comparison src/fftw-3.3.5/rdft/scalar/r2cf/r2cf_128.c @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
comparison
equal deleted inserted replaced
41:481f5f8c5634 42:2cd0e3b3e1fd
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sat Jul 30 16:46:09 EDT 2016 */
23
24 #include "codelet-rdft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 128 -name r2cf_128 -include r2cf.h */
29
30 /*
31 * This function contains 956 FP additions, 516 FP multiplications,
32 * (or, 440 additions, 0 multiplications, 516 fused multiply/add),
33 * 229 stack variables, 31 constants, and 256 memory accesses
34 */
35 #include "r2cf.h"
36
37 static void r2cf_128(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP989176509, +0.989176509964780973451673738016243063983689533);
40 DK(KP803207531, +0.803207531480644909806676512963141923879569427);
41 DK(KP148335987, +0.148335987538347428753676511486911367000625355);
42 DK(KP741650546, +0.741650546272035369581266691172079863842265220);
43 DK(KP998795456, +0.998795456205172392714771604759100694443203615);
44 DK(KP740951125, +0.740951125354959091175616897495162729728955309);
45 DK(KP049126849, +0.049126849769467254105343321271313617079695752);
46 DK(KP906347169, +0.906347169019147157946142717268914412664134293);
47 DK(KP857728610, +0.857728610000272069902269984284770137042490799);
48 DK(KP970031253, +0.970031253194543992603984207286100251456865962);
49 DK(KP599376933, +0.599376933681923766271389869014404232837890546);
50 DK(KP250486960, +0.250486960191305461595702160124721208578685568);
51 DK(KP941544065, +0.941544065183020778412509402599502357185589796);
52 DK(KP903989293, +0.903989293123443331586200297230537048710132025);
53 DK(KP472964775, +0.472964775891319928124438237972992463904131113);
54 DK(KP357805721, +0.357805721314524104672487743774474392487532769);
55 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
56 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
57 DK(KP098491403, +0.098491403357164253077197521291327432293052451);
58 DK(KP820678790, +0.820678790828660330972281985331011598767386482);
59 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
60 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
61 DK(KP534511135, +0.534511135950791641089685961295362908582039528);
62 DK(KP303346683, +0.303346683607342391675883946941299872384187453);
63 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
64 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
65 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
66 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
67 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
68 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
69 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
70 {
71 INT i;
72 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(512, rs), MAKE_VOLATILE_STRIDE(512, csr), MAKE_VOLATILE_STRIDE(512, csi)) {
73 E T95, T96;
74 {
75 E TcD, TdR, T5P, T8v, T27, T7r, Tf, Ta5, T7s, T5S, T8w, T2e, TdS, TcG, Tbn;
76 E Tu, TcK, TdU, TK, Ta6, T7w, T8y, T2o, T5U, TcN, TdV, TZ, Ta7, T7z, T8z;
77 E T2x, T5V, T1g, Taa, Tab, T1v, Tew, TcX, Tex, TcU, T6A, T2M, T9b, T7E, T9a;
78 E T7H, T6z, T2T, TeO, TdK, TeL, Tdz, T9p, T8d, T6O, T5G, T6L, T4X, Tc3, TaV;
79 E Tc4, Tbi, T9s, T8o, TeH, Tdp, TeE, Tde, T9i, T7U, T6H, T4r, T6E, T3I, TbW;
80 E Tao, TbX, TaL, T9l, T85, T1L, Tad, Tae, T20, Tez, Td6, TeA, Td3, T6x, T37;
81 E T9e, T7L, T9d, T7O, T6w, T3e, TbZ, T3Z, T4s, Tc0, TeF, Tds, T4t, T4g, T87;
82 E T80, TeI, Tdl, T86, T7X, TaM, TaD, Tb2, Tc6, T8e, T8f, T5e, T5H, Tb9, Tc7;
83 E TeM, TdN, T5I, T5v, T8q, T8j, TeP, TdG;
84 {
85 E T7G, T2S, T2P, T7F;
86 {
87 E T28, Ti, Tn, T2c, Ts, T29, Tl, To;
88 {
89 E T4, T23, T3, T25, Td, T5, T8, T9;
90 {
91 E T1, T2, Tb, Tc;
92 T1 = R0[0];
93 T2 = R0[WS(rs, 32)];
94 Tb = R0[WS(rs, 56)];
95 Tc = R0[WS(rs, 24)];
96 T4 = R0[WS(rs, 16)];
97 T23 = T1 - T2;
98 T3 = T1 + T2;
99 T25 = Tb - Tc;
100 Td = Tb + Tc;
101 T5 = R0[WS(rs, 48)];
102 T8 = R0[WS(rs, 8)];
103 T9 = R0[WS(rs, 40)];
104 }
105 {
106 E Tq, Tr, Tj, Tk;
107 {
108 E Tg, T5N, T6, T24, Ta, Th;
109 Tg = R0[WS(rs, 4)];
110 T5N = T4 - T5;
111 T6 = T4 + T5;
112 T24 = T8 - T9;
113 Ta = T8 + T9;
114 Th = R0[WS(rs, 36)];
115 {
116 E T7, T26, T5O, Te;
117 TcD = T3 - T6;
118 T7 = T3 + T6;
119 T26 = T24 + T25;
120 T5O = T25 - T24;
121 TdR = Td - Ta;
122 Te = Ta + Td;
123 T5P = FNMS(KP707106781, T5O, T5N);
124 T8v = FMA(KP707106781, T5O, T5N);
125 T27 = FMA(KP707106781, T26, T23);
126 T7r = FNMS(KP707106781, T26, T23);
127 Tf = T7 + Te;
128 Ta5 = T7 - Te;
129 T28 = Tg - Th;
130 Ti = Tg + Th;
131 }
132 }
133 Tq = R0[WS(rs, 12)];
134 Tr = R0[WS(rs, 44)];
135 Tj = R0[WS(rs, 20)];
136 Tk = R0[WS(rs, 52)];
137 Tn = R0[WS(rs, 60)];
138 T2c = Tq - Tr;
139 Ts = Tq + Tr;
140 T29 = Tj - Tk;
141 Tl = Tj + Tk;
142 To = R0[WS(rs, 28)];
143 }
144 }
145 {
146 E T2g, T2l, T2h, TF, TcI, TC, T2i, TI;
147 {
148 E Ty, TG, TB, TH;
149 {
150 E Tw, T5Q, T2a, TcE, Tm, T2b, Tp, Tx;
151 Tw = R0[WS(rs, 2)];
152 T5Q = FMA(KP414213562, T28, T29);
153 T2a = FNMS(KP414213562, T29, T28);
154 TcE = Ti - Tl;
155 Tm = Ti + Tl;
156 T2b = Tn - To;
157 Tp = Tn + To;
158 Tx = R0[WS(rs, 34)];
159 {
160 E Tz, TA, TD, TE;
161 Tz = R0[WS(rs, 18)];
162 {
163 E T5R, T2d, TcF, Tt;
164 T5R = FNMS(KP414213562, T2b, T2c);
165 T2d = FMA(KP414213562, T2c, T2b);
166 TcF = Tp - Ts;
167 Tt = Tp + Ts;
168 T2g = Tw - Tx;
169 Ty = Tw + Tx;
170 T7s = T5Q - T5R;
171 T5S = T5Q + T5R;
172 T8w = T2d - T2a;
