comparison src/fftw-3.3.3/dft/scalar/codelets/n1_13.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:35:43 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_notw.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 13 -name n1_13 -include n.h */
29
30 /*
31 * This function contains 176 FP additions, 114 FP multiplications,
32 * (or, 62 additions, 0 multiplications, 114 fused multiply/add),
33 * 87 stack variables, 25 constants, and 52 memory accesses
34 */
35 #include "n.h"
36
37 static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DK(KP875502302, +0.875502302409147941146295545768755143177842006);
40 DK(KP520028571, +0.520028571888864619117130500499232802493238139);
41 DK(KP575140729, +0.575140729474003121368385547455453388461001608);
42 DK(KP600477271, +0.600477271932665282925769253334763009352012849);
43 DK(KP300462606, +0.300462606288665774426601772289207995520941381);
44 DK(KP516520780, +0.516520780623489722840901288569017135705033622);
45 DK(KP968287244, +0.968287244361984016049539446938120421179794516);
46 DK(KP503537032, +0.503537032863766627246873853868466977093348562);
47 DK(KP251768516, +0.251768516431883313623436926934233488546674281);
48 DK(KP581704778, +0.581704778510515730456870384989698884939833902);
49 DK(KP859542535, +0.859542535098774820163672132761689612766401925);
50 DK(KP083333333, +0.083333333333333333333333333333333333333333333);
51 DK(KP957805992, +0.957805992594665126462521754605754580515587217);
52 DK(KP522026385, +0.522026385161275033714027226654165028300441940);
53 DK(KP853480001, +0.853480001859823990758994934970528322872359049);
54 DK(KP769338817, +0.769338817572980603471413688209101117038278899);
55 DK(KP612264650, +0.612264650376756543746494474777125408779395514);
56 DK(KP038632954, +0.038632954644348171955506895830342264440241080);
57 DK(KP302775637, +0.302775637731994646559610633735247973125648287);
58 DK(KP514918778, +0.514918778086315755491789696138117261566051239);
59 DK(KP686558370, +0.686558370781754340655719594850823015421401653);
60 DK(KP226109445, +0.226109445035782405468510155372505010481906348);
61 DK(KP301479260, +0.301479260047709873958013540496673347309208464);
62 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
63 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
64 {
65 INT i;
66 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(52, is), MAKE_VOLATILE_STRIDE(52, os)) {
67 E T2B, T2H, T2I, T2G;
68 {
69 E T1, T1P, T2n, T2o, To, TH, T2h, T2k, TE, TB, TF, Tw, T2j, T2c, T1m;
70 E T1W, T1X, T1c, T19, T1j, T12, T1f, T21, T24, T27, T1U;
71 T1 = ri[0];
72 T1P = ii[0];
73 {
74 E T2b, Tv, Ts, T2a;
75 {
76 E T2d, Tf, Tq, Ty, Tb, Tr, T6, Tx, Ti, Tt, Tu, Tl;
77 {
78 E T7, T8, T9, Td, Te;
79 Td = ri[WS(is, 8)];
80 Te = ri[WS(is, 5)];
