Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.5/simd-support/simd-kcvi.h @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
41:481f5f8c5634 | 42:2cd0e3b3e1fd |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * Knights Corner Vector Instruction support added by Romain Dolbeau. | |
6 * Romain Dolbeau hereby places his modifications in the public domain. | |
7 * | |
8 * Permission is hereby granted, free of charge, to any person obtaining a copy | |
9 * of this software and associated documentation files (the "Software"), to deal | |
10 * in the Software without restriction, including without limitation the rights | |
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
12 * copies of the Software, and to permit persons to whom the Software is | |
13 * furnished to do so, subject to the following conditions: | |
14 * | |
15 * The above copyright notice and this permission notice shall be included in | |
16 * all copies or substantial portions of the Software. | |
17 * | |
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
24 * THE SOFTWARE. | |
25 * | |
26 */ | |
27 | |
28 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) | |
29 #error "Knights Corner vector instructions only works in single or double precision" | |
30 #endif | |
31 | |
32 #ifdef FFTW_SINGLE | |
33 # define DS(d,s) s /* single-precision option */ | |
34 # define SUFF(name) name ## _ps | |
35 # define SCAL(x) x ## f | |
36 #else /* !FFTW_SINGLE */ | |
37 # define DS(d,s) d /* double-precision option */ | |
38 # define SUFF(name) name ## _pd | |
39 # define SCAL(x) x | |
40 #endif /* FFTW_SINGLE */ | |
41 | |
42 #define SIMD_SUFFIX _kcvi /* for renaming */ | |
43 #define VL DS(4, 8) /* SIMD complex vector length */ | |
44 #define SIMD_VSTRIDE_OKA(x) ((x) == 2) | |
45 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK | |
46 | |
47 /* configuration ; KNF 0 0 0 1 0 1 */ | |
48 #define KCVI_VBYI_SINGLE_USE_MUL 0 | |
49 #define KCVI_VBYI_DOUBLE_USE_MUL 0 | |
50 #define KCVI_LD_DOUBLE_USE_UNPACK 1 | |
51 #define KCVI_ST_DOUBLE_USE_PACK 1 | |
52 #define KCVI_ST2_DOUBLE_USE_STN2 0 | |
53 #define KCVI_MULZ_USE_SWIZZLE 1 | |
54 | |
55 #include <immintrin.h> | |
56 | |
57 typedef DS(__m512d, __m512) V; | |
58 | |
59 #define VADD(a,b) SUFF(_mm512_add)(a,b) | |
60 #define VSUB(a,b) SUFF(_mm512_sub)(a,b) | |
61 #define VMUL(a,b) SUFF(_mm512_mul)(a,b) | |
62 | |
63 #define VFMA(a, b, c) SUFF(_mm512_fmadd)(a, b, c) //VADD(c, VMUL(a, b)) | |
64 #define VFMS(a, b, c) SUFF(_mm512_fmsub)(a, b, c) //VSUB(VMUL(a, b), c) | |
65 #define VFNMS(a, b, c) SUFF(_mm512_fnmadd)(a, b, c) //VSUB(c, VMUL(a, b)) | |
66 | |
67 #define LDK(x) x | |
68 #define VLIT(re, im) SUFF(_mm512_setr4)(im, re, im, re) | |
69 #define DVK(var, val) V var = SUFF(_mm512_set1)(val) | |
70 | |
71 static inline V LDA(const R *x, INT ivs, const R *aligned_like) { | |
72 return SUFF(_mm512_load)(x); | |
73 } | |
74 static inline void STA(R *x, V v, INT ovs, const R *aligned_like) { | |
75 SUFF(_mm512_store)(x, v); | |