173 T2e = T2a + T2d;
174 TdS = TcF - TcE;
175 TcG = TcE + TcF;
176 Tbn = Tt - Tm;
177 Tu = Tm + Tt;
178 TA = R0[WS(rs, 50)];
179 }
180 TD = R0[WS(rs, 10)];
181 TE = R0[WS(rs, 42)];
182 TG = R0[WS(rs, 58)];
183 T2l = Tz - TA;
184 TB = Tz + TA;
185 T2h = TD - TE;
186 TF = TD + TE;
187 TH = R0[WS(rs, 26)];
188 }
189 }
190 TcI = Ty - TB;
191 TC = Ty + TB;
192 T2i = TG - TH;
193 TI = TG + TH;
194 }
195 {
196 E T2p, T2u, T2q, TU, TcL, TR, T2r, TX;
197 {
198 E TN, TV, TQ, TW;
199 {
200 E T2k, T7u, T2n, T7v, TL, TM;
201 TL = R0[WS(rs, 62)];
202 TM = R0[WS(rs, 30)];
203 {
204 E TJ, TcJ, T2m, T2j;
205 TJ = TF + TI;
206 TcJ = TI - TF;
207 T2m = T2h - T2i;
208 T2j = T2h + T2i;
209 TcK = FMA(KP414213562, TcJ, TcI);
210 TdU = FNMS(KP414213562, TcI, TcJ);
211 TK = TC + TJ;
212 Ta6 = TC - TJ;
213 T2k = FMA(KP707106781, T2j, T2g);
214 T7u = FNMS(KP707106781, T2j, T2g);
215 T2n = FMA(KP707106781, T2m, T2l);
216 T7v = FNMS(KP707106781, T2m, T2l);
217 T2p = TL - TM;
218 TN = TL + TM;
219 }
220 T7w = FMA(KP668178637, T7v, T7u);
221 T8y = FNMS(KP668178637, T7u, T7v);
222 T2o = FNMS(KP198912367, T2n, T2k);
223 T5U = FMA(KP198912367, T2k, T2n);
224 {
225 E TO, TP, TS, TT;
226 TO = R0[WS(rs, 14)];
227 TP = R0[WS(rs, 46)];
228 TS = R0[WS(rs, 6)];
229 TT = R0[WS(rs, 38)];
230 TV = R0[WS(rs, 54)];
231 T2u = TO - TP;
232 TQ = TO + TP;
233 T2q = TS - TT;
234 TU = TS + TT;
235 TW = R0[WS(rs, 22)];
236 }
237 }
238 TcL = TN - TQ;
239 TR = TN + TQ;
240 T2r = TV - TW;
241 TX = TV + TW;
242 }
243 {
244 E T2A, T14, T2N, T17, T1b, T1e, T2D, T2O, T1r, T2I, T1q, T2Q, T2H, TcR, T1n;
245 E T1s, T15, T16;
246 {
247 E T2t, T7x, T2w, T7y, T12, T13;
248 T12 = R0[WS(rs, 1)];
249 T13 = R0[WS(rs, 33)];
250 {
251 E TY, TcM, T2v, T2s;
252 TY = TU + TX;
253 TcM = TX - TU;
254 T2v = T2q - T2r;
255 T2s = T2q + T2r;
256 TcN = FNMS(KP414213562, TcM, TcL);
257 TdV = FMA(KP414213562, TcL, TcM);
258 TZ = TR + TY;
259 Ta7 = TR - TY;
260 T2t = FMA(KP707106781, T2s, T2p);
261 T7x = FNMS(KP707106781, T2s, T2p);
262 T2w = FMA(KP707106781, T2v, T2u);
263 T7y = FNMS(KP707106781, T2v, T2u);
264 T2A = T12 - T13;
265 T14 = T12 + T13;
266 }
267 T7z = FNMS(KP668178637, T7y, T7x);
268 T8z = FMA(KP668178637, T7x, T7y);
269 T2x = FMA(KP198912367, T2w, T2t);
270 T5V = FNMS(KP198912367, T2t, T2w);
271 T15 = R0[WS(rs, 17)];
272 T16 = R0[WS(rs, 49)];
273 }
274 {
275 E T1c, T2B, T1d, T19, T1a;
276 T19 = R0[WS(rs, 9)];
277 T1a = R0[WS(rs, 41)];
278 T1c = R0[WS(rs, 57)];
279 T2N = T15 - T16;
280 T17 = T15 + T16;
281 T2B = T19 - T1a;
282 T1b = T19 + T1a;
283 T1d = R0[WS(rs, 25)];
284 {
285 E T1k, T2F, T1j, T1l, T1h, T1i, T2C;
286 T1h = R0[WS(rs, 5)];
287 T1i = R0[WS(rs, 37)];
288 T2C = T1c - T1d;
289 T1e = T1c + T1d;
290 T1k = R0[WS(rs, 21)];
291 T2F = T1h - T1i;
292 T1j = T1h + T1i;
293 T2D = T2B + T2C;
294 T2O = T2B - T2C;
295 T1l = R0[WS(rs, 53)];
296 {
297 E T1o, T1p, T2G, T1m;
298 T1o = R0[WS(rs, 61)];
299 T1p = R0[WS(rs, 29)];
300 T1r = R0[WS(rs, 13)];
301 T2G = T1k - T1l;
302 T1m = T1k + T1l;
303 T2I = T1o - T1p;
304 T1q = T1o + T1p;
305 T2Q = FMA(KP414213562, T2F, T2G);
306 T2H = FNMS(KP414213562, T2G, T2F);
307 TcR = T1j - T1m;
308 T1n = T1j + T1m;
309 T1s = R0[WS(rs, 45)];
310 }
311 }
312 }
313 {
314 E TcQ, TcV, T2K, T2R, T1u, TcT, TcW, TcS;
315 {
316 E T18, T1f, T1t, T2J;
317 T18 = T14 + T17;
318 TcQ = T14 - T17;
319 TcV = T1e - T1b;
320 T1f = T1b + T1e;
321 T1t = T1r + T1s;
322 T2J = T1r - T1s;
323 T1g = T18 + T1f;
324 Taa = T18 - T1f;
325 T2K = FMA(KP414213562, T2J, T2I);
326 T2R = FNMS(KP414213562, T2I, T2J);
327 T1u = T1q + T1t;
328 TcS = T1q - T1t;
329 }
330 TcT = TcR + TcS;
331 TcW = TcS - TcR;
332 {
333 E T7C, T2E, T2L, T7D;
334 T7C = FNMS(KP707106781, T2D, T2A);
335 T2E = FMA(KP707106781, T2D, T2A);
336 Tab = T1u - T1n;
337 T1v = T1n + T1u;
338 Tew = FNMS(KP707106781, TcW, TcV);
339 TcX = FMA(KP707106781, TcW, TcV);
340 Tex = FNMS(KP707106781, TcT, TcQ);
341 TcU = FMA(KP707106781, TcT, TcQ);
342 T2L = T2H + T2K;
343 T7G = T2K - T2H;
344 T7D = T2Q - T2R;
345 T2S = T2Q + T2R;
346 T2P = FMA(KP707106781, T2O, T2N);
347 T7F = FNMS(KP707106781, T2O, T2N);
348 T6A = FNMS(KP923879532, T2L, T2E);
349 T2M = FMA(KP923879532, T2L, T2E);
350 T9b = FNMS(KP923879532, T7D, T7C);
351 T7E = FMA(KP923879532, T7D, T7C);
352 }
353 }
354 }
355 }
356 }
357 }
358 {
359 E T83, T84, T8m, T8n;
360 {
361 E TaP, T4z, TaQ, T5A, TaS, TaT, T4G, T5B, T4O, T5D, Tbh, Tdw, T4R, Tbc, T4S;
362 E T4T;
363 {
364 E T4x, T4y, T5y, T5z;
365 T4x = R1[WS(rs, 63)];
366 T9a = FNMS(KP923879532, T7G, T7F);
367 T7H = FMA(KP923879532, T7G, T7F);
368 T6z = FNMS(KP923879532, T2S, T2P);
369 T2T = FMA(KP923879532, T2S, T2P);
370 T4y = R1[WS(rs, 31)];
371 T5y = R1[WS(rs, 47)];
372 T5z = R1[WS(rs, 15)];
373 {
374 E T4A, T4B, T4D, T4E;
375 T4A = R1[WS(rs, 7)];
376 TaP = T4x + T4y;
377 T4z = T4x - T4y;
378 TaQ = T5z + T5y;
379 T5A = T5y - T5z;
380 T4B = R1[WS(rs, 39)];
381 T4D = R1[WS(rs, 55)];
382 T4E = R1[WS(rs, 23)];
383 {
384 E T4K, Tbf, Tbg, T4N, T4P, T4Q;
385 {
386 E T4I, T4C, T4F, T4J, T4L, T4M;
387 T4I = R1[WS(rs, 3)];
388 TaS = T4A + T4B;
389 T4C = T4A - T4B;
390 TaT = T4D + T4E;
391 T4F = T4D - T4E;
392 T4J = R1[WS(rs, 35)];
393 T4L = R1[WS(rs, 51)];
394 T4M = R1[WS(rs, 19)];
395 T4G = T4C + T4F;
396 T5B = T4F - T4C;
397 T4K = T4I - T4J;
398 Tbf = T4I + T4J;
399 Tbg = T4M + T4L;
400 T4N = T4L - T4M;
401 }
402 T4P = R1[WS(rs, 59)];
403 T4Q = R1[WS(rs, 27)];
404 T4O = FMA(KP414213562, T4N, T4K);
405 T5D = FNMS(KP414213562, T4K, T4N);