81 T7 = ri[WS(is, 12)];
82 T8 = ri[WS(is, 10)];
83 T9 = ri[WS(is, 4)];
84 T2d = Td - Te;
85 Tf = Td + Te;
86 {
87 E T2, Ta, T3, T4;
88 T2 = ri[WS(is, 1)];
89 Ta = T8 + T9;
90 Tq = T8 - T9;
91 T3 = ri[WS(is, 3)];
92 T4 = ri[WS(is, 9)];
93 {
94 E Tg, T5, Th, Tj, Tk;
95 Tg = ri[WS(is, 11)];
96 Ty = FMS(KP500000000, Ta, T7);
97 Tb = T7 + Ta;
98 Tr = T4 - T3;
99 T5 = T3 + T4;
100 Th = ri[WS(is, 6)];
101 Tj = ri[WS(is, 7)];
102 Tk = ri[WS(is, 2)];
103 T6 = T2 + T5;
104 Tx = FNMS(KP500000000, T5, T2);
105 Ti = Tg + Th;
106 Tt = Tg - Th;
107 Tu = Tj - Tk;
108 Tl = Tj + Tk;
109 }
110 }
111 }
112 {
113 E Tc, Tm, T2e, T2g;
114 Tc = T6 + Tb;
115 T2n = T6 - Tb;
116 T2b = Ti - Tl;
117 Tm = Ti + Tl;
118 T2e = Tt + Tu;
119 Tv = Tt - Tu;
120 Ts = Tq - Tr;
121 T2g = Tr + Tq;
122 {
123 E Tz, TA, Tn, T2f;
124 Tz = Tx - Ty;
125 T2a = Tx + Ty;
126 TA = FNMS(KP500000000, Tm, Tf);
127 Tn = Tf + Tm;
128 T2f = FNMS(KP500000000, T2e, T2d);
129 T2o = T2d + T2e;
130 To = Tc + Tn;
131 TH = Tc - Tn;
132 T2h = FMA(KP866025403, T2g, T2f);
133 T2k = FNMS(KP866025403, T2g, T2f);
134 TE = Tz - TA;
135 TB = Tz + TA;
136 }
137 }
138 }
139 {
140 E T1R, TM, T10, T18, T1l, TX, T1k, T15, TP, T1a, T1b, TS;
141 {
142 E T16, TY, TZ, TK, TL;
143 TK = ii[WS(is, 8)];
144 TF = Ts - Tv;
145 Tw = Ts + Tv;
146 T2j = FNMS(KP866025403, T2b, T2a);
147 T2c = FMA(KP866025403, T2b, T2a);
148 TL = ii[WS(is, 5)];
149 T16 = ii[WS(is, 12)];
150 TY = ii[WS(is, 10)];
151 TZ = ii[WS(is, 4)];
152 T1R = TK + TL;
153 TM = TK - TL;
154 {
155 E T13, T17, TV, TW;
156 T13 = ii[WS(is, 1)];
157 T17 = TY + TZ;
158 T10 = TY - TZ;
159 TV = ii[WS(is, 9)];
160 TW = ii[WS(is, 3)];
161 {
162 E TN, T14, TO, TQ, TR;
163 TN = ii[WS(is, 11)];
164 T18 = FMS(KP500000000, T17, T16);
165 T1l = T16 + T17;
166 TX = TV - TW;
167 T14 = TW + TV;
168 TO = ii[WS(is, 6)];
169 TQ = ii[WS(is, 7)];
170 TR = ii[WS(is, 2)];
171 T1k = T13 + T14;
172 T15 = FNMS(KP500000000, T14, T13);
173 TP = TN - TO;
174 T1a = TN + TO;
175 T1b = TQ + TR;
176 TS = TQ - TR;
177 }
178 }
179 }
180 {
181 E T1Q, T11, TT, T1S;
182 T1Q = T1k + T1l;
183 T1m = T1k - T1l;
184 T11 = TX + T10;
185 T1W = T10 - TX;
186 T1X = TP - TS;
187 TT = TP + TS;
188 T1S = T1a + T1b;
189 T1c = T1a - T1b;
190 {
191 E T1Z, TU, T1T, T20;
192 T19 = T15 + T18;
193 T1Z = T15 - T18;
194 T1j = TM + TT;
195 TU = FNMS(KP500000000, TT, TM);
196 T1T = T1R + T1S;
197 T20 = FNMS(KP500000000, T1S, T1R);
198 T12 = FMA(KP866025403, T11, TU);
199 T1f = FNMS(KP866025403, T11, TU);
200 T21 = T1Z + T20;
201 T24 = T1Z - T20;
202 T27 = T1Q - T1T;
203 T1U = T1Q + T1T;
204 }
205 }
206 }
207 }
208 {
209 E T1g, T1d, T25, T1Y;
210 ro[0] = T1 + To;
211 T1g = FNMS(KP866025403, T1c, T19);
212 T1d = FMA(KP866025403, T1c, T19);
213 T25 = T1W - T1X;
214 T1Y = T1W + T1X;