76 } | |
77 | |
78 #if FFTW_SINGLE | |
79 #define VXOR(a,b) _mm512_xor_epi32(a,b) | |
80 | |
81 static inline V LDu(const R *x, INT ivs, const R *aligned_like) | |
82 { | |
83 (void)aligned_like; /* UNUSED */ | |
84 __m512i index = _mm512_set_epi32(7 * ivs + 1, 7 * ivs, | |
85 6 * ivs + 1, 6 * ivs, | |
86 5 * ivs + 1, 5 * ivs, | |
87 4 * ivs + 1, 4 * ivs, | |
88 3 * ivs + 1, 3 * ivs, | |
89 2 * ivs + 1, 2 * ivs, | |
90 1 * ivs + 1, 1 * ivs, | |
91 0 * ivs + 1, 0 * ivs); | |
92 | |
93 return _mm512_i32gather_ps(index, x, _MM_SCALE_4); | |
94 } | |
95 | |
96 static inline void STu(R *x, V v, INT ovs, const R *aligned_like) | |
97 { | |
98 (void)aligned_like; /* UNUSED */ | |
99 __m512i index = _mm512_set_epi32(7 * ovs + 1, 7 * ovs, | |
100 6 * ovs + 1, 6 * ovs, | |
101 5 * ovs + 1, 5 * ovs, | |
102 4 * ovs + 1, 4 * ovs, | |
103 3 * ovs + 1, 3 * ovs, | |
104 2 * ovs + 1, 2 * ovs, | |
105 1 * ovs + 1, 1 * ovs, | |
106 0 * ovs + 1, 0 * ovs); | |
107 | |
108 _mm512_i32scatter_ps(x, index, v, _MM_SCALE_4); | |
109 } | |
110 | |
111 static inline V FLIP_RI(V x) | |
112 { | |
113 return (V)_mm512_shuffle_epi32((__m512i)x, _MM_PERM_CDAB); | |
114 } | |
115 | |
116 #define VDUPH(a) (V)_mm512_shuffle_epi32((__m512i)a, _MM_PERM_DDBB); | |
117 #define VDUPL(a) (V)_mm512_shuffle_epi32((__m512i)a, _MM_PERM_CCAA); | |
118 | |
119 #else /* !FFTW_SINGLE */ | |
120 #define VXOR(a,b) _mm512_xor_epi64(a,b) | |
121 | |
122 #if defined (KCVI_LD_DOUBLE_USE_UNPACK) && KCVI_LD_DOUBLE_USE_UNPACK | |
123 static inline V LDu(const R *x, INT ivs, const R *aligned_like) | |
124 { | |
125 (void)aligned_like; /* UNUSED */ | |
126 V temp; | |
127 /* no need for hq here */ | |
128 temp = _mm512_mask_loadunpacklo_pd(temp, 0x0003, x + (0 * ivs)); | |
129 temp = _mm512_mask_loadunpacklo_pd(temp, 0x000c, x + (1 * ivs)); | |
130 temp = _mm512_mask_loadunpacklo_pd(temp, 0x0030, x + (2 * ivs)); | |
131 temp = _mm512_mask_loadunpacklo_pd(temp, 0x00c0, x + (3 * ivs)); | |
132 return temp; | |
133 } | |
134 #else | |
135 static inline V LDu(const R *x, INT ivs, const R *aligned_like) | |
136 { | |
137 (void)aligned_like; /* UNUSED */ | |
138 __declspec(align(64)) R temp[8]; | |
139 int i; | |
140 for (i = 0 ; i < 4 ; i++) { | |
141 temp[i*2] = x[i * ivs]; | |
142 temp[i*2+1] = x[i * ivs + 1]; | |
143 } | |
144 return _mm512_load_pd(temp); | |
145 } | |
146 #endif | |
147 | |
148 #if defined(KCVI_ST_DOUBLE_USE_PACK) && KCVI_ST_DOUBLE_USE_PACK | |
149 static inline void STu(R *x, V v, INT ovs, const R *aligned_like) | |
150 { | |
151 (void)aligned_like; /* UNUSED */ | |
152 /* no need for hq here */ | |
153 _mm512_mask_packstorelo_pd(x + (0 * ovs), 0x0003, v); | |
154 _mm512_mask_packstorelo_pd(x + (1 * ovs), 0x000c, v); | |
155 _mm512_mask_packstorelo_pd(x + (2 * ovs), 0x0030, v); | |
156 _mm512_mask_packstorelo_pd(x + (3 * ovs), 0x00c0, v); | |
157 } | |
158 #else | |
159 static inline void STu(R *x, V v, INT ovs, const R *aligned_like) | |
160 { | |