406 Tbh = Tbf + Tbg;
407 Tdw = Tbf - Tbg;
408 T4R = T4P - T4Q;
409 Tbc = T4P + T4Q;
410 T4S = R1[WS(rs, 43)];
411 T4T = R1[WS(rs, 11)];
412 }
413 }
414 }
415 {
416 E T4H, T8b, TaR, Tdv, TdI, TaU, T4U, Tbd, T5C;
417 T4H = FMA(KP707106781, T4G, T4z);
418 T8b = FNMS(KP707106781, T4G, T4z);
419 TaR = TaP + TaQ;
420 Tdv = TaP - TaQ;
421 TdI = TaT - TaS;
422 TaU = TaS + TaT;
423 T4U = T4S - T4T;
424 Tbd = T4T + T4S;
425 T8m = FNMS(KP707106781, T5B, T5A);
426 T5C = FMA(KP707106781, T5B, T5A);
427 {
428 E Tbe, Tdx, T5E, T4V;
429 Tbe = Tbc + Tbd;
430 Tdx = Tbc - Tbd;
431 T5E = FMA(KP414213562, T4R, T4U);
432 T4V = FNMS(KP414213562, T4U, T4R);
433 {
434 E Tdy, TdJ, T5F, T8c, T4W;
435 Tdy = Tdw + Tdx;
436 TdJ = Tdx - Tdw;
437 T5F = T5D + T5E;
438 T8c = T5E - T5D;
439 T8n = T4V - T4O;
440 T4W = T4O + T4V;
441 TeO = FNMS(KP707106781, TdJ, TdI);
442 TdK = FMA(KP707106781, TdJ, TdI);
443 TeL = FNMS(KP707106781, Tdy, Tdv);
444 Tdz = FMA(KP707106781, Tdy, Tdv);
445 T9p = FNMS(KP923879532, T8c, T8b);
446 T8d = FMA(KP923879532, T8c, T8b);
447 T6O = FNMS(KP923879532, T5F, T5C);
448 T5G = FMA(KP923879532, T5F, T5C);
449 T6L = FNMS(KP923879532, T4W, T4H);
450 T4X = FMA(KP923879532, T4W, T4H);
451 }
452 Tc3 = TaR + TaU;
453 TaV = TaR - TaU;
454 Tc4 = Tbh + Tbe;
455 Tbi = Tbe - Tbh;
456 }
457 }
458 }
459 {
460 E Tai, T3k, Taj, T4l, Tal, Tam, T4m, T3r, T3D, TaF, T3C, Tdb, TaK, T3z, T4o;
461 E T3E;
462 {
463 E T4j, T4k, T3i, T3j;
464 T3i = R1[0];
465 T3j = R1[WS(rs, 32)];
466 T4j = R1[WS(rs, 16)];
467 T9s = FMA(KP923879532, T8n, T8m);
468 T8o = FNMS(KP923879532, T8n, T8m);
469 Tai = T3i + T3j;
470 T3k = T3i - T3j;
471 T4k = R1[WS(rs, 48)];
472 {
473 E T3o, T3n, T3p, T3l, T3m;
474 T3l = R1[WS(rs, 8)];
475 T3m = R1[WS(rs, 40)];
476 T3o = R1[WS(rs, 56)];
477 Taj = T4j + T4k;
478 T4l = T4j - T4k;
479 T3n = T3l - T3m;
480 Tal = T3l + T3m;
481 T3p = R1[WS(rs, 24)];
482 {
483 E T3w, TaI, T3v, T3x, T3t, T3u, T3q;
484 T3t = R1[WS(rs, 4)];
485 T3u = R1[WS(rs, 36)];
486 T3q = T3o - T3p;
487 Tam = T3o + T3p;
488 T3w = R1[WS(rs, 20)];
489 TaI = T3t + T3u;
490 T3v = T3t - T3u;
491 T4m = T3n - T3q;
492 T3r = T3n + T3q;
493 T3x = R1[WS(rs, 52)];
494 {
495 E T3A, T3B, TaJ, T3y;
496 T3A = R1[WS(rs, 60)];
497 T3B = R1[WS(rs, 28)];
498 T3D = R1[WS(rs, 12)];
499 TaJ = T3w + T3x;
500 T3y = T3w - T3x;
501 TaF = T3A + T3B;
502 T3C = T3A - T3B;
503 Tdb = TaI - TaJ;
504 TaK = TaI + TaJ;
505 T3z = FNMS(KP414213562, T3y, T3v);
506 T4o = FMA(KP414213562, T3v, T3y);
507 T3E = R1[WS(rs, 44)];
508 }
509 }
510 }
511 }
512 {
513 E T3s, T7S, Tak, Tda, Tdn, Tan, T3F, TaG, T4n;
514 T3s = FMA(KP707106781, T3r, T3k);
515 T7S = FNMS(KP707106781, T3r, T3k);
516 Tak = Tai + Taj;
517 Tda = Tai - Taj;
518 Tdn = Tam - Tal;
519 Tan = Tal + Tam;
520 T3F = T3D - T3E;
521 TaG = T3D + T3E;
522 T83 = FNMS(KP707106781, T4m, T4l);
523 T4n = FMA(KP707106781, T4m, T4l);
524 {
525 E TaH, Tdc, T4p, T3G;
526 TaH = TaF + TaG;
527 Tdc = TaF - TaG;
528 T4p = FNMS(KP414213562, T3C, T3F);
529 T3G = FMA(KP414213562, T3F, T3C);
530 {
531 E Tdd, Tdo, T4q, T7T, T3H;
532 Tdd = Tdb + Tdc;
533 Tdo = Tdc - Tdb;
534 T4q = T4o + T4p;
535 T7T = T4o - T4p;
536 T84 = T3G - T3z;
537 T3H = T3z + T3G;
538 TeH = FNMS(KP707106781, Tdo, Tdn);
539 Tdp = FMA(KP707106781, Tdo, Tdn);
540 TeE = FNMS(KP707106781, Tdd, Tda);
541 Tde = FMA(KP707106781, Tdd, Tda);
542 T9i = FNMS(KP923879532, T7T, T7S);
543 T7U = FMA(KP923879532, T7T, T7S);
544 T6H = FNMS(KP923879532, T4q, T4n);
545 T4r = FMA(KP923879532, T4q, T4n);
546 T6E = FNMS(KP923879532, T3H, T3s);
547 T3I = FMA(KP923879532, T3H, T3s);
548 }
549 TbW = Tak + Tan;
550 Tao = Tak - Tan;
551 TbX = TaK + TaH;
552 TaL = TaH - TaK;
553 }
554 }
555 }
556 {
557 E T7N, T3d, T3a, T7M;
558 {
559 E T2V, T1z, T38, T1C, T1G, T1J, T2Y, T39, T1W, T33, T1V, T3b, T32, Td0, T1S;
560 E T1X;
561 {
562 E T1A, T1B, T1x, T1y;
563 T1x = R0[WS(rs, 63)];
564 T1y = R0[WS(rs, 31)];
565 T1A = R0[WS(rs, 15)];
566 T9l = FNMS(KP923879532, T84, T83);
567 T85 = FMA(KP923879532, T84, T83);
568 T2V = T1x - T1y;
569 T1z = T1x + T1y;
570 T1B = R0[WS(rs, 47)];
571 {
572 E T1H, T2W, T1I, T1E, T1F;
573 T1E = R0[WS(rs, 7)];
574 T1F = R0[WS(rs, 39)];
575 T1H = R0[WS(rs, 55)];
576 T38 = T1A - T1B;
577 T1C = T1A + T1B;
578 T2W = T1E - T1F;
579 T1G = T1E + T1F;
580 T1I = R0[WS(rs, 23)];
581 {
582 E T1P, T30, T1O, T1Q, T1M, T1N, T2X;
583 T1M = R0[WS(rs, 3)];
584 T1N = R0[WS(rs, 35)];
585 T2X = T1H - T1I;
586 T1J = T1H + T1I;
587 T1P = R0[WS(rs, 19)];
588 T30 = T1M - T1N;
589 T1O = T1M + T1N;
590 T2Y = T2W + T2X;
591 T39 = T2W - T2X;
592 T1Q = R0[WS(rs, 51)];
593 {
594 E T1T, T1U, T31, T1R;
595 T1T = R0[WS(rs, 59)];
596 T1U = R0[WS(rs, 27)];
597 T1W = R0[WS(rs, 11)];
598 T31 = T1P - T1Q;
599 T1R = T1P + T1Q;
600 T33 = T1T - T1U;
601 T1V = T1T + T1U;
602 T3b = FMA(KP414213562, T30, T31);
603 T32 = FNMS(KP414213562, T31, T30);
604 Td0 = T1O - T1R;
605 T1S = T1O + T1R;
606 T1X = R0[WS(rs, 43)];
607 }
608 }
609 }
610 }
611 {
612 E TcZ, Td4, T35, T3c, T1Z, Td2, Td5, Td1;
613 {
614 E T1D, T1K, T1Y, T34;
615 T1D = T1z + T1C;
616 TcZ = T1z - T1C;
617 Td4 = T1J - T1G;
618 T1K = T1G + T1J;
619 T1Y = T1W + T1X;
620 T34 = T1W - T1X;
621 T1L = T1D + T1K;
622 Tad = T1D - T1K;
623 T35 = FMA(KP414213562, T34, T33);
624 T3c = FNMS(KP414213562, T33, T34);
625 T1Z = T1V + T1Y;
626 Td1 = T1V - T1Y;
627 }
628 Td2 = Td0 + Td1;
629 Td5 = Td1 - Td0;
630 {
631 E T7J, T2Z, T36, T7K;
632 T7J = FNMS(KP707106781, T2Y, T2V);
