comparison src/fftw-3.3.3/dft/generic.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 #include "dft.h"
22
23 typedef struct {
24 solver super;
25 } S;
26
27 typedef struct {
28 plan_dft super;
29 twid *td;
30 INT n, is, os;
31 } P;
32
33
34 static void cdot(INT n, const E *x, const R *w,
35 R *or0, R *oi0, R *or1, R *oi1)
36 {
37 INT i;
38
39 E rr = x[0], ri = 0, ir = x[1], ii = 0;
40 x += 2;
41 for (i = 1; i + i < n; ++i) {
42 rr += x[0] * w[0];
43 ir += x[1] * w[0];
44 ri += x[2] * w[1];
45 ii += x[3] * w[1];
46 x += 4; w += 2;
47 }
48 *or0 = rr + ii;
49 *oi0 = ir - ri;
50 *or1 = rr - ii;
51 *oi1 = ir + ri;
52 }
53
54 static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o,
55 R *pr, R *pi)
56 {
57 INT i;
58 E sr, si;
59 o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2;
60 for (i = 1; i + i < n; ++i) {
61 sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]);
62 si += (o[1] = xi[i * xs] + xi[(n - i) * xs]);
63 o[2] = xr[i * xs] - xr[(n - i) * xs];
64 o[3] = xi[i * xs] - xi[(n - i) * xs];
65 o += 4;
66 }
67 *pr = sr;
68 *pi = si;
69 }
70
71 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
72 {
73 const P *ego = (const P *) ego_;
74 INT i;
75 INT n = ego->n, is = ego->is, os = ego->os;
76 const R *W = ego->td->W;
77 E *buf;
78 size_t bufsz = n * 2 * sizeof(E);
79
80 BUF_ALLOC(E *, buf, bufsz);
81 hartley(n, ri, ii, is, buf, ro, io);
82
83 for (i = 1; i + i < n; ++i) {
84 cdot(n, buf, W,
85 ro + i * os, io + i * os,
86 ro + (n - i) * os, io + (n - i) * os);
87 W += n - 1;
88 }
89
90 BUF_FREE(buf, bufsz);
91 }
92
93 static void awake(plan *ego_, enum wakefulness wakefulness)
94 {
95 P *ego = (P *) ego_;
96 static const tw_instr half_tw[] = {
97 { TW_HALF, 1, 0 },
98 { TW_NEXT, 1, 0 }
99 };
100
101 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
102 (ego->n - 1) / 2);
103 }
104
105 static void print(const plan *ego_, printer *p)
106 {
107 const P *ego = (const P *) ego_;
108
109 p->print(p, "(dft-generic-%D)", ego->n);
110 }
111
112 static int applicable(const solver *ego, const problem *p_,
113 const planner *plnr)
114 {
115 const problem_dft *p = (const problem_dft *) p_;
116 UNUSED(ego);
117
118 return (1
119 && p->sz->rnk == 1
120 && p->vecsz->rnk == 0
121 && (p->sz->dims[0].n % 2) == 1
122 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
123 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
124 && X(is_prime)(p->sz->dims[0].n)
125 );
126 }
127
128 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
129 {
130 const problem_dft *p;
131 P *pln;
132 INT n;
133
134 static const plan_adt padt = {
135 X(dft_solve), awake, print, X(plan_null_destroy)
136 };
137
138 if (!applicable(ego, p_, plnr))
139 return (plan *)0;
140
141 pln = MKPLAN_DFT(P, &padt, apply);
142
143 p = (const problem_dft *) p_;
144 pln->n = n = p->sz->dims[0].n;
145 pln->is = p->sz->dims[0].is;
146 pln->os = p->sz->dims[0].os;
147 pln->td = 0;
148
149 pln->super.super.ops.add = (n-1) * 5;
150 pln->super.super.ops.mul = 0;
151 pln->super.super.ops.fma = (n-1) * (n-1) ;
152 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
153 pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */
154 #endif
155
156 return &(pln->super.super);
157 }
158
159 static solver *mksolver(void)
160 {
161 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
162 S *slv = MKSOLVER(S, &sadt);
163 return &(slv->super);
164 }
165
166 void X(dft_generic_register)(planner *p)
167 {
168 REGISTER_SOLVER(p, mksolver());
169 }