161 (void)aligned_like; /* UNUSED */ | |
162 __declspec(align(64)) R temp[8]; | |
163 int i; | |
164 _mm512_store_pd(temp, v); | |
165 for (i = 0 ; i < 4 ; i++) { | |
166 x[i * ovs] = temp[i*2]; | |
167 x[i * ovs + 1] = temp[i*2+1]; | |
168 } | |
169 } | |
170 #endif | |
171 | |
172 static inline V FLIP_RI(V x) | |
173 { | |
174 return (V)_mm512_shuffle_epi32((__m512i)x, _MM_PERM_BADC); | |
175 } | |
176 | |
177 #define VDUPH(a) (V)_mm512_shuffle_epi32((__m512i)a, _MM_PERM_DCDC); | |
178 #define VDUPL(a) (V)_mm512_shuffle_epi32((__m512i)a, _MM_PERM_BABA); | |
179 | |
180 #endif /* FFTW_SINGLE */ | |
181 | |
182 #define LD LDu | |
183 #define ST STu | |
184 | |
185 #ifdef FFTW_SINGLE | |
186 #define STM2(x, v, ovs, a) ST(x, v, ovs, a) | |
187 #define STN2(x, v0, v1, ovs) /* nop */ | |
188 | |
189 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) | |
190 { | |
191 (void)aligned_like; /* UNUSED */ | |
192 __m512i index = _mm512_set_epi32(15 * ovs, 14 * ovs, | |
193 13 * ovs, 12 * ovs, | |
194 11 * ovs, 10 * ovs, | |
195 9 * ovs, 8 * ovs, | |
196 7 * ovs, 6 * ovs, | |
197 5 * ovs, 4 * ovs, | |
198 3 * ovs, 2 * ovs, | |
199 1 * ovs, 0 * ovs); | |
200 | |
201 _mm512_i32scatter_ps(x, index, v, _MM_SCALE_4); | |
202 } | |
203 #define STN4(x, v0, v1, v2, v3, ovs) /* no-op */ | |
204 #else /* !FFTW_SINGLE */ | |
205 #if defined(KCVI_ST2_DOUBLE_USE_STN2) && KCVI_ST2_DOUBLE_USE_STN2 | |
206 #define STM2(x, v, ovs, a) /* no-op */ | |
207 static inline void STN2(R *x, V v0, V v1, INT ovs) { | |
208 /* we start | |
209 AB CD EF GH -> *x (2 DBL), ovs between complex | |
210 IJ KL MN OP -> *(x+2) (2DBL), ovs between complex | |
211 and we want | |
212 ABIJ EFMN -> *x (4 DBL), 2 * ovs between complex pairs | |
213 CDKL GHOP -> *(x+ovs) (4DBL), 2 * ovs between complex pairs | |
214 */ | |
215 V x00 = (V)_mm512_mask_permute4f128_epi32((__m512i)v0, 0xF0F0, (__m512i)v1, _MM_PERM_CDAB); | |
216 V x01 = (V)_mm512_mask_permute4f128_epi32((__m512i)v1, 0x0F0F, (__m512i)v0, _MM_PERM_CDAB); | |
217 _mm512_mask_packstorelo_pd(x + (0 * ovs) + 0, 0x000F, x00); | |
218 /* _mm512_mask_packstorehi_pd(x + (0 * ovs) + 8, 0x000F, x00); */ | |
219 _mm512_mask_packstorelo_pd(x + (2 * ovs) + 0, 0x00F0, x00); | |
220 /* _mm512_mask_packstorehi_pd(x + (2 * ovs) + 8, 0x00F0, x00); */ | |
221 _mm512_mask_packstorelo_pd(x + (1 * ovs) + 0, 0x000F, x01); | |
222 /* _mm512_mask_packstorehi_pd(x + (1 * ovs) + 8, 0x000F, x01); */ | |
223 _mm512_mask_packstorelo_pd(x + (3 * ovs) + 0, 0x00F0, x01); | |
224 /* _mm512_mask_packstorehi_pd(x + (3 * ovs) + 8, 0x00F0, x01); */ | |
225 } | |
226 #else | |
227 #define STM2(x, v, ovs, a) ST(x, v, ovs, a) | |
228 #define STN2(x, v0, v1, ovs) /* nop */ | |
229 #endif | |
230 | |
231 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like) | |
232 { | |
233 (void)aligned_like; /* UNUSED */ | |
234 __m512i index = _mm512_set_epi32(0, 0, 0, 0, 0, 0, 0, 0, | |
235 7 * ovs, 6 * ovs, | |
236 5 * ovs, 4 * ovs, | |
237 3 * ovs, 2 * ovs, | |
238 1 * ovs, 0 * ovs); | |
