; | |
443 } | |
444 { | |
445 E TX, TW, T1b, T1c; | |
446 TX = FMA(KP781831482, TG, KP974927912 * TU) + (KP433883739 * TN); | |
447 TW = FMA(KP623489801, Ta, T3) + FNMA(KP900968867, To, KP222520933 * Th); | |
448 ro[WS(os, 13)] = TW - TX; | |
449 ro[WS(os, 1)] = TW + TX; | |
450 T1b = FMA(KP781831482, T10, KP974927912 * T12) + (KP433883739 * T11); | |
451 T1c = FMA(KP623489801, T19, T16) + FNMA(KP900968867, T18, KP222520933 * T17); | |
452 io[WS(os, 1)] = T1b + T1c; | |
453 io[WS(os, 13)] = T1c - T1b; | |
454 } | |
455 { | |
456 E TZ, TY, T13, T1a; | |
457 TZ = FMA(KP433883739, TG, KP974927912 * TN) - (KP781831482 * TU); | |
458 TY = FMA(KP623489801, Th, T3) + FNMA(KP222520933, To, KP900968867 * Ta); | |
459 ro[WS(os, 11)] = TY - TZ; | |
460 ro[WS(os, 3)] = TY + TZ; | |
461 T13 = FMA(KP433883739, T10, KP974927912 * T11) - (KP781831482 * T12); | |
462 T1a = FMA(KP623489801, T17, T16) + FNMA(KP222520933, T18, KP900968867 * T19); | |
463 io[WS(os, 3)] = T13 + T1a; | |
464 io[WS(os, 11)] = T1a - T13; | |
465 } | |
466 { | |
467 E T1t, T1p, T1C, T1y; | |
468 T1t = FNMS(KP433883739, T1r, KP781831482 * T1q) - (KP974927912 * T1s); | |
469 T1p = FMA(KP623489801, T1i, T1f) + FNMA(KP900968867, T1l, KP222520933 * T1o); | |
470 io[WS(os, 6)] = T1p - T1t; | |
471 io[WS(os, 8)] = T1t + T1p; | |
472 T1C = FNMS(KP433883739, T1A, KP781831482 * T1z) - (KP974927912 * T1B); | |
473 T1y = FMA(KP623489801, Ts, Tp) + FNMA(KP900968867, Ty, KP222520933 * Tv); | |
474 ro[WS(os, 6)] = T1y - T1C; | |
475 ro[WS(os, 8)] = T1y + T1C; | |
476 } | |
477 { | |
478 E T1v, T1u, T1E, T1D; | |
479 T1v = FMA(KP433883739, T1q, KP781831482 * T1s) - (KP974927912 * T1r); | |
480 T1u = FMA(KP623489801, T1o, T1f) + FNMA(KP222520933, T1l, KP900968867 * T1i); | |
481 io[WS(os, 4)] = T1u - T1v; | |
482 io[WS(os, 10)] = T1v + T1u; | |
483 T1E = FMA(KP433883739, T1z, KP781831482 * T1B) - (KP974927912 * T1A); | |
484 T1D = FMA(KP623489801, Tv, Tp) + FNMA(KP222520933, Ty, KP900968867 * Ts); | |
485 ro[WS(os, 4)] = T1D - T1E; | |
486 ro[WS(os, 10)] = T1D + T1E; | |
487 } | |
488 { | |
489 E T1w, T1x, T1G, T1F; | |
490 T1w = FMA(KP974927912, T1q, KP433883739 * T1s) + (KP781831482 * T1r); | |
491 T1x = FMA(KP623489801, T1l, T1f) + FNMA(KP900968867, T1o, KP222520933 * T1i); | |
492 io[WS(os, 2)] = T1w + T1x; | |
493 io[WS(os, 12)] = T1x - T1w; | |
494 T1G = FMA(KP974927912, T1z, KP433883739 * T1B) + (KP781831482 * T1A); | |
495 T1F = FMA(KP623489801, Ty, Tp) + FNMA(KP900968867, Tv, KP222520933 * Ts); | |
496 ro[WS(os, 12)] = T1F - T1G; | |
497 ro[WS(os, 2)] = T1F + T1G; | |
498 } | |
499 } | |
500 } | |
501 } | |
502 | |
503 static const kdft_desc desc = { 14, "n1_14", {100, 24, 48, 0}, &GENUS, 0, 0, 0, 0 }; | |
504 | |
505 void X(codelet_n1_14) (planner *p) { | |
506 X(kdft_register) (p, n1_14, &desc); | |
507 } | |
508 | |
509 #endif /* HAVE_FMA */ |