633 T2Z = FMA(KP707106781, T2Y, T2V);
634 Tae = T1Z - T1S;
635 T20 = T1S + T1Z;
636 Tez = FNMS(KP707106781, Td5, Td4);
637 Td6 = FMA(KP707106781, Td5, Td4);
638 TeA = FNMS(KP707106781, Td2, TcZ);
639 Td3 = FMA(KP707106781, Td2, TcZ);
640 T36 = T32 + T35;
641 T7N = T35 - T32;
642 T7K = T3b - T3c;
643 T3d = T3b + T3c;
644 T3a = FMA(KP707106781, T39, T38);
645 T7M = FNMS(KP707106781, T39, T38);
646 T6x = FNMS(KP923879532, T36, T2Z);
647 T37 = FMA(KP923879532, T36, T2Z);
648 T9e = FNMS(KP923879532, T7K, T7J);
649 T7L = FMA(KP923879532, T7K, T7J);
650 }
651 }
652 }
653 {
654 E Tav, T7V, T7W, TaC;
655 {
656 E T3L, T3W, Tdf, Tar, T42, T4d, Tay, Tdi, T46, Tau, Tdg, T3X, T3S, Taz, T45;
657 E T47, Taw, Tax;
658 {
659 E T3J, T3K, T3U, T3V;
660 T3J = R1[WS(rs, 2)];
661 T9d = FNMS(KP923879532, T7N, T7M);
662 T7O = FMA(KP923879532, T7N, T7M);
663 T6w = FNMS(KP923879532, T3d, T3a);
664 T3e = FMA(KP923879532, T3d, T3a);
665 T3K = R1[WS(rs, 34)];
666 T3U = R1[WS(rs, 18)];
667 T3V = R1[WS(rs, 50)];
668 {
669 E T40, Tap, Taq, T41, T4b, T4c;
670 T40 = R1[WS(rs, 62)];
671 T3L = T3J - T3K;
672 Tap = T3J + T3K;
673 T3W = T3U - T3V;
674 Taq = T3U + T3V;
675 T41 = R1[WS(rs, 30)];
676 T4b = R1[WS(rs, 14)];
677 T4c = R1[WS(rs, 46)];
678 Tdf = Tap - Taq;
679 Tar = Tap + Taq;
680 T42 = T40 - T41;
681 Taw = T40 + T41;
682 Tax = T4b + T4c;
683 T4d = T4b - T4c;
684 }
685 }
686 {
687 E T3M, T3N, T3P, T3Q;
688 T3M = R1[WS(rs, 10)];
689 Tay = Taw + Tax;
690 Tdi = Taw - Tax;
691 T3N = R1[WS(rs, 42)];
692 T3P = R1[WS(rs, 58)];
693 T3Q = R1[WS(rs, 26)];
694 {
695 E T43, Tas, T3O, Tat, T3R, T44;
696 T43 = R1[WS(rs, 6)];
697 Tas = T3M + T3N;
698 T3O = T3M - T3N;
699 Tat = T3P + T3Q;
700 T3R = T3P - T3Q;
701 T44 = R1[WS(rs, 38)];
702 T46 = R1[WS(rs, 54)];
703 Tau = Tas + Tat;
704 Tdg = Tat - Tas;
705 T3X = T3O - T3R;
706 T3S = T3O + T3R;
707 Taz = T43 + T44;
708 T45 = T43 - T44;
709 T47 = R1[WS(rs, 22)];
710 }
711 }
712 {
713 E Tdq, Tdh, T49, T4e, Tdr, Tdk;
714 Tav = Tar - Tau;
715 TbZ = Tar + Tau;
716 {
717 E T3T, T3Y, TaA, T48, Tdj, TaB;
718 T3T = FMA(KP707106781, T3S, T3L);
719 T7V = FNMS(KP707106781, T3S, T3L);
720 T7W = FNMS(KP707106781, T3X, T3W);
721 T3Y = FMA(KP707106781, T3X, T3W);
722 TaA = T46 + T47;
723 T48 = T46 - T47;
724 Tdq = FNMS(KP414213562, Tdf, Tdg);
725 Tdh = FMA(KP414213562, Tdg, Tdf);
726 T3Z = FNMS(KP198912367, T3Y, T3T);
727 T4s = FMA(KP198912367, T3T, T3Y);
728 Tdj = TaA - Taz;
729 TaB = Taz + TaA;
730 T49 = T45 + T48;
731 T4e = T45 - T48;
732 TaC = Tay - TaB;
733 Tc0 = Tay + TaB;
734 Tdr = FMA(KP414213562, Tdi, Tdj);
735 Tdk = FNMS(KP414213562, Tdj, Tdi);
736 }
737 {
738 E T7Z, T7Y, T4f, T4a;
739 T7Z = FNMS(KP707106781, T4e, T4d);
740 T4f = FMA(KP707106781, T4e, T4d);
741 T4a = FMA(KP707106781, T49, T42);
742 T7Y = FNMS(KP707106781, T49, T42);
743 TeF = Tdr - Tdq;
744 Tds = Tdq + Tdr;
745 T4t = FNMS(KP198912367, T4a, T4f);
746 T4g = FMA(KP198912367, T4f, T4a);
747 T87 = FMA(KP668178637, T7Y, T7Z);
748 T80 = FNMS(KP668178637, T7Z, T7Y);
749 TeI = Tdh - Tdk;
750 Tdl = Tdh + Tdk;
751 }
752 }
753 }
754 {
755 E T50, T5b, TdA, TaY, T5h, T5s, Tb5, TdD, T5l, Tb1, TdB, T5c, T57, Tb6, T5k;
756 E T5m, Tb3, Tb4;
757 {
758 E T4Y, T4Z, T59, T5a;
759 T4Y = R1[WS(rs, 1)];
760 T86 = FNMS(KP668178637, T7V, T7W);
761 T7X = FMA(KP668178637, T7W, T7V);
762 TaM = TaC - Tav;
763 TaD = Tav + TaC;
764 T4Z = R1[WS(rs, 33)];
765 T59 = R1[WS(rs, 49)];
766 T5a = R1[WS(rs, 17)];
767 {
768 E T5f, TaW, TaX, T5g, T5q, T5r;
769 T5f = R1[WS(rs, 61)];
770 T50 = T4Y - T4Z;
771 TaW = T4Y + T4Z;
772 T5b = T59 - T5a;
773 TaX = T5a + T59;
774 T5g = R1[WS(rs, 29)];
775 T5q = R1[WS(rs, 45)];
776 T5r = R1[WS(rs, 13)];
777 TdA = TaW - TaX;
778 TaY = TaW + TaX;
779 T5h = T5f - T5g;
780 Tb3 = T5f + T5g;
781 Tb4 = T5r + T5q;
782 T5s = T5q - T5r;
783 }
784 }
785 {
786 E T51, T52, T54, T55;
787 T51 = R1[WS(rs, 9)];
788 Tb5 = Tb3 + Tb4;
789 TdD = Tb3 - Tb4;
790 T52 = R1[WS(rs, 41)];
791 T54 = R1[WS(rs, 57)];
792 T55 = R1[WS(rs, 25)];
793 {
794 E T5i, TaZ, T53, Tb0, T56, T5j;
795 T5i = R1[WS(rs, 5)];
796 TaZ = T51 + T52;
797 T53 = T51 - T52;
798 Tb0 = T54 + T55;
799 T56 = T54 - T55;
800 T5j = R1[WS(rs, 37)];
801 T5l = R1[WS(rs, 53)];
802 Tb1 = TaZ + Tb0;
803 TdB = Tb0 - TaZ;
804 T5c = T56 - T53;
805 T57 = T53 + T56;
806 Tb6 = T5i + T5j;
807 T5k = T5i - T5j;
808 T5m = R1[WS(rs, 21)];
809 }
810 }
811 {
812 E TdL, TdC, T5o, T5t, TdM, TdF;
813 Tb2 = TaY - Tb1;
814 Tc6 = TaY + Tb1;
815 {
816 E T58, T5d, Tb7, T5n, TdE, Tb8;
817 T58 = FMA(KP707106781, T57, T50);
818 T8e = FNMS(KP707106781, T57, T50);
819 T8f = FNMS(KP707106781, T5c, T5b);
820 T5d = FMA(KP707106781, T5c, T5b);
821 Tb7 = T5l + T5m;
822 T5n = T5l - T5m;
823 TdL = FNMS(KP414213562, TdA, TdB);
824 TdC = FMA(KP414213562, TdB, TdA);
825 T5e = FMA(KP198912367, T5d, T58);
826 T5H = FNMS(KP198912367, T58, T5d);
827 TdE = Tb7 - Tb6;
828 Tb8 = Tb6 + Tb7;
829 T5o = T5k + T5n;
830 T5t = T5n - T5k;
831 Tb9 = Tb5 - Tb8;
832 Tc7 = Tb5 + Tb8;
833 TdM = FMA(KP414213562, TdD, TdE);
834 TdF = FNMS(KP414213562, TdE, TdD);
835 }
836 {
837 E T8i, T8h, T5u, T5p;
838 T8i = FNMS(KP707106781, T5t, T5s);
839 T5u = FMA(KP707106781, T5t, T5s);
840 T5p = FMA(KP707106781, T5o, T5h);
841 T8h = FNMS(KP707106781, T5o, T5h);
842 TeM = TdM - TdL;
843 TdN = TdL + TdM;
844 T5I = FMA(KP198912367, T5p, T5u);
845 T5v = FNMS(KP198912367, T5u, T5p);
846 T8q = FNMS(KP668178637, T8h, T8i);
847 T8j = FMA(KP668178637, T8i, T8h);
848 TeP = TdF - TdC;
849 TdG = TdC + TdF;
850 }
