Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/direct.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 | |
22 /* direct DFT solver, if we have a codelet */ | |
23 | |
24 #include "dft.h" | |
25 | |
26 typedef struct { | |
27 solver super; | |
28 const kdft_desc *desc; | |
29 kdft k; | |
30 int bufferedp; | |
31 } S; | |
32 | |
33 typedef struct { | |
34 plan_dft super; | |
35 | |
36 stride is, os, bufstride; | |
37 INT n, vl, ivs, ovs; | |
38 kdft k; | |
39 const S *slv; | |
40 } P; | |
41 | |
42 static void dobatch(const P *ego, R *ri, R *ii, R *ro, R *io, | |
43 R *buf, INT batchsz) | |
44 { | |
45 X(cpy2d_pair_ci)(ri, ii, buf, buf+1, | |
46 ego->n, WS(ego->is, 1), WS(ego->bufstride, 1), | |
47 batchsz, ego->ivs, 2); | |
48 | |
49 if (IABS(WS(ego->os, 1)) < IABS(ego->ovs)) { | |
50 /* transform directly to output */ | |
51 ego->k(buf, buf+1, ro, io, | |
52 ego->bufstride, ego->os, batchsz, 2, ego->ovs); | |
53 } else { | |
54 /* transform to buffer and copy back */ | |
55 ego->k(buf, buf+1, buf, buf+1, | |
56 ego->bufstride, ego->bufstride, batchsz, 2, 2); | |
57 X(cpy2d_pair_co)(buf, buf+1, ro, io, | |
58 ego->n, WS(ego->bufstride, 1), WS(ego->os, 1), | |
59 batchsz, 2, ego->ovs); | |
60 } | |
61 } | |
62 | |
63 static INT compute_batchsize(INT n) | |
64 { | |
65 /* round up to multiple of 4 */ | |
66 n += 3; | |
67 n &= -4; | |
68 | |
69 return (n + 2); | |
70 } | |
71 | |
72 static void apply_buf(const plan *ego_, R *ri, R *ii, R *ro, R *io) | |
73 { | |
74 const P *ego = (const P *) ego_; | |
75 R *buf; | |
76 INT vl = ego->vl, n = ego->n, batchsz = compute_batchsize(n); | |
77 INT i; | |
78 size_t bufsz = n * batchsz * 2 * sizeof(R); | |
79 | |
80 BUF_ALLOC(R *, buf, bufsz); | |
81 | |
82 for (i = 0; i < vl - batchsz; i += batchsz) { | |
83 dobatch(ego, ri, ii, ro, io, buf, batchsz); | |
84 ri += batchsz * ego->ivs; ii += batchsz * ego->ivs; | |
85 ro += batchsz * ego->ovs; io += batchsz * ego->ovs; | |
86 } | |
87 dobatch(ego, ri, ii, ro, io, buf, vl - i); | |
88 | |
89 BUF_FREE(buf, bufsz); | |
90 } | |
91 | |
92 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) | |
93 { | |
94 const P *ego = (const P *) ego_; | |
95 ASSERT_ALIGNED_DOUBLE; | |
96 ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs); | |
97 } | |
98 | |
99 static void apply_extra_iter(const plan *ego_, R *ri, R *ii, R *ro, R *io) | |
100 { | |
101 const P *ego = (const P *) ego_; | |
102 INT vl = ego->vl; | |
103 | |
104 ASSERT_ALIGNED_DOUBLE; | |
105 | |
106 /* for 4-way SIMD when VL is odd: iterate over an | |
107 even vector length VL, and then execute the last | |
108 iteration as a 2-vector with vector stride 0. */ | |
109 ego->k(ri, ii, ro, io, ego->is, ego->os, vl - 1, ego->ivs, ego->ovs); | |
110 | |
111 ego->k(ri + (vl - 1) * ego->ivs, ii + (vl - 1) * ego->ivs, | |
112 ro + (vl - 1) * ego->ovs, io + (vl - 1) * ego->ovs, | |
113 ego->is, ego->os, 1, 0, 0); | |
114 } | |
115 | |
116 static void destroy(plan *ego_) | |
117 { | |
118 P *ego = (P *) ego_; | |
119 X(stride_destroy)(ego->is); | |
120 X(stride_destroy)(ego->os); | |
121 X(stride_destroy)(ego->bufstride); | |
122 } | |
123 | |
124 static void print(const plan *ego_, printer *p) | |
125 { | |
126 const P *ego = (const P *) ego_; | |
127 const S *s = ego->slv; | |
128 const kdft_desc *d = s->desc; | |
129 | |
130 if (ego->slv->bufferedp) | |
131 p->print(p, "(dft-directbuf/%D-%D%v \"%s\")", | |
132 compute_batchsize(d->sz), d->sz, ego->vl, d->nam); | |
133 else | |
134 p->print(p, "(dft-direct-%D%v \"%s\")", d->sz, ego->vl, d->nam); | |
135 } | |
136 | |
137 static int applicable_buf(const solver *ego_, const problem *p_, | |
138 const planner *plnr) | |
139 { | |
140 const S *ego = (const S *) ego_; | |
141 const problem_dft *p = (const problem_dft *) p_; | |
142 const kdft_desc *d = ego->desc; | |
143 INT vl; | |
144 INT ivs, ovs; | |
145 INT batchsz; | |
146 | |
147 return ( | |
148 1 | |
149 && p->sz->rnk == 1 | |
150 && p->vecsz->rnk == 1 | |
151 && p->sz->dims[0].n == d->sz | |
152 | |
153 /* check strides etc */ | |
154 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) | |
155 | |
156 /* UGLY if IS <= IVS */ | |
157 && !(NO_UGLYP(plnr) && | |
