Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.5/rdft/scalar/r2cf/r2cf_20.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
41:481f5f8c5634 | 42:2cd0e3b3e1fd |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sat Jul 30 16:46:10 EDT 2016 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include r2cf.h */ | |
29 | |
30 /* | |
31 * This function contains 86 FP additions, 32 FP multiplications, | |
32 * (or, 58 additions, 4 multiplications, 28 fused multiply/add), | |
33 * 70 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "r2cf.h" | |
36 | |
37 static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
41 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
43 { | |
44 INT i; | |
45 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { | |
46 E T1i, T1c, T1a, T1o, T1m, T1h, T1b, T13, T1j, T1n; | |
47 { | |
48 E T3, T1d, TJ, TV, T1k, T16, T19, T1l, Ty, Ti, T12, TD, T1g, TR, TX; | |
49 E TK, Tt, TU, TW, TL, TE; | |
50 { | |
51 E T1, T2, TG, TH; | |
52 T1 = R0[0]; | |
53 T2 = R0[WS(rs, 5)]; | |
54 TG = R1[WS(rs, 2)]; | |
55 TH = R1[WS(rs, 7)]; | |
56 { | |
57 E T6, To, T17, Tx, T18, TC, Tj, T9, Tp, Tu, Td, T15, Tm, Tq, Te; | |
58 E Tf; | |
59 { | |
60 E TA, TB, T7, T8; | |
61 { | |
62 E T4, TF, TI, T5, Tv, Tw; | |
63 T4 = R0[WS(rs, 2)]; | |
64 T3 = T1 - T2; | |
65 TF = T1 + T2; | |
66 T1d = TG - TH; | |
67 TI = TG + TH; | |
68 T5 = R0[WS(rs, 7)]; | |
69 Tv = R1[WS(rs, 6)]; | |
70 Tw = R1[WS(rs, 1)]; | |
71 TJ = TF - TI; | |
72 TV = TF + TI; | |
73 T6 = T4 - T5; | |
74 To = T4 + T5; | |
75 T17 = Tw - Tv; | |
76 Tx = Tv + Tw; | |
77 } | |
78 TA = R1[WS(rs, 8)]; | |
79 TB = R1[WS(rs, 3)]; | |
80 T7 = R0[WS(rs, 8)]; | |
81 T8 = R0[WS(rs, 3)]; | |
82 { | |
83 E Tb, Tc, Tk, Tl; | |
84 Tb = R0[WS(rs, 4)]; | |
85 T18 = TB - TA; | |
86 TC = TA + TB; | |
87 Tj = T7 + T8; | |
88 T9 = T7 - T8; | |
89 Tc = R0[WS(rs, 9)]; | |
90 Tk = R1[0]; | |
91 Tl = R1[WS(rs, 5)]; | |
92 Tp = R1[WS(rs, 4)]; | |
93 Tu = Tb + Tc; | |
94 Td = Tb - Tc; | |
95 T15 = Tl - Tk; | |
96 Tm = Tk + Tl; | |
97 Tq = R1[WS(rs, 9)]; | |
98 Te = R0[WS(rs, 6)]; | |
99 Tf = R0[WS(rs, 1)]; | |
100 } | |
101 } | |
102 { | |
103 E Ta, Tr, Tz, T1e, T1f, Th, T14, Tg, TP, TQ; | |
104 Ta = T6 + T9; | |
105 T1k = T6 - T9; | |
106 T14 = Tq - Tp; | |
107 Tr = Tp + Tq; | |
108 Tz = Te + Tf; | |
109 Tg = Te - Tf; | |
110 T16 = T14 - T15; | |
111 T1e = T14 + T15; | |
112 T1f = T17 + T18; | |
113 T19 = T17 - T18; | |
114 Th = Td + Tg; | |