851 }
852 }
853 }
854 }
855 }
856 }
857 {
858 E T8p, T8g, TcH, TdW, TdT, TcO, Tfp, Tfk, Tfj, Tfq;
859 {
860 E Tbj, Tba, Tcy, Tco, TcB, Tcl, Tcx, Tcv, Tcz, Tcr;
861 {
862 E Tch, Tct, Tcp, Tcq, Tci, T1w, TbV, T11, Tcf, Tc9, T21, Tcj, Tcm, TbY, Tc1;
863 E Tcn, Tcu, Tck;
864 {
865 E Tv, T10, Tc5, Tc8;
866 Tch = Tf - Tu;
867 Tv = Tf + Tu;
868 T8p = FMA(KP668178637, T8e, T8f);
869 T8g = FNMS(KP668178637, T8f, T8e);
870 Tbj = Tb9 - Tb2;
871 Tba = Tb2 + Tb9;
872 T10 = TK + TZ;
873 Tct = TZ - TK;
874 Tcp = Tc3 - Tc4;
875 Tc5 = Tc3 + Tc4;
876 Tc8 = Tc6 + Tc7;
877 Tcq = Tc7 - Tc6;
878 Tci = T1g - T1v;
879 T1w = T1g + T1v;
880 TbV = Tv - T10;
881 T11 = Tv + T10;
882 Tcf = Tc5 + Tc8;
883 Tc9 = Tc5 - Tc8;
884 T21 = T1L + T20;
885 Tcj = T1L - T20;
886 Tcm = TbW - TbX;
887 TbY = TbW + TbX;
888 Tc1 = TbZ + Tc0;
889 Tcn = Tc0 - TbZ;
890 }
891 {
892 E Tcb, T22, Tce, Tc2;
893 Tcb = T21 - T1w;
894 T22 = T1w + T21;
895 Tce = TbY + Tc1;
896 Tc2 = TbY - Tc1;
897 {
898 E Tcd, Tcg, Tca, Tcc;
899 Tcd = T11 + T22;
900 Cr[WS(csr, 32)] = T11 - T22;
901 Tcg = Tce + Tcf;
902 Ci[WS(csi, 32)] = Tcf - Tce;
903 Tca = Tc2 + Tc9;
904 Tcc = Tc9 - Tc2;
905 Cr[0] = Tcd + Tcg;
906 Cr[WS(csr, 64)] = Tcd - Tcg;
907 Ci[WS(csi, 48)] = FMS(KP707106781, Tcc, Tcb);
908 Ci[WS(csi, 16)] = FMA(KP707106781, Tcc, Tcb);
909 Cr[WS(csr, 16)] = FMA(KP707106781, Tca, TbV);
910 Cr[WS(csr, 48)] = FNMS(KP707106781, Tca, TbV);
911 Tcu = Tcj - Tci;
912 Tck = Tci + Tcj;
913 Tcy = FNMS(KP414213562, Tcm, Tcn);
914 Tco = FMA(KP414213562, Tcn, Tcm);
915 }
916 }
917 TcB = FNMS(KP707106781, Tck, Tch);
918 Tcl = FMA(KP707106781, Tck, Tch);
919 Tcx = FMA(KP707106781, Tcu, Tct);
920 Tcv = FNMS(KP707106781, Tcu, Tct);
921 Tcz = FMA(KP414213562, Tcp, Tcq);
922 Tcr = FNMS(KP414213562, Tcq, Tcp);
923 }
924 {
925 E TbT, TbO, TbN, TbU;
926 {
927 E Ta9, TbB, Tbb, TbL, Tbp, TbM, Tag, Tbk, TbR, TbJ, Tbw, TaO, TbC, Tbs, TbQ;
928 E TbG;
929 {
930 E Tbq, Tbr, TbH, TbI;
931 {
932 E Tbo, Ta8, Tac, Taf;
933 Tbo = Ta7 - Ta6;
934 Ta8 = Ta6 + Ta7;
935 {
936 E TcC, TcA, Tcw, Tcs;
937 TcC = Tcz - Tcy;
938 TcA = Tcy + Tcz;
939 Tcw = Tcr - Tco;
940 Tcs = Tco + Tcr;
941 Cr[WS(csr, 24)] = FMA(KP923879532, TcC, TcB);
942 Cr[WS(csr, 40)] = FNMS(KP923879532, TcC, TcB);
943 Ci[WS(csi, 56)] = FMS(KP923879532, TcA, Tcx);
944 Ci[WS(csi, 8)] = FMA(KP923879532, TcA, Tcx);
945 Ci[WS(csi, 40)] = FMA(KP923879532, Tcw, Tcv);
946 Ci[WS(csi, 24)] = FMS(KP923879532, Tcw, Tcv);
947 Cr[WS(csr, 8)] = FMA(KP923879532, Tcs, Tcl);
948 Cr[WS(csr, 56)] = FNMS(KP923879532, Tcs, Tcl);
949 Ta9 = FMA(KP707106781, Ta8, Ta5);
950 TbB = FNMS(KP707106781, Ta8, Ta5);
951 }
952 Tbq = FNMS(KP414213562, Taa, Tab);
953 Tac = FMA(KP414213562, Tab, Taa);
954 Taf = FNMS(KP414213562, Tae, Tad);
955 Tbr = FMA(KP414213562, Tad, Tae);
956 Tbb = FMA(KP707106781, Tba, TaV);
957 TbH = FNMS(KP707106781, Tba, TaV);
958 TbL = FNMS(KP707106781, Tbo, Tbn);
959 Tbp = FMA(KP707106781, Tbo, Tbn);
960 TbM = Taf - Tac;
961 Tag = Tac + Taf;
962 TbI = FNMS(KP707106781, Tbj, Tbi);
963 Tbk = FMA(KP707106781, Tbj, Tbi);
964 }
965 {
966 E TbE, TbF, TaE, TaN;
967 TbE = FNMS(KP707106781, TaD, Tao);
968 TaE = FMA(KP707106781, TaD, Tao);
969 TaN = FMA(KP707106781, TaM, TaL);
970 TbF = FNMS(KP707106781, TaM, TaL);
971 TbR = FNMS(KP668178637, TbH, TbI);
972 TbJ = FMA(KP668178637, TbI, TbH);
973 Tbw = FNMS(KP198912367, TaE, TaN);
974 TaO = FMA(KP198912367, TaN, TaE);
975 TbC = Tbr - Tbq;
976 Tbs = Tbq + Tbr;
977 TbQ = FMA(KP668178637, TbE, TbF);
978 TbG = FNMS(KP668178637, TbF, TbE);
979 }
980 }
981 {
982 E Tbz, Tah, Tbv, Tbt, Tbx, Tbl;
983 Tbz = FNMS(KP923879532, Tag, Ta9);
984 Tah = FMA(KP923879532, Tag, Ta9);
985 Tbv = FMA(KP923879532, Tbs, Tbp);
986 Tbt = FNMS(KP923879532, Tbs, Tbp);
987 Tbx = FMA(KP198912367, Tbb, Tbk);
988 Tbl = FNMS(KP198912367, Tbk, Tbb);
989 {
990 E TbD, TbK, TbP, TbS;
991 TbT = FNMS(KP923879532, TbC, TbB);
992 TbD = FMA(KP923879532, TbC, TbB);
993 {
994 E TbA, Tby, Tbu, Tbm;
995 TbA = Tbx - Tbw;
996 Tby = Tbw + Tbx;
997 Tbu = Tbl - TaO;
998 Tbm = TaO + Tbl;
999 Cr[WS(csr, 28)] = FMA(KP980785280, TbA, Tbz);
1000 Cr[WS(csr, 36)] = FNMS(KP980785280, TbA, Tbz);
1001 Ci[WS(csi, 60)] = FMS(KP980785280, Tby, Tbv);
1002 Ci[WS(csi, 4)] = FMA(KP980785280, Tby, Tbv);
1003 Ci[WS(csi, 36)] = FMA(KP980785280, Tbu, Tbt);
1004 Ci[WS(csi, 28)] = FMS(KP980785280, Tbu, Tbt);
1005 Cr[WS(csr, 4)] = FMA(KP980785280, Tbm, Tah);
1006 Cr[WS(csr, 60)] = FNMS(KP980785280, Tbm, Tah);
1007 TbK = TbG + TbJ;
1008 TbO = TbJ - TbG;
1009 }
1010 TbN = FMA(KP923879532, TbM, TbL);
1011 TbP = FNMS(KP923879532, TbM, TbL);
1012 TbS = TbQ + TbR;
1013 TbU = TbQ - TbR;
1014 Cr[WS(csr, 12)] = FMA(KP831469612, TbK, TbD);
1015 Cr[WS(csr, 52)] = FNMS(KP831469612, TbK, TbD);
1016 Ci[WS(csi, 52)] = FNMS(KP831469612, TbS, TbP);
1017 Ci[WS(csi, 12)] = -(FMA(KP831469612, TbS, TbP));
1018 }
1019 }
1020 }
1021 {
1022 E TeN, Tf7, Tev, Tfm, Tfc, TeQ, TeX, TeW, Tfn, Tff, Tfi, TeC, Tf2, TeK, Tfh;
1023 E TeV, Tf8;
1024 {
1025 E TeG, TeJ, Tfd, Tfe, Tey, TeB, TeT, TeU;
1026 {
1027 E Tet, Teu, Tfa, Tfb;
1028 TcH = FMA(KP707106781, TcG, TcD);
1029 Tet = FNMS(KP707106781, TcG, TcD);
1030 Ci[WS(csi, 44)] = FMS(KP831469612, TbO, TbN);
1031 Ci[WS(csi, 20)] = FMA(KP831469612, TbO, TbN);
1032 Cr[WS(csr, 20)] = FMA(KP831469612, TbU, TbT);
1033 Cr[WS(csr, 44)] = FNMS(KP831469612, TbU, TbT);
1034 Teu = TdV - TdU;
1035 TdW = TdU + TdV;
1036 TeG = FNMS(KP923879532, TeF, TeE);
1037 Tfa = FMA(KP923879532, TeF, TeE);