239 | |
240 _mm512_i32loscatter_pd(x, index, v, _MM_SCALE_8); | |
241 } | |
242 #define STN4(x, v0, v1, v2, v3, ovs) /* no-op */ | |
243 #endif /* FFTW_SINGLE */ | |
244 | |
245 static inline V VFMAI(V b, V c) { | |
246 V mpmp = VLIT(SCAL(1.0), SCAL(-1.0)); | |
247 return SUFF(_mm512_fmadd)(mpmp, SUFF(_mm512_swizzle)(b, _MM_SWIZ_REG_CDAB), c); | |
248 } | |
249 | |
250 static inline V VFNMSI(V b, V c) { | |
251 V mpmp = VLIT(SCAL(1.0), SCAL(-1.0)); | |
252 return SUFF(_mm512_fnmadd)(mpmp, SUFF(_mm512_swizzle)(b, _MM_SWIZ_REG_CDAB), c); | |
253 } | |
254 | |
255 static inline V VFMACONJ(V b, V c) { | |
256 V pmpm = VLIT(SCAL(-1.0), SCAL(1.0)); | |
257 return SUFF(_mm512_fmadd)(pmpm, b, c); | |
258 } | |
259 | |
260 static inline V VFMSCONJ(V b, V c) { | |
261 V pmpm = VLIT(SCAL(-1.0), SCAL(1.0)); | |
262 return SUFF(_mm512_fmsub)(pmpm, b, c); | |
263 } | |
264 | |
265 static inline V VFNMSCONJ(V b, V c) { | |
266 V pmpm = VLIT(SCAL(-1.0), SCAL(1.0)); | |
267 return SUFF(_mm512_fnmadd)(pmpm, b, c); | |
268 } | |
269 | |
270 static inline V VCONJ(V x) | |
271 { | |
272 V pmpm = VLIT(SCAL(-0.0), SCAL(0.0)); | |
273 return (V)VXOR((__m512i)pmpm, (__m512i)x); | |
274 } | |
275 | |
276 #ifdef FFTW_SINGLE | |
277 #if defined(KCVI_VBYI_SINGLE_USE_MUL) && KCVI_VBYI_SINGLE_USE_MUL | |
278 /* untested */ | |
279 static inline V VBYI(V x) | |
280 { | |
281 V mpmp = VLIT(SCAL(1.0), SCAL(-1.0)); | |
282 return _mm512_mul_ps(mpmp, _mm512_swizzle_ps(x, _MM_SWIZ_REG_CDAB)); | |
283 } | |
284 #else | |
285 static inline V VBYI(V x) | |
286 { | |
287 return FLIP_RI(VCONJ(x)); | |
288 } | |
289 #endif | |
290 #else /* !FFTW_SINGLE */ | |
291 #if defined(KCVI_VBYI_DOUBLE_USE_MUL) && KCVI_VBYI_DOUBLE_USE_MUL | |
292 /* on KNF, using mul_pd is slower than shuf128x32 + xor */ | |
293 static inline V VBYI(V x) | |
294 { | |
295 V mpmp = VLIT(SCAL(1.0), SCAL(-1.0)); | |
296 return _mm512_mul_pd(mpmp, _mm512_swizzle_pd(x, _MM_SWIZ_REG_CDAB)); | |
297 } | |
298 #else | |
299 static inline V VBYI(V x) | |
300 { | |
301 return FLIP_RI(VCONJ(x)); | |
302 } | |
303 #endif | |
304 #endif /* FFTW_SINGLE */ | |
305 | |
306 #if defined(KCVI_MULZ_USE_SWIZZLE) && KCVI_MULZ_USE_SWIZZLE | |
307 static inline V VZMUL(V tx, V sr) /* (a,b) (c,d) */ | |
308 { | |
309 V ac = SUFF(_mm512_mul)(tx, sr); /* (a*c,b*d) */ | |
310 V ad = SUFF(_mm512_mul)(tx, SUFF(_mm512_swizzle)(sr, _MM_SWIZ_REG_CDAB)); /* (a*d,b*c) */ | |
311 V acmbd = SUFF(_mm512_sub)(ac, SUFF(_mm512_swizzle)(ac, _MM_SWIZ_REG_CDAB)); /* (a*c-b*d, b*d-a*c) */ | |
312 V res = SUFF(_mm512_mask_add)(acmbd, DS(0x00aa,0xaaaa), ad, SUFF(_mm512_swizzle)(ad, _MM_SWIZ_REG_CDAB)); /* ([a*c+b*c] a*c-b*d, b*c+a*d) */ | |
313 return res; | |
314 } | |
315 static inline V VZMULJ(V tx, V sr) /* (a,b) (c,d) */ | |
316 { | |
317 V ac = SUFF(_mm512_mul)(tx, sr); /* (a*c,b*d) */ | |
318 V ad = SUFF(_mm512_mul)(tx, SUFF(_mm512_swizzle)(sr, _MM_SWIZ_REG_CDAB)); /* (a*d,b*c) */ | |
319 V acmbd = SUFF(_mm512_add)(ac, SUFF(_mm512_swizzle)(ac, _MM_SWIZ_REG_CDAB)); /* (a*c+b*d, b*d+a*c) */ | |