115 T1l = Td - Tg; | |
116 Ty = Tu - Tx; | |
117 TP = Tu + Tx; | |
118 Ti = Ta + Th; | |
119 T12 = Ta - Th; | |
120 TD = Tz - TC; | |
121 TQ = Tz + TC; | |
122 T1g = T1e + T1f; | |
123 T1i = T1e - T1f; | |
124 { | |
125 E TT, Tn, Ts, TS; | |
126 TT = Tj + Tm; | |
127 Tn = Tj - Tm; | |
128 Ts = To - Tr; | |
129 TS = To + Tr; | |
130 TR = TP - TQ; | |
131 TX = TP + TQ; | |
132 TK = Ts + Tn; | |
133 Tt = Tn - Ts; | |
134 TU = TS - TT; | |
135 TW = TS + TT; | |
136 } | |
137 } | |
138 } | |
139 } | |
140 Cr[WS(csr, 5)] = T3 + Ti; | |
141 Ci[WS(csi, 5)] = T1g - T1d; | |
142 TL = Ty + TD; | |
143 TE = Ty - TD; | |
144 { | |
145 E TY, T10, TM, TO, T11, TZ, TN; | |
146 TY = TW + TX; | |
147 T10 = TW - TX; | |
148 Ci[WS(csi, 2)] = KP951056516 * (FMA(KP618033988, Tt, TE)); | |
149 Ci[WS(csi, 6)] = KP951056516 * (FNMS(KP618033988, TE, Tt)); | |
150 Ci[WS(csi, 4)] = KP951056516 * (FMA(KP618033988, TR, TU)); | |
151 Ci[WS(csi, 8)] = -(KP951056516 * (FNMS(KP618033988, TU, TR))); | |
152 TM = TK + TL; | |
153 TO = TK - TL; | |
154 T1c = FNMS(KP618033988, T16, T19); | |
155 T1a = FMA(KP618033988, T19, T16); | |
156 Cr[0] = TV + TY; | |
157 TZ = FNMS(KP250000000, TY, TV); | |
158 Cr[WS(csr, 10)] = TJ + TM; | |
159 TN = FNMS(KP250000000, TM, TJ); | |
160 Cr[WS(csr, 8)] = FNMS(KP559016994, T10, TZ); | |
161 Cr[WS(csr, 4)] = FMA(KP559016994, T10, TZ); | |
162 Cr[WS(csr, 6)] = FMA(KP559016994, TO, TN); | |
163 Cr[WS(csr, 2)] = FNMS(KP559016994, TO, TN); | |
164 T11 = FNMS(KP250000000, Ti, T3); | |
165 T1o = FNMS(KP618033988, T1k, T1l); | |
166 T1m = FMA(KP618033988, T1l, T1k); | |
167 T1h = FMA(KP250000000, T1g, T1d); | |
168 T1b = FNMS(KP559016994, T12, T11); | |
169 T13 = FMA(KP559016994, T12, T11); | |
170 } | |
171 } | |
172 Cr[WS(csr, 3)] = FNMS(KP951056516, T1c, T1b); | |
173 Cr[WS(csr, 7)] = FMA(KP951056516, T1c, T1b); | |
174 Cr[WS(csr, 1)] = FMA(KP951056516, T1a, T13); | |
175 Cr[WS(csr, 9)] = FNMS(KP951056516, T1a, T13); | |
176 T1j = FNMS(KP559016994, T1i, T1h); | |
177 T1n = FMA(KP559016994, T1i, T1h); | |
178 Ci[WS(csi, 3)] = FNMS(KP951056516, T1o, T1n); | |
179 Ci[WS(csi, 7)] = FMA(KP951056516, T1o, T1n); | |
180 Ci[WS(csi, 9)] = FMS(KP951056516, T1m, T1j); | |
181 Ci[WS(csi, 1)] = -(FMA(KP951056516, T1m, T1j)); | |
182 } | |
183 } | |
184 } | |
185 | |
186 static const kr2c_desc desc = { 20, "r2cf_20", {58, 4, 28, 0}, &GENUS }; | |
187 | |
188 void X(codelet_r2cf_20) (planner *p) { | |
189 X(kr2c_register) (p, r2cf_20, &desc); | |