158 X(iabs)(p->sz->dims[0].is) <= X(iabs)(ivs)) | |
159 | |
160 && (batchsz = compute_batchsize(d->sz), 1) | |
161 && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io, | |
162 2 * batchsz, p->sz->dims[0].os, | |
163 batchsz, 2, ovs, plnr)) | |
164 && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io, | |
165 2 * batchsz, p->sz->dims[0].os, | |
166 vl % batchsz, 2, ovs, plnr)) | |
167 | |
168 | |
169 && (0 | |
170 /* can operate out-of-place */ | |
171 || p->ri != p->ro | |
172 | |
173 /* can operate in-place as long as strides are the same */ | |
174 || X(tensor_inplace_strides2)(p->sz, p->vecsz) | |
175 | |
176 /* can do it if the problem fits in the buffer, no matter | |
177 what the strides are */ | |
178 || vl <= batchsz | |
179 ) | |
180 ); | |
181 } | |
182 | |
183 static int applicable(const solver *ego_, const problem *p_, | |
184 const planner *plnr, int *extra_iterp) | |
185 { | |
186 const S *ego = (const S *) ego_; | |
187 const problem_dft *p = (const problem_dft *) p_; | |
188 const kdft_desc *d = ego->desc; | |
189 INT vl; | |
190 INT ivs, ovs; | |
191 | |
192 return ( | |
193 1 | |
194 && p->sz->rnk == 1 | |
195 && p->vecsz->rnk <= 1 | |
196 && p->sz->dims[0].n == d->sz | |
197 | |
198 /* check strides etc */ | |
199 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) | |
200 | |
201 && ((*extra_iterp = 0, | |
202 (d->genus->okp(d, p->ri, p->ii, p->ro, p->io, | |
203 p->sz->dims[0].is, p->sz->dims[0].os, | |
204 vl, ivs, ovs, plnr))) | |
205 || | |
206 (*extra_iterp = 1, | |
207 ((d->genus->okp(d, p->ri, p->ii, p->ro, p->io, | |
208 p->sz->dims[0].is, p->sz->dims[0].os, | |
209 vl - 1, ivs, ovs, plnr)) | |
210 && | |
211 (d->genus->okp(d, p->ri, p->ii, p->ro, p->io, | |
212 p->sz->dims[0].is, p->sz->dims[0].os, | |
213 2, 0, 0, plnr))))) | |
214 | |
215 && (0 | |
216 /* can operate out-of-place */ | |
217 || p->ri != p->ro | |
218 | |
219 /* can always compute one transform */ | |
220 || vl == 1 | |
221 | |
222 /* can operate in-place as long as strides are the same */ | |
223 || X(tensor_inplace_strides2)(p->sz, p->vecsz) | |
224 ) | |
225 ); | |
226 } | |
227 | |
228 | |
229 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
230 { | |
231 const S *ego = (const S *) ego_; | |
232 P *pln; | |
233 const problem_dft *p; | |
234 iodim *d; | |
235 const kdft_desc *e = ego->desc; | |
236 | |
237 static const plan_adt padt = { | |
238 X(dft_solve), X(null_awake), print, destroy | |
239 }; | |
240 | |
241 UNUSED(plnr); | |
242 | |
243 if (ego->bufferedp) { | |
244 if (!applicable_buf(ego_, p_, plnr)) | |
245 return (plan *)0; | |
246 pln = MKPLAN_DFT(P, &padt, apply_buf); | |
247 } else { | |
248 int extra_iterp = 0; | |
249 if (!applicable(ego_, p_, plnr, &extra_iterp)) | |
250 return (plan *)0; | |
251 pln = MKPLAN_DFT(P, &padt, extra_iterp ? apply_extra_iter : apply); | |
252 } | |
253 | |
254 p = (const problem_dft *) p_; | |
255 d = p->sz->dims; | |
256 pln->k = ego->k; | |
257 pln->n = d[0].n; | |
258 pln->is = X(mkstride)(pln->n, d[0].is); | |
259 pln->os = X(mkstride)(pln->n, d[0].os); | |
260 pln->bufstride = X(mkstride)(pln->n, 2 * compute_batchsize(pln->n)); | |
261 | |
262 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); | |
263 pln->slv = ego; | |
264 | |
265 X(ops_zero)(&pln->super.super.ops); | |
266 X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops); | |
267 | |
268 if (ego->bufferedp) | |
269 pln->super.super.ops.other += 4 * pln->n * pln->vl; | |
270 | |
271 pln->super.super.could_prune_now_p = !ego->bufferedp; | |
272 return &(pln->super.super); | |
273 } | |
274 | |
275 static solver *mksolver(kdft k, const kdft_desc *desc, int bufferedp) | |
276 { | |
277 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; | |
278 S *slv = MKSOLVER(S, &sadt); | |
279 slv->k = k; | |
280 slv->desc = desc; | |
281 slv->bufferedp = bufferedp; | |
282 return &(slv->super); | |
283 } | |
284 | |
285 solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc) | |
286 { | |
287 return mksolver(k, desc, 0); | |
288 } | |
289 | |
290 solver *X(mksolver_dft_directbuf)(kdft k, const kdft_desc *desc) | |
291 { | |
292 return mksolver(k, desc, 1); | |
293 } |