comparison src/fftw-3.3.5/simd-support/simd-avx.h @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
comparison
equal deleted inserted replaced
41:481f5f8c5634 42:2cd0e3b3e1fd
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * Improvements to 256-bit AVX by Erik Lindahl, 2015.
6 * Erik Lindahl places his modifications in the public domain.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
25 #error "AVX only works in single or double precision"
26 #endif
27
28 #ifdef FFTW_SINGLE
29 # define DS(d,s) s /* single-precision option */
30 # define SUFF(name) name ## s
31 #else
32 # define DS(d,s) d /* double-precision option */
33 # define SUFF(name) name ## d
34 #endif
35
36 #define SIMD_SUFFIX _avx /* for renaming */
37 #define VL DS(2, 4) /* SIMD complex vector length */
38 #define SIMD_VSTRIDE_OKA(x) ((x) == 2)
39 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
40
41 #if defined(__GNUC__) && !defined(__AVX__) /* sanity check */
42 #error "compiling simd-avx.h without -mavx"
43 #endif
44
45 #ifdef _MSC_VER
46 #ifndef inline
47 #define inline __inline
48 #endif
49 #endif
50
51 #include <immintrin.h>
52
53 typedef DS(__m256d, __m256) V;
54 #define VADD SUFF(_mm256_add_p)
55 #define VSUB SUFF(_mm256_sub_p)
56 #define VMUL SUFF(_mm256_mul_p)
57 #define VXOR SUFF(_mm256_xor_p)
58 #define VSHUF SUFF(_mm256_shuffle_p)
59 #define VPERM1 SUFF(_mm256_permute_p)
60
61 #define SHUFVALD(fp0,fp1) \
62 (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0)))
63 #define SHUFVALS(fp0,fp1,fp2,fp3) \
64 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
65
66 #define VDUPL(x) DS(_mm256_movedup_pd(x), _mm256_moveldup_ps(x))
67 #define VDUPH(x) DS(_mm256_permute_pd(x,SHUFVALD(1,1)), _mm256_movehdup_ps(x))
68
69 #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1))
70 #define DVK(var, val) V var = VLIT(val, val)
71 #define LDK(x) x
72
73 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
74 {
75 (void)aligned_like; /* UNUSED */
76 (void)ivs; /* UNUSED */
77 return SUFF(_mm256_loadu_p)(x);
78 }
79
80 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
81 {
82 (void)aligned_like; /* UNUSED */
83 (void)ovs; /* UNUSED */
84 SUFF(_mm256_storeu_p)(x, v);
85 }
86
87 #if FFTW_SINGLE
88
89 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
90 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
91 #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val)
92 #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val)
93
94 /* it seems like the only AVX way to store 4 complex floats is to
95 extract two pairs of complex floats into two __m128 registers, and
96 then use SSE-like half-stores. Similarly, to load 4 complex
97 floats, we load two pairs of complex floats into two __m128
98 registers, and then pack the two __m128 registers into one __m256
99 value. */
100 static inline V LD(const R *x, INT ivs, const R *aligned_like)
101 {
102 __m128 l0, l1, h0, h1;
103 (void)aligned_like; /* UNUSED */
104 #if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8)
105 l0 = LOADL(x, SUFF(_mm_undefined_p)());
106 l1 = LOADL(x + ivs, SUFF(_mm_undefined_p)());
107 h0 = LOADL(x + 2*ivs, SUFF(_mm_undefined_p)());
108 h1 = LOADL(x + 3*ivs, SUFF(_mm_undefined_p)());
109 #else
110 l0 = LOADL(x, l0);
111 l1 = LOADL(x + ivs, l1);
112 h0 = LOADL(x + 2*ivs, h0);
113 h1 = LOADL(x + 3*ivs, h1);
114 #endif
115 l0 = SUFF(_mm_movelh_p)(l0,l1);
116 h0 = SUFF(_mm_movelh_p)(h0,h1);
117 return _mm256_insertf128_ps(_mm256_castps128_ps256(l0), h0, 1);
118 }
119
120 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
121 {
122 __m128 h = _mm256_extractf128_ps(v, 1);
123 __m128 l = _mm256_castps256_ps128(v);
124 (void)aligned_like; /* UNUSED */
125 /* WARNING: the extra_iter hack depends upon STOREL occurring