1038 Tfb = FMA(KP923879532, TeI, TeH);
1039 TeJ = FNMS(KP923879532, TeI, TeH);
1040 TeN = FNMS(KP923879532, TeM, TeL);
1041 Tfd = FMA(KP923879532, TeM, TeL);
1042 Tf7 = FMA(KP923879532, Teu, Tet);
1043 Tev = FNMS(KP923879532, Teu, Tet);
1044 Tfm = FMA(KP303346683, Tfa, Tfb);
1045 Tfc = FNMS(KP303346683, Tfb, Tfa);
1046 Tfe = FNMS(KP923879532, TeP, TeO);
1047 TeQ = FMA(KP923879532, TeP, TeO);
1048 TeX = FNMS(KP668178637, Tew, Tex);
1049 Tey = FMA(KP668178637, Tex, Tew);
1050 TeB = FNMS(KP668178637, TeA, Tez);
1051 TeW = FMA(KP668178637, Tez, TeA);
1052 }
1053 Tfn = FNMS(KP303346683, Tfd, Tfe);
1054 Tff = FMA(KP303346683, Tfe, Tfd);
1055 Tfi = Tey + TeB;
1056 TeC = Tey - TeB;
1057 TdT = FMA(KP707106781, TdS, TdR);
1058 TeT = FNMS(KP707106781, TdS, TdR);
1059 TeU = TcN - TcK;
1060 TcO = TcK + TcN;
1061 Tf2 = FNMS(KP534511135, TeG, TeJ);
1062 TeK = FMA(KP534511135, TeJ, TeG);
1063 Tfh = FNMS(KP923879532, TeU, TeT);
1064 TeV = FMA(KP923879532, TeU, TeT);
1065 }
1066 {
1067 E Tf5, TeD, TeY, Tf3, TeR;
1068 Tf5 = FNMS(KP831469612, TeC, Tev);
1069 TeD = FMA(KP831469612, TeC, Tev);
1070 Tf8 = TeX + TeW;
1071 TeY = TeW - TeX;
1072 Tf3 = FMA(KP534511135, TeN, TeQ);
1073 TeR = FNMS(KP534511135, TeQ, TeN);
1074 {
1075 E Tf1, TeZ, Tf6, Tf4, Tf0, TeS;
1076 Tf1 = FMA(KP831469612, TeY, TeV);
1077 TeZ = FNMS(KP831469612, TeY, TeV);
1078 Tf6 = Tf3 - Tf2;
1079 Tf4 = Tf2 + Tf3;
1080 Tf0 = TeR - TeK;
1081 TeS = TeK + TeR;
1082 Ci[WS(csi, 54)] = FMS(KP881921264, Tf4, Tf1);
1083 Ci[WS(csi, 10)] = FMA(KP881921264, Tf4, Tf1);
1084 Ci[WS(csi, 42)] = FMA(KP881921264, Tf0, TeZ);
1085 Ci[WS(csi, 22)] = FMS(KP881921264, Tf0, TeZ);
1086 Cr[WS(csr, 10)] = FMA(KP881921264, TeS, TeD);
1087 Cr[WS(csr, 54)] = FNMS(KP881921264, TeS, TeD);
1088 Cr[WS(csr, 42)] = FNMS(KP881921264, Tf6, Tf5);
1089 Cr[WS(csr, 22)] = FMA(KP881921264, Tf6, Tf5);
1090 }
1091 }
1092 {
1093 E Tf9, Tfg, Tfl, Tfo;
1094 Tfp = FNMS(KP831469612, Tf8, Tf7);
1095 Tf9 = FMA(KP831469612, Tf8, Tf7);
1096 Tfg = Tfc + Tff;
1097 Tfk = Tff - Tfc;
1098 Tfj = FNMS(KP831469612, Tfi, Tfh);
1099 Tfl = FMA(KP831469612, Tfi, Tfh);
1100 Tfo = Tfm + Tfn;
1101 Tfq = Tfm - Tfn;
1102 Cr[WS(csr, 6)] = FMA(KP956940335, Tfg, Tf9);
1103 Cr[WS(csr, 58)] = FNMS(KP956940335, Tfg, Tf9);
1104 Ci[WS(csi, 58)] = FNMS(KP956940335, Tfo, Tfl);
1105 Ci[WS(csi, 6)] = -(FMA(KP956940335, Tfo, Tfl));
1106 }
1107 }
1108 }
1109 }
1110 {
1111 E T2f, T5W, T5T, T2y, T5J, T5w, T4u, T4h, T7p, T7q;
1112 {
1113 E Ter, Tem, Tel, Tes;
1114 {
1115 E TdH, Te9, TcP, Teo, Tee, TdO, TdY, TdZ, Tep, Teh, Tek, Td8, Te4, Tdu, Tej;
1116 E TdX, Tea;
1117 {
1118 E Tdm, Tdt, Tef, Teg, TcY, Td7, Tec, Ted;
1119 Ci[WS(csi, 38)] = FMS(KP956940335, Tfk, Tfj);
1120 Ci[WS(csi, 26)] = FMA(KP956940335, Tfk, Tfj);
1121 Cr[WS(csr, 26)] = FMA(KP956940335, Tfq, Tfp);
1122 Cr[WS(csr, 38)] = FNMS(KP956940335, Tfq, Tfp);
1123 Tdm = FMA(KP923879532, Tdl, Tde);
1124 Tec = FNMS(KP923879532, Tdl, Tde);
1125 Ted = FNMS(KP923879532, Tds, Tdp);
1126 Tdt = FMA(KP923879532, Tds, Tdp);
1127 TdH = FMA(KP923879532, TdG, Tdz);
1128 Tef = FNMS(KP923879532, TdG, Tdz);
1129 Te9 = FNMS(KP923879532, TcO, TcH);
1130 TcP = FMA(KP923879532, TcO, TcH);
1131 Teo = FMA(KP820678790, Tec, Ted);
1132 Tee = FNMS(KP820678790, Ted, Tec);
1133 Teg = FNMS(KP923879532, TdN, TdK);
1134 TdO = FMA(KP923879532, TdN, TdK);
1135 TdY = FNMS(KP198912367, TcU, TcX);
1136 TcY = FMA(KP198912367, TcX, TcU);
1137 Td7 = FNMS(KP198912367, Td6, Td3);
1138 TdZ = FMA(KP198912367, Td3, Td6);
1139 Tep = FNMS(KP820678790, Tef, Teg);
1140 Teh = FMA(KP820678790, Teg, Tef);
1141 Tek = Td7 - TcY;
1142 Td8 = TcY + Td7;
1143 Te4 = FNMS(KP098491403, Tdm, Tdt);
1144 Tdu = FMA(KP098491403, Tdt, Tdm);
1145 Tej = FNMS(KP923879532, TdW, TdT);
1146 TdX = FMA(KP923879532, TdW, TdT);
1147 }
1148 {
1149 E Te7, Td9, Te0, Te5, TdP;
1150 Te7 = FNMS(KP980785280, Td8, TcP);
1151 Td9 = FMA(KP980785280, Td8, TcP);
1152 Tea = TdZ - TdY;
1153 Te0 = TdY + TdZ;
1154 Te5 = FMA(KP098491403, TdH, TdO);
1155 TdP = FNMS(KP098491403, TdO, TdH);
1156 {
1157 E Te3, Te1, Te8, Te6, Te2, TdQ;
1158 Te3 = FMA(KP980785280, Te0, TdX);
1159 Te1 = FNMS(KP980785280, Te0, TdX);
1160 Te8 = Te5 - Te4;
1161 Te6 = Te4 + Te5;
1162 Te2 = TdP - Tdu;
1163 TdQ = Tdu + TdP;
1164 Ci[WS(csi, 62)] = FMS(KP995184726, Te6, Te3);
1165 Ci[WS(csi, 2)] = FMA(KP995184726, Te6, Te3);
1166 Ci[WS(csi, 34)] = FMA(KP995184726, Te2, Te1);
1167 Ci[WS(csi, 30)] = FMS(KP995184726, Te2, Te1);
1168 Cr[WS(csr, 2)] = FMA(KP995184726, TdQ, Td9);
1169 Cr[WS(csr, 62)] = FNMS(KP995184726, TdQ, Td9);
1170 Cr[WS(csr, 34)] = FNMS(KP995184726, Te8, Te7);
1171 Cr[WS(csr, 30)] = FMA(KP995184726, Te8, Te7);
1172 }
1173 }
1174 {
1175 E Teb, Tei, Ten, Teq;
1176 Ter = FNMS(KP980785280, Tea, Te9);
1177 Teb = FMA(KP980785280, Tea, Te9);
1178 Tei = Tee + Teh;
1179 Tem = Teh - Tee;
1180 Tel = FMA(KP980785280, Tek, Tej);
1181 Ten = FNMS(KP980785280, Tek, Tej);
1182 Teq = Teo + Tep;
1183 Tes = Teo - Tep;
1184 Cr[WS(csr, 14)] = FMA(KP773010453, Tei, Teb);
1185 Cr[WS(csr, 50)] = FNMS(KP773010453, Tei, Teb);
1186 Ci[WS(csi, 50)] = FNMS(KP773010453, Teq, Ten);
1187 Ci[WS(csi, 14)] = -(FMA(KP773010453, Teq, Ten));
1188 }
1189 }
1190 {
1191 E T77, T6v, T7i, T6C, T78, T6Y, T7h, T6V, T6N, T7d, T6P, T6F, T6I;
1192 {
1193 E T6W, T6X, T6T, T6U, T6M;
1194 {
1195 E T6t, T6u, T6y, T6B;
1196 T2f = FMA(KP923879532, T2e, T27);
1197 T6t = FNMS(KP923879532, T2e, T27);
1198 Ci[WS(csi, 46)] = FMS(KP773010453, Tem, Tel);