215 io[0] = T1P + T1U;
216 {
217 E T1C, T1B, T1F, T1K;
218 {
219 E TC, T1J, T1z, T1w, T1I, T1O, Tp, T1E, T1q, TI, T1o, T1s;
220 {
221 E TG, T1n, T1G, T1u, T1e, T1h, T1v, T1x, T1y, T1H, T1i;
222 TC = FMA(KP301479260, TB, Tw);
223 T1x = FNMS(KP226109445, Tw, TB);
224 T1y = FMA(KP686558370, TE, TF);
225 TG = FNMS(KP514918778, TF, TE);
226 T1n = FNMS(KP302775637, T1m, T1j);
227 T1G = FMA(KP302775637, T1j, T1m);
228 T1u = FNMS(KP038632954, T12, T1d);
229 T1e = FMA(KP038632954, T1d, T12);
230 T1h = FMA(KP612264650, T1g, T1f);
231 T1v = FNMS(KP612264650, T1f, T1g);
232 T1J = FMA(KP769338817, T1y, T1x);
233 T1z = FNMS(KP769338817, T1y, T1x);
234 T1H = FNMS(KP853480001, T1v, T1u);
235 T1w = FMA(KP853480001, T1v, T1u);
236 T1I = FNMS(KP522026385, T1H, T1G);
237 T1O = FMA(KP957805992, T1G, T1H);
238 Tp = FNMS(KP083333333, To, T1);
239 T1E = FMA(KP853480001, T1h, T1e);
240 T1i = FNMS(KP853480001, T1h, T1e);
241 T1q = FNMS(KP859542535, TG, TH);
242 TI = FMA(KP581704778, TH, TG);
243 T1o = FMA(KP957805992, T1n, T1i);
244 T1s = FNMS(KP522026385, T1i, T1n);
245 }
246 {
247 E T1A, T1D, T1t, T1L, T1M;
248 {
249 E T1p, TD, TJ, T1N, T1r;
250 T1p = FNMS(KP251768516, TC, Tp);
251 TD = FMA(KP503537032, TC, Tp);
252 T1C = FNMS(KP968287244, T1z, T1w);
253 T1A = FMA(KP968287244, T1z, T1w);
254 TJ = FMA(KP516520780, TI, TD);
255 T1N = FNMS(KP516520780, TI, TD);
256 T1D = FNMS(KP300462606, T1q, T1p);
257 T1r = FMA(KP300462606, T1q, T1p);
258 ro[WS(os, 8)] = FNMS(KP600477271, T1O, T1N);
259 ro[WS(os, 12)] = FMA(KP600477271, T1o, TJ);
260 ro[WS(os, 1)] = FNMS(KP600477271, T1o, TJ);
261 T1t = FNMS(KP575140729, T1s, T1r);
262 T1B = FMA(KP575140729, T1s, T1r);
263 ro[WS(os, 5)] = FMA(KP600477271, T1O, T1N);
264 }
265 T1L = FNMS(KP520028571, T1E, T1D);
266 T1F = FMA(KP520028571, T1E, T1D);
267 T1K = FMA(KP875502302, T1J, T1I);
268 T1M = FNMS(KP875502302, T1J, T1I);
269 ro[WS(os, 3)] = FMA(KP520028571, T1A, T1t);
270 ro[WS(os, 9)] = FNMS(KP520028571, T1A, T1t);
271 ro[WS(os, 6)] = FMA(KP575140729, T1M, T1L);
272 ro[WS(os, 11)] = FNMS(KP575140729, T1M, T1L);
273 }
274 }
275 {
276 E T22, T2F, T2N, T2K, T2w, T2A, T1V, T2C, T28, T2y, T2M, T2q;
277 {
278 E T26, T2v, T2p, T2i, T2s, T2t, T2l, T2D, T2E, T2u, T2m;
279 T2D = FNMS(KP226109445, T1Y, T21);
280 T22 = FMA(KP301479260, T21, T1Y);
281 ro[WS(os, 2)] = FMA(KP575140729, T1K, T1F);
282 ro[WS(os, 7)] = FNMS(KP575140729, T1K, T1F);
283 ro[WS(os, 4)] = FMA(KP520028571, T1C, T1B);
284 ro[WS(os, 10)] = FNMS(KP520028571, T1C, T1B);
285 T26 = FNMS(KP514918778, T25, T24);
286 T2E = FMA(KP686558370, T24, T25);
287 T2v = FNMS(KP302775637, T2n, T2o);
288 T2p = FMA(KP302775637, T2o, T2n);
289 T2i = FNMS(KP038632954, T2h, T2c);
290 T2s = FMA(KP038632954, T2c, T2h);
291 T2t = FMA(KP612264650, T2j, T2k);