126 after STOREH */
127 STOREH(x + 3*ovs, h);
128 STOREL(x + 2*ovs, h);
129 STOREH(x + ovs, l);
130 STOREL(x, l);
131 }
132
133 #define STM2(x, v, ovs, aligned_like) /* no-op */
134 static inline void STN2(R *x, V v0, V v1, INT ovs)
135 {
136 V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1));
137 V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3));
138 __m128 h0 = _mm256_extractf128_ps(x0, 1);
139 __m128 l0 = _mm256_castps256_ps128(x0);
140 __m128 h1 = _mm256_extractf128_ps(x1, 1);
141 __m128 l1 = _mm256_castps256_ps128(x1);
142
143 *(__m128 *)(x + 3*ovs) = h1;
144 *(__m128 *)(x + 2*ovs) = h0;
145 *(__m128 *)(x + 1*ovs) = l1;
146 *(__m128 *)(x + 0*ovs) = l0;
147 }
148
149 #define STM4(x, v, ovs, aligned_like) /* no-op */
150 #define STN4(x, v0, v1, v2, v3, ovs) \
151 { \
152 V xxx0, xxx1, xxx2, xxx3; \
153 V yyy0, yyy1, yyy2, yyy3; \
154 xxx0 = _mm256_unpacklo_ps(v0, v2); \
155 xxx1 = _mm256_unpackhi_ps(v0, v2); \
156 xxx2 = _mm256_unpacklo_ps(v1, v3); \
157 xxx3 = _mm256_unpackhi_ps(v1, v3); \
158 yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \
159 yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \
160 yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \
161 yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \
162 *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \
163 *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \
164 *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \
165 *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \
166 *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \
167 *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \
168 *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \
169 *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \
170 }
171
172 #else
173 static inline __m128d VMOVAPD_LD(const R *x)
174 {
175 /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x))
176 into a 256-bit vmovapd, which requires 32-byte aligment instead of
177 16-byte alignment.
178
179 Force the use of vmovapd via asm until compilers stabilize.
180 */
181 #if defined(__GNUC__)
182 __m128d var;
183 __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0]));
184 return var;
185 #else
186 return *(const __m128d *)x;
187 #endif
188 }
189
190 static inline V LD(const R *x, INT ivs, const R *aligned_like)
191 {
192 V var;
193 (void)aligned_like; /* UNUSED */
194 var = _mm256_castpd128_pd256(VMOVAPD_LD(x));
195 var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1);
196 return var;
197 }
198
199 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
200 {
201 (void)aligned_like; /* UNUSED */
202 /* WARNING: the extra_iter hack depends upon the store of the low
203 part occurring after the store of the high part */
204 *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1);
205 *(__m128d *)x = _mm256_castpd256_pd128(v);
206 }
207
208
209 #define STM2 ST
210 #define STN2(x, v0, v1, ovs) /* nop */
211 #define STM4(x, v, ovs, aligned_like) /* no-op */
212
213 /* STN4 is a macro, not a function, thanks to Visual C++ developers
214 deciding "it would be infrequent that people would want to pass more
215 than 3 [__m128 parameters] by value." Even though the comment
216 was made about __m128 parameters, it appears to apply to __m256
217 parameters as well. */
218 #define STN4(x, v0, v1, v2, v3, ovs) \
219 { \
220 V xxx0, xxx1, xxx2, xxx3; \
221 xxx0 = _mm256_unpacklo_pd(v0, v1); \
222 xxx1 = _mm256_unpackhi_pd(v0, v1); \
223 xxx2 = _mm256_unpacklo_pd(v2, v3); \
224 xxx3 = _mm256_unpackhi_pd(v2, v3); \
225 STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \
226 STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \
227 STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \
228 STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \
229 }
230 #endif
231
232 static inline V FLIP_RI(V x)
233 {
234 return VPERM1(x,
235 DS(SHUFVALD(1, 0),
236 SHUFVALS(1, 0, 3, 2)));
237 }
238
239 static inline V VCONJ(V x)
240 {
241 V pmpm = VLIT(-0.0, 0.0);
242 return VXOR(pmpm, x);
243 }
244
245 static inline V VBYI(V x)
246 {
247 return FLIP_RI(VCONJ(x));
248 }
249
250 /* FMA support */
251 #define VFMA(a, b, c) VADD(c, VMUL(a, b))
252 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
253 #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
254 #define VFMAI(b, c) SUFF(_mm256_addsub_p)(c,FLIP_RI(b))
255 #define VFNMSI(b, c) VSUB(c, VBYI(b))
256 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
257 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
258 #define VFNMSCONJ(b,c) SUFF(_mm256_addsub_p)(c,b)
259
260 static inline V VZMUL(V tx, V sr)
261 {
262 V tr = VDUPL(tx);
263 V ti = VDUPH(tx);
264 tr = VMUL(tr, sr);
265 ti = VMUL(ti, FLIP_RI(sr));
266 return SUFF(_mm256_addsub_p)(tr,ti);
267 }
268
269 static inline V VZMULJ(V tx, V sr)
270 {
271 V tr = VDUPL(tx);
272 V ti = VDUPH(tx);
273 tr = VMUL(tr, sr);
274 sr = VBYI(sr);
275 return VFNMS(ti, sr, tr);
276 }
277
278 static inline V VZMULI(V tx, V sr)
279 {
280 V tr = VDUPL(tx);
281 V ti = VDUPH(tx);
282 ti = VMUL(ti, sr);
283 sr = VBYI(sr);
284 return VFMS(tr, sr, ti);
285 }
286
287 static inline V VZMULIJ(V tx, V sr)
288 {
289 V tr = VDUPL(tx);
290 V ti = VDUPH(tx);
291 ti = VMUL(ti, sr);
292 tr = VMUL(tr, FLIP_RI(sr));
293 return SUFF(_mm256_addsub_p)(ti,tr);
294 }
295
296 /* twiddle storage #1: compact, slower */
297 #ifdef FFTW_SINGLE
298 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
299 #else
300 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
301 #endif
302 #define TWVL1 (VL)
303
304 static inline V BYTW1(const R *t, V sr)
305 {
306 return VZMUL(LDA(t, 2, t), sr);
307 }
308
309 static inline V BYTWJ1(const R *t, V sr)
310 {
311 return VZMULJ(LDA(t, 2, t), sr);
312 }
313
314 /* twiddle storage #2: twice the space, faster (when in cache) */
315 #ifdef FFTW_SINGLE
316 # define VTW2(v,x) \
317 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
318 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
319 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
320 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
321 #else
322 # define VTW2(v,x) \
323 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
324 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
325 #endif
326 #define TWVL2 (2 * VL)
327
328 static inline V BYTW2(const R *t, V sr)
329 {
330 const V *twp = (const V *)t;
331 V si = FLIP_RI(sr);
332 V tr = twp[0], ti = twp[1];
333 return VFMA(tr, sr, VMUL(ti, si));
334 }
335
336 static inline V BYTWJ2(const R *t, V sr)
337 {
338 const V *twp = (const V *)t;
339 V si = FLIP_RI(sr);
340 V tr = twp[0], ti = twp[1];
341 return VFNMS(ti, si, VMUL(tr, sr));
342 }
343
344 /* twiddle storage #3 */
345 #define VTW3 VTW1
346 #define TWVL3 TWVL1
347
348 /* twiddle storage for split arrays */
349 #ifdef FFTW_SINGLE
350 # define VTWS(v,x) \
351 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
352 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
353 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \
354 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
355 #else
356 # define VTWS(v,x) \
357 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
358 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
359 #endif
360 #define TWVLS (2 * VL)
361
362
363 /* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE.
364 See Intel Optimization Manual (April 2011, version 248966), Section
365 11.3 */
366 #define VLEAVE _mm256_zeroupper
367
368 #include "simd-common.h"