1199 Ci[WS(csi, 18)] = FMA(KP773010453, Tem, Tel);
1200 Cr[WS(csr, 18)] = FMA(KP773010453, Tes, Ter);
1201 Cr[WS(csr, 46)] = FNMS(KP773010453, Tes, Ter);
1202 T6u = T5U - T5V;
1203 T5W = T5U + T5V;
1204 T6W = FNMS(KP820678790, T6w, T6x);
1205 T6y = FMA(KP820678790, T6x, T6w);
1206 T6B = FNMS(KP820678790, T6A, T6z);
1207 T6X = FMA(KP820678790, T6z, T6A);
1208 T77 = FMA(KP980785280, T6u, T6t);
1209 T6v = FNMS(KP980785280, T6u, T6t);
1210 T7i = T6B + T6y;
1211 T6C = T6y - T6B;
1212 }
1213 T5T = FMA(KP923879532, T5S, T5P);
1214 T6T = FNMS(KP923879532, T5S, T5P);
1215 T6U = T2x - T2o;
1216 T2y = T2o + T2x;
1217 T5J = T5H + T5I;
1218 T6M = T5I - T5H;
1219 T78 = T6X + T6W;
1220 T6Y = T6W - T6X;
1221 T7h = FMA(KP980785280, T6U, T6T);
1222 T6V = FNMS(KP980785280, T6U, T6T);
1223 T6N = FNMS(KP980785280, T6M, T6L);
1224 T7d = FMA(KP980785280, T6M, T6L);
1225 T6P = T5v - T5e;
1226 T5w = T5e + T5v;
1227 T4u = T4s + T4t;
1228 T6F = T4s - T4t;
1229 T6I = T4g - T3Z;
1230 T4h = T3Z + T4g;
1231 }
1232 {
1233 E T75, T7f, T7n, T7c, T7m, T76;
1234 {
1235 E T6D, T72, T6R, T73, T6K, T71, T6Z, T7e, T6Q, T74, T70, T6S;
1236 T75 = FNMS(KP773010453, T6C, T6v);
1237 T6D = FMA(KP773010453, T6C, T6v);
1238 T7e = FNMS(KP980785280, T6P, T6O);
1239 T6Q = FMA(KP980785280, T6P, T6O);
1240 {
1241 E T7a, T6G, T7b, T6J;
1242 T7a = FMA(KP980785280, T6F, T6E);
1243 T6G = FNMS(KP980785280, T6F, T6E);
1244 T7b = FMA(KP980785280, T6I, T6H);
1245 T6J = FNMS(KP980785280, T6I, T6H);
1246 T7f = FMA(KP357805721, T7e, T7d);
1247 T7n = FNMS(KP357805721, T7d, T7e);
1248 T72 = FMA(KP472964775, T6N, T6Q);
1249 T6R = FNMS(KP472964775, T6Q, T6N);
1250 T7c = FMA(KP357805721, T7b, T7a);
1251 T7m = FNMS(KP357805721, T7a, T7b);
1252 T73 = FMA(KP472964775, T6G, T6J);
1253 T6K = FNMS(KP472964775, T6J, T6G);
1254 }
1255 T71 = FNMS(KP773010453, T6Y, T6V);
1256 T6Z = FMA(KP773010453, T6Y, T6V);
1257 T74 = T72 - T73;
1258 T76 = T73 + T72;
1259 T70 = T6R - T6K;
1260 T6S = T6K + T6R;
1261 Ci[WS(csi, 55)] = FMA(KP903989293, T74, T71);
1262 Ci[WS(csi, 9)] = FMS(KP903989293, T74, T71);
1263 Cr[WS(csr, 9)] = FMA(KP903989293, T6S, T6D);
1264 Cr[WS(csr, 55)] = FNMS(KP903989293, T6S, T6D);
1265 Ci[WS(csi, 41)] = FMS(KP903989293, T70, T6Z);
1266 Ci[WS(csi, 23)] = FMA(KP903989293, T70, T6Z);
1267 }
1268 {
1269 E T7k, T7j, T7l, T7o, T79, T7g;
1270 T7p = FNMS(KP773010453, T78, T77);
1271 T79 = FMA(KP773010453, T78, T77);
1272 T7g = T7c + T7f;
1273 T7k = T7f - T7c;
1274 T7j = FNMS(KP773010453, T7i, T7h);
1275 T7l = FMA(KP773010453, T7i, T7h);
1276 Cr[WS(csr, 23)] = FMA(KP903989293, T76, T75);
1277 Cr[WS(csr, 41)] = FNMS(KP903989293, T76, T75);
1278 Cr[WS(csr, 7)] = FMA(KP941544065, T7g, T79);
1279 Cr[WS(csr, 57)] = FNMS(KP941544065, T7g, T79);
1280 T7o = T7m - T7n;
1281 T7q = T7m + T7n;
1282 Ci[WS(csi, 57)] = FMS(KP941544065, T7o, T7l);
1283 Ci[WS(csi, 7)] = FMA(KP941544065, T7o, T7l);
1284 Ci[WS(csi, 39)] = FMA(KP941544065, T7k, T7j);
1285 Ci[WS(csi, 25)] = FMS(KP941544065, T7k, T7j);
1286 }
1287 }
1288 }
1289 }
1290 {
1291 E T7t, T8A, T8x, T7A, T8r, T8k, T88, T81, Ta3, Ta4, T6r, T6s;
1292 {
1293 E T9L, T99, T9W, T9g, T9M, T9C, T9V, T9z, T9k, T9O, T9T, Ta0, T9H, T9v, T9m;
1294 {
1295 E T9B, T9c, T9f, T9A, T97, T98;
1296 T7t = FMA(KP923879532, T7s, T7r);
1297 T97 = FNMS(KP923879532, T7s, T7r);
1298 T98 = T8z - T8y;
1299 T8A = T8y + T8z;
1300 T9B = FNMS(KP534511135, T9a, T9b);
1301 T9c = FMA(KP534511135, T9b, T9a);
1302 Cr[WS(csr, 25)] = FNMS(KP941544065, T7q, T7p);
1303 Cr[WS(csr, 39)] = FMA(KP941544065, T7q, T7p);
1304 T9L = FMA(KP831469612, T98, T97);
1305 T99 = FNMS(KP831469612, T98, T97);
1306 T9f = FNMS(KP534511135, T9e, T9d);
1307 T9A = FMA(KP534511135, T9d, T9e);
1308 {
1309 E T9x, T9y, T9q, T9t;
1310 T8x = FMA(KP923879532, T8w, T8v);
1311 T9x = FNMS(KP923879532, T8w, T8v);
1312 T9W = T9c + T9f;
1313 T9g = T9c - T9f;
1314 T9M = T9B + T9A;
1315 T9C = T9A - T9B;
1316 T9y = T7z - T7w;
1317 T7A = T7w + T7z;
1318 T8r = T8p + T8q;
1319 T9q = T8p - T8q;
1320 T9t = T8j - T8g;
1321 T8k = T8g + T8j;
1322 {
1323 E T9R, T9r, T9S, T9u, T9j;
1324 T88 = T86 + T87;
1325 T9j = T87 - T86;
1326 T9V = FNMS(KP831469612, T9y, T9x);
1327 T9z = FMA(KP831469612, T9y, T9x);
1328 T9R = FMA(KP831469612, T9q, T9p);
1329 T9r = FNMS(KP831469612, T9q, T9p);
1330 T9S = FMA(KP831469612, T9t, T9s);
1331 T9u = FNMS(KP831469612, T9t, T9s);
1332 T9k = FNMS(KP831469612, T9j, T9i);
1333 T9O = FMA(KP831469612, T9j, T9i);
1334 T9T = FNMS(KP250486960, T9S, T9R);
1335 Ta0 = FMA(KP250486960, T9R, T9S);
1336 T9H = FNMS(KP599376933, T9r, T9u);
1337 T9v = FMA(KP599376933, T9u, T9r);
1338 T9m = T7X - T80;
1339 T81 = T7X + T80;
1340 }
1341 }
1342 }
1343 {
1344 E T9J, T9h, T9F, T9D, T9P, T9n;
1345 T9J = FNMS(KP881921264, T9g, T99);
1346 T9h = FMA(KP881921264, T9g, T99);
1347 T9F = FMA(KP881921264, T9C, T9z);
1348 T9D = FNMS(KP881921264, T9C, T9z);
1349 T9P = FMA(KP831469612, T9m, T9l);
1350 T9n = FNMS(KP831469612, T9m, T9l);
1351 {
1352 E T9Y, T9X, T9Z, Ta2;
1353 {
1354 E T9N, Ta1, T9G, T9o, T9U, T9Q;
1355 Ta3 = FNMS(KP881921264, T9M, T9L);
1356 T9N = FMA(KP881921264, T9M, T9L);
1357 T9Q = FNMS(KP250486960, T9P, T9O);
1358 Ta1 = FMA(KP250486960, T9O, T9P);
1359 T9G = FNMS(KP599376933, T9k, T9n);
1360 T9o = FMA(KP599376933, T9n, T9k);
1361 T9U = T9Q + T9T;
1362 T9Y = T9T - T9Q;
1363 T9X = FNMS(KP881921264, T9W, T9V);
1364 T9Z = FMA(KP881921264, T9W, T9V);
1365 {
1366 E T9K, T9I, T9E, T9w;
1367 T9K = T9G + T9H;
1368 T9I = T9G - T9H;
1369 T9E = T9v - T9o;