320 V res = SUFF(_mm512_mask_subr)(acmbd, DS(0x00aa,0xaaaa), ad, SUFF(_mm512_swizzle)(ad, _MM_SWIZ_REG_CDAB)); /* ([a*c+b*c] a*c+b*d, a*d-b*c) */ | |
321 return res; | |
322 } | |
323 static inline V VZMULI(V tx, V sr) /* (a,b) (c,d) */ | |
324 { | |
325 DVK(zero, SCAL(0.0)); | |
326 V ac = SUFF(_mm512_mul)(tx, sr); /* (a*c,b*d) */ | |
327 V ad = SUFF(_mm512_fnmadd)(tx, SUFF(_mm512_swizzle)(sr, _MM_SWIZ_REG_CDAB), zero); /* (-a*d,-b*c) */ | |
328 V acmbd = SUFF(_mm512_subr)(ac, SUFF(_mm512_swizzle)(ac, _MM_SWIZ_REG_CDAB)); /* (b*d-a*c, a*c-b*d) */ | |
329 V res = SUFF(_mm512_mask_add)(acmbd, DS(0x0055,0x5555), ad, SUFF(_mm512_swizzle)(ad, _MM_SWIZ_REG_CDAB)); /* (-a*d-b*c, a*c-b*d) */ | |
330 return res; | |
331 } | |
332 static inline V VZMULIJ(V tx, V sr) /* (a,b) (c,d) */ | |
333 { | |
334 DVK(zero, SCAL(0.0)); | |
335 V ac = SUFF(_mm512_mul)(tx, sr); /* (a*c,b*d) */ | |
336 V ad = SUFF(_mm512_fnmadd)(tx, SUFF(_mm512_swizzle)(sr, _MM_SWIZ_REG_CDAB), zero); /* (-a*d,-b*c) */ | |
337 V acmbd = SUFF(_mm512_add)(ac, SUFF(_mm512_swizzle)(ac, _MM_SWIZ_REG_CDAB)); /* (b*d+a*c, a*c+b*d) */ | |
338 V res = SUFF(_mm512_mask_sub)(acmbd, DS(0x0055,0x5555), ad, SUFF(_mm512_swizzle)(ad, _MM_SWIZ_REG_CDAB)); /* (-a*d+b*c, a*c-b*d) */ | |
339 return res; | |
340 } | |
341 #else | |
342 static inline V VZMUL(V tx, V sr) | |
343 { | |
344 V tr = VDUPL(tx); | |
345 V ti = VDUPH(tx); | |
346 tr = VMUL(sr, tr); | |
347 sr = VBYI(sr); | |
348 return VFMA(ti, sr, tr); | |
349 } | |
350 | |
351 static inline V VZMULJ(V tx, V sr) | |
352 { | |
353 V tr = VDUPL(tx); | |
354 V ti = VDUPH(tx); | |
355 tr = VMUL(sr, tr); | |
356 sr = VBYI(sr); | |
357 return VFNMS(ti, sr, tr); | |
358 } | |
359 | |
360 static inline V VZMULI(V tx, V sr) | |
361 { | |
362 V tr = VDUPL(tx); | |
363 V ti = VDUPH(tx); | |
364 ti = VMUL(ti, sr); | |
365 sr = VBYI(sr); | |
366 return VFMS(tr, sr, ti); | |
367 } | |
368 | |
369 static inline V VZMULIJ(V tx, V sr) | |
370 { | |
371 V tr = VDUPL(tx); | |
372 V ti = VDUPH(tx); | |
373 ti = VMUL(ti, sr); | |
374 sr = VBYI(sr); | |
375 return VFMA(tr, sr, ti); | |
376 } | |
377 #endif | |
378 | |
379 /* twiddle storage #1: compact, slower */ | |
380 #ifdef FFTW_SINGLE | |
381 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}, {TW_CEXP, v+4, x}, {TW_CEXP, v+5, x}, {TW_CEXP, v+6, x}, {TW_CEXP, v+7, x} | |
382 #else /* !FFTW_SINGLE */ | |
383 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x} | |
384 #endif /* FFTW_SINGLE */ | |
385 #define TWVL1 (VL) | |
386 | |
387 static inline V BYTW1(const R *t, V sr) | |
388 { | |
389 return VZMUL(LDA(t, 2, t), sr); | |
390 } | |
391 | |
392 static inline V BYTWJ1(const R *t, V sr) | |
393 { | |
394 return VZMULJ(LDA(t, 2, t), sr); | |
395 } | |
396 | |
397 /* twiddle storage #2: twice the space, faster (when in cache) */ | |
398 #ifdef FFTW_SINGLE | |
399 # define VTW2(v,x) \ | |
400 {TW_COS, v , x}, {TW_COS, v , x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