292 T2l = FNMS(KP612264650, T2k, T2j);
293 T2F = FNMS(KP769338817, T2E, T2D);
294 T2N = FMA(KP769338817, T2E, T2D);
295 T2K = FMA(KP853480001, T2t, T2s);
296 T2u = FNMS(KP853480001, T2t, T2s);
297 T2w = FMA(KP957805992, T2v, T2u);
298 T2A = FNMS(KP522026385, T2u, T2v);
299 T1V = FNMS(KP083333333, T1U, T1P);
300 T2m = FNMS(KP853480001, T2l, T2i);
301 T2C = FMA(KP853480001, T2l, T2i);
302 T28 = FMA(KP581704778, T27, T26);
303 T2y = FNMS(KP859542535, T26, T27);
304 T2M = FNMS(KP522026385, T2m, T2p);
305 T2q = FMA(KP957805992, T2p, T2m);
306 }
307 {
308 E T2O, T2Q, T2z, T2P, T2L;
309 {
310 E T23, T2x, T2r, T29, T2J;
311 T23 = FMA(KP503537032, T22, T1V);
312 T2x = FNMS(KP251768516, T22, T1V);
313 T2O = FNMS(KP875502302, T2N, T2M);
314 T2Q = FMA(KP875502302, T2N, T2M);
315 T2r = FMA(KP516520780, T28, T23);
316 T29 = FNMS(KP516520780, T28, T23);
317 T2z = FMA(KP300462606, T2y, T2x);
318 T2J = FNMS(KP300462606, T2y, T2x);
319 io[WS(os, 12)] = FNMS(KP600477271, T2w, T2r);
320 io[WS(os, 1)] = FMA(KP600477271, T2w, T2r);
321 io[WS(os, 8)] = FMA(KP600477271, T2q, T29);
322 io[WS(os, 5)] = FNMS(KP600477271, T2q, T29);
323 T2P = FMA(KP520028571, T2K, T2J);
324 T2L = FNMS(KP520028571, T2K, T2J);
325 }
326 T2B = FMA(KP575140729, T2A, T2z);
327 T2H = FNMS(KP575140729, T2A, T2z);
328 io[WS(os, 11)] = FMA(KP575140729, T2Q, T2P);
329 io[WS(os, 6)] = FNMS(KP575140729, T2Q, T2P);
330 io[WS(os, 7)] = FMA(KP575140729, T2O, T2L);
331 io[WS(os, 2)] = FNMS(KP575140729, T2O, T2L);
332 T2I = FMA(KP968287244, T2F, T2C);
333 T2G = FNMS(KP968287244, T2F, T2C);
334 }
335 }
336 }
337 }
338 }
339 io[WS(os, 10)] = FMA(KP520028571, T2I, T2H);
340 io[WS(os, 4)] = FNMS(KP520028571, T2I, T2H);
341 io[WS(os, 9)] = FMA(KP520028571, T2G, T2B);
342 io[WS(os, 3)] = FNMS(KP520028571, T2G, T2B);
343 }
344 }
345 }
346
347 static const kdft_desc desc = { 13, "n1_13", {62, 0, 114, 0}, &GENUS, 0, 0, 0, 0 };
348
349 void X(codelet_n1_13) (planner *p) {
350 X(kdft_register) (p, n1_13, &desc);
351 }
352
353 #else /* HAVE_FMA */
354
355 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 13 -name n1_13 -include n.h */
356
357 /*
358 * This function contains 176 FP additions, 68 FP multiplications,
359 * (or, 138 additions, 30 multiplications, 38 fused multiply/add),
360 * 71 stack variables, 20 constants, and 52 memory accesses
361 */
362 #include "n.h"
363
364 static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
365 {
366 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
367 DK(KP083333333, +0.083333333333333333333333333333333333333333333);
368 DK(KP251768516, +0.251768516431883313623436926934233488546674281);
369 DK(KP075902986, +0.075902986037193865983102897245103540356428373);
370 DK(KP132983124, +0.132983124607418643793760531921092974399165133);