190 } | |
191 | |
192 #else /* HAVE_FMA */ | |
193 | |
194 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include r2cf.h */ | |
195 | |
196 /* | |
197 * This function contains 86 FP additions, 24 FP multiplications, | |
198 * (or, 74 additions, 12 multiplications, 12 fused multiply/add), | |
199 * 51 stack variables, 4 constants, and 40 memory accesses | |
200 */ | |
201 #include "r2cf.h" | |
202 | |
203 static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
204 { | |
205 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
206 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
207 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
208 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
209 { | |
210 INT i; | |
211 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { | |
212 E T3, T1m, TF, T17, Ts, TM, TN, Tz, Ta, Th, Ti, T1g, T1h, T1k, T10; | |
213 E T13, T19, TG, TH, TI, T1d, T1e, T1j, TT, TW, T18; | |
214 { | |
215 E T1, T2, T15, TD, TE, T16; | |
216 T1 = R0[0]; | |
217 T2 = R0[WS(rs, 5)]; | |
218 T15 = T1 + T2; | |
219 TD = R1[WS(rs, 7)]; | |
220 TE = R1[WS(rs, 2)]; | |
221 T16 = TE + TD; | |
222 T3 = T1 - T2; | |
223 T1m = T15 + T16; | |
224 TF = TD - TE; | |
225 T17 = T15 - T16; | |
226 } | |
227 { | |
228 E T6, TU, Tv, T12, Ty, TZ, T9, TR, Td, TY, To, TS, Tr, TV, Tg; | |
229 E T11; | |
230 { | |
231 E T4, T5, Tt, Tu; | |
232 T4 = R0[WS(rs, 2)]; | |
233 T5 = R0[WS(rs, 7)]; | |
234 T6 = T4 - T5; | |
235 TU = T4 + T5; | |
236 Tt = R1[WS(rs, 8)]; | |
237 Tu = R1[WS(rs, 3)]; | |
238 Tv = Tt - Tu; | |
239 T12 = Tt + Tu; | |
240 } | |
241 { | |
242 E Tw, Tx, T7, T8; | |
243 Tw = R1[WS(rs, 6)]; | |
244 Tx = R1[WS(rs, 1)]; | |
245 Ty = Tw - Tx; | |
246 TZ = Tw + Tx; | |
247 T7 = R0[WS(rs, 8)]; | |
248 T8 = R0[WS(rs, 3)]; | |
249 T9 = T7 - T8; | |
250 TR = T7 + T8; | |
251 } | |
252 { | |
253 E Tb, Tc, Tm, Tn; | |
254 Tb = R0[WS(rs, 4)]; | |
255 Tc = R0[WS(rs, 9)]; | |
256 Td = Tb - Tc; | |
257 TY = Tb + Tc; | |
258 Tm = R1[0]; | |
259 Tn = R1[WS(rs, 5)]; | |
260 To = Tm - Tn; | |
261 TS = Tm + Tn; | |
262 } | |
263 { | |
264 E Tp, Tq, Te, Tf; | |
265 Tp = R1[WS(rs, 4)]; | |
266 Tq = R1[WS(rs, 9)]; | |
267 Tr = Tp - Tq; | |
268 TV = Tp + Tq; | |
269 Te = R0[WS(rs, 6)]; | |
270 Tf = R0[WS(rs, 1)]; | |
271 Tg = Te - Tf; | |
272 T11 = Te + Tf; | |
273 } | |
274 Ts = To - Tr; | |
275 TM = T6 - T9; | |
276 TN = Td - Tg; | |
277 Tz = Tv - Ty; | |
278 Ta = T6 + T9; | |
279 Th = Td + Tg; | |
