Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.5/reodft/redft00e-r2hc.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
41:481f5f8c5634 | 42:2cd0e3b3e1fd |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 | |
22 /* Do a REDFT00 problem via an R2HC problem, with some pre/post-processing. | |
23 | |
24 This code uses the trick from FFTPACK, also documented in a similar | |
25 form by Numerical Recipes. Unfortunately, this algorithm seems to | |
26 have intrinsic numerical problems (similar to those in | |
27 reodft11e-r2hc.c), possibly due to the fact that it multiplies its | |
28 input by a cosine, causing a loss of precision near the zero. For | |
29 transforms of 16k points, it has already lost three or four decimal | |
30 places of accuracy, which we deem unacceptable. | |
31 | |
32 So, we have abandoned this algorithm in favor of the one in | |
33 redft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. | |
34 The only other alternative in the literature that does not have | |
35 similar numerical difficulties seems to be the direct adaptation of | |
36 the Cooley-Tukey decomposition for symmetric data, but this would | |
37 require a whole new set of codelets and it's not clear that it's | |
38 worth it at this point. However, we did implement the latter | |
39 algorithm for the specific case of odd n (logically adapting the | |
40 split-radix algorithm); see reodft00e-splitradix.c. */ | |
41 | |
42 #include "reodft.h" | |
43 | |
44 typedef struct { | |
45 solver super; | |
46 } S; | |
47 | |
48 typedef struct { | |
49 plan_rdft super; | |
50 plan *cld; | |
51 twid *td; | |
52 INT is, os; | |
53 INT n; | |
54 INT vl; | |
55 INT ivs, ovs; | |
56 } P; | |
57 | |
58 static void apply(const plan *ego_, R *I, R *O) | |
59 { | |
60 const P *ego = (const P *) ego_; | |
61 INT is = ego->is, os = ego->os; | |
62 INT i, n = ego->n; | |
63 INT iv, vl = ego->vl; | |
64 INT ivs = ego->ivs, ovs = ego->ovs; | |
65 R *W = ego->td->W; | |
66 R *buf; | |
67 E csum; | |
68 | |
69 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | |
70 | |
71 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | |
72 buf[0] = I[0] + I[is * n]; | |
73 csum = I[0] - I[is * n]; | |
74 for (i = 1; i < n - i; ++i) { | |
75 E a, b, apb, amb; | |
76 a = I[is * i]; | |
77 b = I[is * (n - i)]; | |
78 csum += W[2*i] * (amb = K(2.0)*(a - b)); | |
79 amb = W[2*i+1] * amb; | |
80 apb = (a + b); | |
81 buf[i] = apb - amb; | |
82 buf[n - i] = apb + amb; | |
83 } | |
84 if (i == n - i) { | |
85 buf[i] = K(2.0) * I[is * i]; | |
86 } | |
87 | |
88 { | |
89 plan_rdft *cld = (plan_rdft *) ego->cld; | |
90 cld->apply((plan *) cld, buf, buf); | |
91 } | |
92 | |
93 /* FIXME: use recursive/cascade summation for better stability? */ | |
94 O[0] = buf[0]; | |
95 O[os] = csum; | |
96 for (i = 1; i + i < n; ++i) { | |
97 INT k = i + i; | |
98 O[os * k] = buf[i]; | |
99 O[os * (k + 1)] = O[os * (k - 1)] - buf[n - i]; | |
100 } | |
101 if (i + i == n) { | |
102 O[os * n] = buf[i]; | |
103 } | |
104 } | |
105 | |
106 X(ifree)(buf); | |
107 } | |
108 | |
109 static void awake(plan *ego_, enum wakefulness wakefulness) | |
110 { | |
111 P *ego = (P *) ego_; | |
112 static const tw_instr redft00e_tw[] = { | |
113 { TW_COS, 0, 1 }, | |
114 { TW_SIN, 0, 1 }, | |
115 { TW_NEXT, 1, 0 } | |
116 }; | |
117 | |
118 X(plan_awake)(ego->cld, wakefulness); | |
119 X(twiddle_awake)(wakefulness, | |
120 &ego->td, redft00e_tw, 2*ego->n, 1, (ego->n+1)/2); | |
121 } | |
122 | |
123 static void destroy(plan *ego_) | |
124 { | |
125 P *ego = (P *) ego_; | |
126 X(plan_destroy_internal)(ego->cld); | |
127 } | |
128 | |
129 static void print(const plan *ego_, printer *p) | |
130 { | |
131 const P *ego = (const P *) ego_; | |
132 p->print(p, "(redft00e-r2hc-%D%v%(%p%))", ego->n + 1, ego->vl, ego->cld); | |
133 } | |
134 | |
135 static int applicable0(const solver *ego_, const problem *p_) | |
136 { | |
137 const problem_rdft *p = (const problem_rdft *) p_; | |
138 UNUSED(ego_); | |
139 | |
140 return (1 | |
141 && p->sz->rnk == 1 | |
142 && p->vecsz->rnk <= 1 | |
143 && p->kind[0] == REDFT00 | |
144 && p->sz->dims[0].n > 1 /* n == 1 is not well-defined */ | |
145 ); | |
146 } | |
147 | |
148 static int applicable(const solver *ego, const problem *p, const planner *plnr) | |
149 { | |
150 return (!NO_SLOWP(plnr) && applicable0(ego, p)); | |
151 } | |
152 | |
153 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
154 { | |
155 P *pln; | |
156 const problem_rdft *p; | |
157 plan *cld; | |
158 R *buf; | |
159 INT n; | |
160 opcnt ops; | |
161 | |
162 static const plan_adt padt = { | |
163 X(rdft_solve), awake, print, destroy | |
164 }; | |
165 | |
166 if (!applicable(ego_, p_, plnr)) | |
167 return (plan *)0; | |
168 | |
169 p = (const problem_rdft *) p_; | |
170 | |
171 n = p->sz->dims[0].n - 1; | |
172 A(n > 0); | |
173 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | |
174 | |
175 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), | |
176 X(mktensor_0d)(), | |
177 buf, buf, R2HC)); | |
178 X(ifree)(buf); | |
179 if (!cld) | |
180 return (plan *)0; | |
181 | |
182 pln = MKPLAN_RDFT(P, &padt, apply); | |
183 | |
184 pln->n = n; | |
185 pln->is = p->sz->dims[0].is; | |
186 pln->os = p->sz->dims[0].os; | |
187 pln->cld = cld; | |
188 pln->td = 0; | |
189 | |
190 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); | |
191 | |
192 X(ops_zero)(&ops); | |
193 ops.other = 8 + (n-1)/2 * 11 + (1 - n % 2) * 5; | |
194 ops.add = 2 + (n-1)/2 * 5; | |
195 ops.mul = (n-1)/2 * 3 + (1 - n % 2) * 1; | |
196 | |
197 X(ops_zero)(&pln->super.super.ops); | |
198 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); | |
199 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); | |
200 | |
201 return &(pln->super.super); | |
202 } | |
203 | |
204 /* constructor */ | |
205 static solver *mksolver(void) | |
206 { | |
207 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | |
208 S *slv = MKSOLVER(S, &sadt); | |
209 return &(slv->super); | |
210 } | |
211 | |
212 void X(redft00e_r2hc_register)(planner *p) | |
213 { | |
214 REGISTER_SOLVER(p, mksolver()); | |
215 } |