371 DK(KP258260390, +0.258260390311744861420450644284508567852516811);
372 DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
373 DK(KP300238635, +0.300238635966332641462884626667381504676006424);
374 DK(KP011599105, +0.011599105605768290721655456654083252189827041);
375 DK(KP156891391, +0.156891391051584611046832726756003269660212636);
376 DK(KP256247671, +0.256247671582936600958684654061725059144125175);
377 DK(KP174138601, +0.174138601152135905005660794929264742616964676);
378 DK(KP575140729, +0.575140729474003121368385547455453388461001608);
379 DK(KP503537032, +0.503537032863766627246873853868466977093348562);
380 DK(KP113854479, +0.113854479055790798974654345867655310534642560);
381 DK(KP265966249, +0.265966249214837287587521063842185948798330267);
382 DK(KP387390585, +0.387390585467617292130675966426762851778775217);
383 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
384 DK(KP300462606, +0.300462606288665774426601772289207995520941381);
385 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
386 {
387 INT i;
388 for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(52, is), MAKE_VOLATILE_STRIDE(52, os)) {
389 E T1, T1q, Tt, Tu, To, T22, T20, T24, TF, TH, TA, TI, T1X, T25, T2a;
390 E T2d, T18, T1n, T2k, T2n, T1l, T1r, T1f, T1o, T2h, T2m;
391 T1 = ri[0];
392 T1q = ii[0];
393 {
394 E Tf, Tp, Tb, TC, Tx, T6, TB, Tw, Ti, Tq, Tl, Tr, Tm, Ts, Td;
395 E Te, Tc, Tn;
396 Td = ri[WS(is, 8)];
397 Te = ri[WS(is, 5)];
398 Tf = Td + Te;
399 Tp = Td - Te;
400 {
401 E T7, T8, T9, Ta;
402 T7 = ri[WS(is, 12)];
403 T8 = ri[WS(is, 10)];
404 T9 = ri[WS(is, 4)];
405 Ta = T8 + T9;
406 Tb = T7 + Ta;
407 TC = T8 - T9;
408 Tx = FNMS(KP500000000, Ta, T7);
409 }
410 {
411 E T2, T3, T4, T5;
412 T2 = ri[WS(is, 1)];
413 T3 = ri[WS(is, 3)];
414 T4 = ri[WS(is, 9)];
415 T5 = T3 + T4;
416 T6 = T2 + T5;
417 TB = T3 - T4;
418 Tw = FNMS(KP500000000, T5, T2);
419 }
420 {
421 E Tg, Th, Tj, Tk;
422 Tg = ri[WS(is, 11)];
423 Th = ri[WS(is, 6)];
424 Ti = Tg + Th;
425 Tq = Tg - Th;
426 Tj = ri[WS(is, 7)];
427 Tk = ri[WS(is, 2)];
428 Tl = Tj + Tk;
429 Tr = Tj - Tk;
430 }
431 Tm = Ti + Tl;
432 Ts = Tq + Tr;
433 Tt = Tp + Ts;
434 Tu = T6 - Tb;
435 Tc = T6 + Tb;
436 Tn = Tf + Tm;
437 To = Tc + Tn;
438 T22 = KP300462606 * (Tc - Tn);
439 {
440 E T1Y, T1Z, TD, TE;
441 T1Y = TB + TC;
442 T1Z = Tq - Tr;
443 T20 = T1Y - T1Z;
444 T24 = T1Y + T1Z;
445 TD = KP866025403 * (TB - TC);
446 TE = FNMS(KP500000000, Ts, Tp);
447 TF = TD - TE;
448 TH = TD + TE;
449 }
450 {
451 E Ty, Tz, T1V, T1W;
452 Ty = Tw - Tx;
453 Tz = KP866025403 * (Ti - Tl);
454 TA = Ty + Tz;
455 TI = Ty - Tz;
456 T1V = Tw + Tx;
457 T1W = FNMS(KP500000000, Tm, Tf);
458 T1X = T1V - T1W;
459 T25 = T1V + T1W;
460 }
461 }
462 {