280 Ti = Ta + Th; | |
281 T1g = TY + TZ; | |
282 T1h = T11 + T12; | |
283 T1k = T1g + T1h; | |
284 T10 = TY - TZ; | |
285 T13 = T11 - T12; | |
286 T19 = T10 + T13; | |
287 TG = Tr + To; | |
288 TH = Ty + Tv; | |
289 TI = TG + TH; | |
290 T1d = TU + TV; | |
291 T1e = TR + TS; | |
292 T1j = T1d + T1e; | |
293 TT = TR - TS; | |
294 TW = TU - TV; | |
295 T18 = TW + TT; | |
296 } | |
297 Cr[WS(csr, 5)] = T3 + Ti; | |
298 Ci[WS(csi, 5)] = TF - TI; | |
299 { | |
300 E TX, T14, T1f, T1i; | |
301 TX = TT - TW; | |
302 T14 = T10 - T13; | |
303 Ci[WS(csi, 6)] = FNMS(KP587785252, T14, KP951056516 * TX); | |
304 Ci[WS(csi, 2)] = FMA(KP587785252, TX, KP951056516 * T14); | |
305 T1f = T1d - T1e; | |
306 T1i = T1g - T1h; | |
307 Ci[WS(csi, 8)] = FNMS(KP951056516, T1i, KP587785252 * T1f); | |
308 Ci[WS(csi, 4)] = FMA(KP951056516, T1f, KP587785252 * T1i); | |
309 } | |
310 { | |
311 E T1l, T1n, T1o, T1c, T1a, T1b; | |
312 T1l = KP559016994 * (T1j - T1k); | |
313 T1n = T1j + T1k; | |
314 T1o = FNMS(KP250000000, T1n, T1m); | |
315 Cr[WS(csr, 4)] = T1l + T1o; | |
316 Cr[0] = T1m + T1n; | |
317 Cr[WS(csr, 8)] = T1o - T1l; | |
318 T1c = KP559016994 * (T18 - T19); | |
319 T1a = T18 + T19; | |
320 T1b = FNMS(KP250000000, T1a, T17); | |
321 Cr[WS(csr, 2)] = T1b - T1c; | |
322 Cr[WS(csr, 10)] = T17 + T1a; | |
323 Cr[WS(csr, 6)] = T1c + T1b; | |
324 } | |
325 { | |
326 E TA, TC, Tl, TB, Tj, Tk; | |
327 TA = FMA(KP951056516, Ts, KP587785252 * Tz); | |
328 TC = FNMS(KP587785252, Ts, KP951056516 * Tz); | |
329 Tj = KP559016994 * (Ta - Th); | |
330 Tk = FNMS(KP250000000, Ti, T3); | |
331 Tl = Tj + Tk; | |
332 TB = Tk - Tj; | |
333 Cr[WS(csr, 9)] = Tl - TA; | |
334 Cr[WS(csr, 7)] = TB + TC; | |
335 Cr[WS(csr, 1)] = Tl + TA; | |
336 Cr[WS(csr, 3)] = TB - TC; | |
337 } | |
338 { | |
339 E TO, TQ, TL, TP, TJ, TK; | |
340 TO = FMA(KP951056516, TM, KP587785252 * TN); | |
341 TQ = FNMS(KP587785252, TM, KP951056516 * TN); | |
342 TJ = FMA(KP250000000, TI, TF); | |
343 TK = KP559016994 * (TH - TG); | |
344 TL = TJ + TK; | |
345 TP = TK - TJ; | |
346 Ci[WS(csi, 1)] = TL - TO; | |
347 Ci[WS(csi, 7)] = TQ + TP; | |
348 Ci[WS(csi, 9)] = TO + TL; | |
349 Ci[WS(csi, 3)] = TP - TQ; | |
350 } | |
351 } | |
352 } | |
353 } | |
354 | |
355 static const kr2c_desc desc = { 20, "r2cf_20", {74, 12, 12, 0}, &GENUS }; | |
356 | |
357 void X(codelet_r2cf_20) (planner *p) { | |
358 X(kr2c_register) (p, r2cf_20, &desc); | |
359 } | |
360 | |
361 #endif /* HAVE_FMA */ |