401 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ | |
402 {TW_COS, v+4, x}, {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+5, x}, \ | |
403 {TW_COS, v+6, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, {TW_COS, v+7, x}, \ | |
404 {TW_SIN, v , -x}, {TW_SIN, v , x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ | |
405 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}, \ | |
406 {TW_SIN, v+4, -x}, {TW_SIN, v+4, x}, {TW_SIN, v+5, -x}, {TW_SIN, v+5, x}, \ | |
407 {TW_SIN, v+6, -x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, -x}, {TW_SIN, v+7, x} | |
408 #else /* !FFTW_SINGLE */ | |
409 # define VTW2(v,x) \ | |
410 {TW_COS, v , x}, {TW_COS, v , x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
411 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ | |
412 {TW_SIN, v , -x}, {TW_SIN, v , x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ | |
413 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x} | |
414 #endif /* FFTW_SINGLE */ | |
415 #define TWVL2 (2 * VL) | |
416 | |
417 static inline V BYTW2(const R *t, V sr) | |
418 { | |
419 const V *twp = (const V *)t; | |
420 V si = FLIP_RI(sr); | |
421 V tr = twp[0], ti = twp[1]; | |
422 /* V tr = LD(t, 2, t), ti = LD(t + VL, 2, t + VL); */ | |
423 return VFMA(tr, sr, VMUL(ti, si)); | |
424 } | |
425 | |
426 static inline V BYTWJ2(const R *t, V sr) | |
427 { | |
428 const V *twp = (const V *)t; | |
429 V si = FLIP_RI(sr); | |
430 V tr = twp[0], ti = twp[1]; | |
431 /* V tr = LD(t, 2, t), ti = LD(t + VL, 2, t + VL); */ | |
432 return VFNMS(ti, si, VMUL(tr, sr)); | |
433 } | |
434 | |
435 /* twiddle storage #3 */ | |
436 #define VTW3(v,x) VTW1(v,x) | |
437 #define TWVL3 TWVL1 | |
438 | |
439 /* twiddle storage for split arrays */ | |
440 #ifdef FFTW_SINGLE | |
441 # define VTWS(v,x) \ | |
442 {TW_COS, v , x}, {TW_COS, v+1 , x}, {TW_COS, v+2 , x}, {TW_COS, v+3 , x}, \ | |
443 {TW_COS, v+4 , x}, {TW_COS, v+5 , x}, {TW_COS, v+6 , x}, {TW_COS, v+7 , x}, \ | |
444 {TW_COS, v+8 , x}, {TW_COS, v+9 , x}, {TW_COS, v+10, x}, {TW_COS, v+11, x}, \ | |
445 {TW_COS, v+12, x}, {TW_COS, v+13, x}, {TW_COS, v+14, x}, {TW_COS, v+15, x}, \ | |
446 {TW_SIN, v , x}, {TW_SIN, v+1 , x}, {TW_SIN, v+2 , x}, {TW_SIN, v+3 , x}, \ | |
447 {TW_SIN, v+4 , x}, {TW_SIN, v+5 , x}, {TW_SIN, v+6 , x}, {TW_SIN, v+7 , x}, \ | |
448 {TW_SIN, v+8 , x}, {TW_SIN, v+9 , x}, {TW_SIN, v+10, x}, {TW_SIN, v+11, x}, \ | |
449 {TW_SIN, v+12, x}, {TW_SIN, v+13, x}, {TW_SIN, v+14, x}, {TW_SIN, v+15, x} | |
450 #else /* !FFTW_SINGLE */ | |
451 # define VTWS(v,x) \ | |
452 {TW_COS, v , x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
453 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \ | |
454 {TW_SIN, v , x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \ | |
455 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x} | |
456 #endif /* FFTW_SINGLE */ | |
457 #define TWVLS (2 * VL) | |
458 | |
459 #define VLEAVE() /* nothing */ | |
460 | |
461 #include "simd-common.h" |