463 E TZ, T2b, TV, T1i, T1a, TQ, T1h, T19, T12, T1d, T15, T1c, T16, T2c, TX;
464 E TY, TW, T17;
465 TX = ii[WS(is, 8)];
466 TY = ii[WS(is, 5)];
467 TZ = TX + TY;
468 T2b = TX - TY;
469 {
470 E TR, TS, TT, TU;
471 TR = ii[WS(is, 12)];
472 TS = ii[WS(is, 10)];
473 TT = ii[WS(is, 4)];
474 TU = TS + TT;
475 TV = FNMS(KP500000000, TU, TR);
476 T1i = TR + TU;
477 T1a = TS - TT;
478 }
479 {
480 E TM, TN, TO, TP;
481 TM = ii[WS(is, 1)];
482 TN = ii[WS(is, 3)];
483 TO = ii[WS(is, 9)];
484 TP = TN + TO;
485 TQ = FNMS(KP500000000, TP, TM);
486 T1h = TM + TP;
487 T19 = TN - TO;
488 }
489 {
490 E T10, T11, T13, T14;
491 T10 = ii[WS(is, 11)];
492 T11 = ii[WS(is, 6)];
493 T12 = T10 + T11;
494 T1d = T10 - T11;
495 T13 = ii[WS(is, 7)];
496 T14 = ii[WS(is, 2)];
497 T15 = T13 + T14;
498 T1c = T13 - T14;
499 }
500 T16 = T12 + T15;
501 T2c = T1d + T1c;
502 T2a = T1h - T1i;
503 T2d = T2b + T2c;
504 TW = TQ + TV;
505 T17 = FNMS(KP500000000, T16, TZ);
506 T18 = TW - T17;
507 T1n = TW + T17;
508 {
509 E T2i, T2j, T1j, T1k;
510 T2i = TQ - TV;
511 T2j = KP866025403 * (T15 - T12);
512 T2k = T2i + T2j;
513 T2n = T2i - T2j;
514 T1j = T1h + T1i;
515 T1k = TZ + T16;
516 T1l = KP300462606 * (T1j - T1k);
517 T1r = T1j + T1k;
518 }
519 {
520 E T1b, T1e, T2f, T2g;
521 T1b = T19 + T1a;
522 T1e = T1c - T1d;
523 T1f = T1b + T1e;
524 T1o = T1e - T1b;
525 T2f = FNMS(KP500000000, T2c, T2b);
526 T2g = KP866025403 * (T1a - T19);
527 T2h = T2f - T2g;
528 T2m = T2g + T2f;
529 }
530 }
531 ro[0] = T1 + To;
532 io[0] = T1q + T1r;
533 {
534 E T1D, T1N, T1y, T1x, T1E, T1O, Tv, TK, T1J, T1Q, T1m, T1R, T1t, T1I, TG;
535 E TJ;
536 {
537 E T1B, T1C, T1v, T1w;
538 T1B = FMA(KP387390585, T1f, KP265966249 * T18);
539 T1C = FMA(KP113854479, T1o, KP503537032 * T1n);
540 T1D = T1B + T1C;
541 T1N = T1C - T1B;
542 T1y = FMA(KP575140729, Tu, KP174138601 * Tt);
543 T1v = FNMS(KP156891391, TH, KP256247671 * TI);
544 T1w = FMA(KP011599105, TF, KP300238635 * TA);
545 T1x = T1v - T1w;
546 T1E = T1y + T1x;
547 T1O = KP1_732050807 * (T1v + T1w);
548 }
549 Tv = FNMS(KP174138601, Tu, KP575140729 * Tt);
550 TG = FNMS(KP300238635, TF, KP011599105 * TA);
551 TJ = FMA(KP256247671, TH, KP156891391 * TI);
552 TK = TG - TJ;
553 T1J = KP1_732050807 * (TJ + TG);
554 T1Q = Tv - TK;
555 {
556 E T1g, T1H, T1p, T1s, T1G;
557 T1g = FNMS(KP132983124, T1f, KP258260390 * T18);
558 T1H = T1l - T1g;
559 T1p = FNMS(KP251768516, T1o, KP075902986 * T1n);
560 T1s = FNMS(KP083333333, T1r, T1q);
561 T1G = T1s - T1p;
562 T1m = FMA(KP2_000000000, T1g, T1l);
563 T1R = T1H + T1G;
564 T1t = FMA(KP2_000000000, T1p, T1s);
565 T1I = T1G - T1H;
566 }
567 {
568 E TL, T1u, T1P, T1S;
569 TL = FMA(KP2_000000000, TK, Tv);
570 T1u = T1m + T1t;
571 io[WS(os, 1)] = TL + T1u;
572 io[WS(os, 12)] = T1u - TL;
573 {
574 E T1z, T1A, T1T, T1U;
575 T1z = FMS(KP2_000000000, T1x, T1y);
576 T1A = T1t - T1m;
577 io[WS(os, 5)] = T1z + T1A;
578 io[WS(os, 8)] = T1A - T1z;
579 T1T = T1R - T1Q;
580 T1U = T1O + T1N;
581 io[WS(os, 4)] = T1T - T1U;
582 io[WS(os, 10)] = T1U + T1T;
583 }
584 T1P = T1N - T1O;
585 T1S = T1Q + T1R;
586 io[WS(os, 3)] = T1P + T1S;
587 io[WS(os, 9)] = T1S - T1P;
588 {
589 E T1L, T1M, T1F, T1K;
590 T1L = T1J + T1I;
591 T1M = T1E + T1D;
592 io[WS(os, 6)] = T1L - T1M;
593 io[WS(os, 11)] = T1M + T1L;
594 T1F = T1D - T1E;
595 T1K = T1I - T1J;
596 io[WS(os, 2)] = T1F + T1K;
597 io[WS(os, 7)] = T1K - T1F;
598 }
599 }
600 }
601 {
602 E T2y, T2I, T2J, T2K, T2B, T2L, T2e, T2p, T2u, T2G, T23, T2F, T28, T2t, T2l;
603 E T2o;
604 {
605 E T2w, T2x, T2z, T2A;
606 T2w = FMA(KP387390585, T20, KP265966249 * T1X);
607 T2x = FNMS(KP503537032, T25, KP113854479 * T24);
608 T2y = T2w + T2x;
609 T2I = T2w - T2x;
610 T2J = FMA(KP575140729, T2a, KP174138601 * T2d);
611 T2z = FNMS(KP300238635, T2n, KP011599105 * T2m);
612 T2A = FNMS(KP156891391, T2h, KP256247671 * T2k);
613 T2K = T2z + T2A;
614 T2B = KP1_732050807 * (T2z - T2A);
615 T2L = T2J + T2K;
616 }
617 T2e = FNMS(KP575140729, T2d, KP174138601 * T2a);
618 T2l = FMA(KP256247671, T2h, KP156891391 * T2k);
619 T2o = FMA(KP300238635, T2m, KP011599105 * T2n);
620 T2p = T2l - T2o;
621 T2u = T2e - T2p;
622 T2G = KP1_732050807 * (T2o + T2l);
623 {
624 E T21, T2r, T26, T27, T2s;
625 T21 = FNMS(KP132983124, T20, KP258260390 * T1X);
626 T2r = T22 - T21;
627 T26 = FMA(KP251768516, T24, KP075902986 * T25);
628 T27 = FNMS(KP083333333, To, T1);
629 T2s = T27 - T26;
630 T23 = FMA(KP2_000000000, T21, T22);
631 T2F = T2s - T2r;
632 T28 = FMA(KP2_000000000, T26, T27);
633 T2t = T2r + T2s;
634 }
635 {
636 E T29, T2q, T2N, T2O;
637 T29 = T23 + T28;
638 T2q = FMA(KP2_000000000, T2p, T2e);
639 ro[WS(os, 12)] = T29 - T2q;
640 ro[WS(os, 1)] = T29 + T2q;
641 {
642 E T2v, T2C, T2P, T2Q;
643 T2v = T2t - T2u;
644 T2C = T2y - T2B;
645 ro[WS(os, 10)] = T2v - T2C;
646 ro[WS(os, 4)] = T2v + T2C;
647 T2P = T28 - T23;
648 T2Q = FMS(KP2_000000000, T2K, T2J);
649 ro[WS(os, 5)] = T2P - T2Q;
650 ro[WS(os, 8)] = T2P + T2Q;
651 }
652 T2N = T2F - T2G;
653 T2O = T2L - T2I;
654 ro[WS(os, 11)] = T2N - T2O;
655 ro[WS(os, 6)] = T2N + T2O;
656 {
657 E T2H, T2M, T2D, T2E;
658 T2H = T2F + T2G;
659 T2M = T2I + T2L;
660 ro[WS(os, 7)] = T2H - T2M;
661 ro[WS(os, 2)] = T2H + T2M;
662 T2D = T2t + T2u;
663 T2E = T2y + T2B;
664 ro[WS(os, 3)] = T2D - T2E;
665 ro[WS(os, 9)] = T2D + T2E;
666 }
667 }
668 }
669 }
670 }
671 }
672
673 static const kdft_desc desc = { 13, "n1_13", {138, 30, 38, 0}, &GENUS, 0, 0, 0, 0 };
674
675 void X(codelet_n1_13) (planner *p) {
676 X(kdft_register) (p, n1_13, &desc);
677 }
678
679 #endif /* HAVE_FMA */