1370 T9w = T9o + T9v;
1371 Cr[WS(csr, 5)] = FMA(KP970031253, T9U, T9N);
1372 Cr[WS(csr, 59)] = FNMS(KP970031253, T9U, T9N);
1373 Cr[WS(csr, 21)] = FNMS(KP857728610, T9K, T9J);
1374 Cr[WS(csr, 43)] = FMA(KP857728610, T9K, T9J);
1375 Ci[WS(csi, 53)] = FMS(KP857728610, T9I, T9F);
1376 Ci[WS(csi, 11)] = FMA(KP857728610, T9I, T9F);
1377 Ci[WS(csi, 43)] = FMA(KP857728610, T9E, T9D);
1378 Ci[WS(csi, 21)] = FMS(KP857728610, T9E, T9D);
1379 Cr[WS(csr, 11)] = FMA(KP857728610, T9w, T9h);
1380 Cr[WS(csr, 53)] = FNMS(KP857728610, T9w, T9h);
1381 Ta2 = Ta0 - Ta1;
1382 Ta4 = Ta1 + Ta0;
1383 }
1384 }
1385 Ci[WS(csi, 59)] = FMA(KP970031253, Ta2, T9Z);
1386 Ci[WS(csi, 5)] = FMS(KP970031253, Ta2, T9Z);
1387 Ci[WS(csi, 37)] = FMS(KP970031253, T9Y, T9X);
1388 Ci[WS(csi, 27)] = FMA(KP970031253, T9Y, T9X);
1389 }
1390 }
1391 }
1392 {
1393 E T69, T2z, T6k, T3g, T6a, T60, T6j, T5X, T4i, T6c, T6h, T6p, T64, T5L;
1394 {
1395 E T5Y, T2U, T3f, T5Z;
1396 T5Y = FMA(KP098491403, T2M, T2T);
1397 T2U = FNMS(KP098491403, T2T, T2M);
1398 Cr[WS(csr, 27)] = FMA(KP970031253, Ta4, Ta3);
1399 Cr[WS(csr, 37)] = FNMS(KP970031253, Ta4, Ta3);
1400 T69 = FNMS(KP980785280, T2y, T2f);
1401 T2z = FMA(KP980785280, T2y, T2f);
1402 T3f = FMA(KP098491403, T3e, T37);
1403 T5Z = FNMS(KP098491403, T37, T3e);
1404 T6k = T3f - T2U;
1405 T3g = T2U + T3f;
1406 T6a = T5Y - T5Z;
1407 T60 = T5Y + T5Z;
1408 {
1409 E T6f, T5x, T6g, T5K;
1410 T6j = FNMS(KP980785280, T5W, T5T);
1411 T5X = FMA(KP980785280, T5W, T5T);
1412 T6f = FNMS(KP980785280, T5w, T4X);
1413 T5x = FMA(KP980785280, T5w, T4X);
1414 T6g = FNMS(KP980785280, T5J, T5G);
1415 T5K = FMA(KP980785280, T5J, T5G);
1416 T4i = FMA(KP980785280, T4h, T3I);
1417 T6c = FNMS(KP980785280, T4h, T3I);
1418 T6h = FMA(KP906347169, T6g, T6f);
1419 T6p = FNMS(KP906347169, T6f, T6g);
1420 T64 = FMA(KP049126849, T5x, T5K);
1421 T5L = FNMS(KP049126849, T5K, T5x);
1422 }
1423 }
1424 {
1425 E T67, T3h, T63, T61, T6d, T4v;
1426 T67 = FNMS(KP995184726, T3g, T2z);
1427 T3h = FMA(KP995184726, T3g, T2z);
1428 T63 = FMA(KP995184726, T60, T5X);
1429 T61 = FNMS(KP995184726, T60, T5X);
1430 T6d = FNMS(KP980785280, T4u, T4r);
1431 T4v = FMA(KP980785280, T4u, T4r);
1432 {
1433 E T6m, T6l, T6n, T6q;
1434 {
1435 E T6b, T6o, T65, T4w, T6i, T6e;
1436 T6r = FNMS(KP995184726, T6a, T69);
1437 T6b = FMA(KP995184726, T6a, T69);
1438 T6e = FMA(KP906347169, T6d, T6c);
1439 T6o = FNMS(KP906347169, T6c, T6d);
1440 T65 = FMA(KP049126849, T4i, T4v);
1441 T4w = FNMS(KP049126849, T4v, T4i);
1442 T6i = T6e + T6h;
1443 T6m = T6h - T6e;
1444 T6l = FNMS(KP995184726, T6k, T6j);
1445 T6n = FMA(KP995184726, T6k, T6j);
1446 {
1447 E T68, T66, T62, T5M;
1448 T68 = T65 + T64;
1449 T66 = T64 - T65;
1450 T62 = T5L - T4w;
1451 T5M = T4w + T5L;
1452 Cr[WS(csr, 15)] = FMA(KP740951125, T6i, T6b);
1453 Cr[WS(csr, 49)] = FNMS(KP740951125, T6i, T6b);
1454 Cr[WS(csr, 31)] = FMA(KP998795456, T68, T67);
1455 Cr[WS(csr, 33)] = FNMS(KP998795456, T68, T67);
1456 Ci[WS(csi, 63)] = FMA(KP998795456, T66, T63);
1457 Ci[WS(csi, 1)] = FMS(KP998795456, T66, T63);
1458 Ci[WS(csi, 33)] = FMS(KP998795456, T62, T61);
1459 Ci[WS(csi, 31)] = FMA(KP998795456, T62, T61);
1460 Cr[WS(csr, 1)] = FMA(KP998795456, T5M, T3h);
1461 Cr[WS(csr, 63)] = FNMS(KP998795456, T5M, T3h);
1462 T6q = T6o - T6p;
1463 T6s = T6o + T6p;
1464 }
1465 }
1466 Ci[WS(csi, 49)] = FMS(KP740951125, T6q, T6n);
1467 Ci[WS(csi, 15)] = FMA(KP740951125, T6q, T6n);
1468 Ci[WS(csi, 47)] = FMA(KP740951125, T6m, T6l);
1469 Ci[WS(csi, 17)] = FMS(KP740951125, T6m, T6l);
1470 }
1471 }
1472 }
1473 {
1474 E T8N, T7B, T8Y, T7Q, T8O, T8E, T8X, T8B, T82, T8Q, T8V, T92, T8J, T8t;
1475 {
1476 E T8C, T7I, T7P, T8D;
1477 T8C = FNMS(KP303346683, T7E, T7H);
1478 T7I = FMA(KP303346683, T7H, T7E);
1479 Cr[WS(csr, 17)] = FNMS(KP740951125, T6s, T6r);
1480 Cr[WS(csr, 47)] = FMA(KP740951125, T6s, T6r);
1481 T8N = FNMS(KP831469612, T7A, T7t);
1482 T7B = FMA(KP831469612, T7A, T7t);
1483 T7P = FNMS(KP303346683, T7O, T7L);
1484 T8D = FMA(KP303346683, T7L, T7O);
1485 T8Y = T7P - T7I;
1486 T7Q = T7I + T7P;
1487 T8O = T8D - T8C;
1488 T8E = T8C + T8D;
1489 {
1490 E T8T, T8l, T8U, T8s;
1491 T8X = FNMS(KP831469612, T8A, T8x);
1492 T8B = FMA(KP831469612, T8A, T8x);
1493 T8T = FNMS(KP831469612, T8k, T8d);
1494 T8l = FMA(KP831469612, T8k, T8d);
1495 T8U = FNMS(KP831469612, T8r, T8o);
1496 T8s = FMA(KP831469612, T8r, T8o);
1497 T82 = FMA(KP831469612, T81, T7U);
1498 T8Q = FNMS(KP831469612, T81, T7U);
1499 T8V = FNMS(KP741650546, T8U, T8T);
1500 T92 = FMA(KP741650546, T8T, T8U);
1501 T8J = FNMS(KP148335987, T8l, T8s);
1502 T8t = FMA(KP148335987, T8s, T8l);
1503 }
1504 }
1505 {
1506 E T8L, T7R, T8H, T8F, T8R, T89;
1507 T8L = FNMS(KP956940335, T7Q, T7B);
1508 T7R = FMA(KP956940335, T7Q, T7B);
1509 T8H = FMA(KP956940335, T8E, T8B);
1510 T8F = FNMS(KP956940335, T8E, T8B);
1511 T8R = FNMS(KP831469612, T88, T85);
1512 T89 = FMA(KP831469612, T88, T85);
1513 {
1514 E T90, T8Z, T91, T94;
1515 {
1516 E T8P, T93, T8I, T8a, T8W, T8S;
1517 T95 = FNMS(KP956940335, T8O, T8N);
1518 T8P = FMA(KP956940335, T8O, T8N);
1519 T8S = FNMS(KP741650546, T8R, T8Q);
1520 T93 = FMA(KP741650546, T8Q, T8R);
1521 T8I = FNMS(KP148335987, T82, T89);
1522 T8a = FMA(KP148335987, T89, T82);
1523 T8W = T8S + T8V;
1524 T90 = T8V - T8S;
1525 T8Z = FMA(KP956940335, T8Y, T8X);
1526 T91 = FNMS(KP956940335, T8Y, T8X);
1527 {
1528 E T8M, T8K, T8G, T8u;
1529 T8M = T8I + T8J;
1530 T8K = T8I - T8J;
1531 T8G = T8t - T8a;
1532 T8u = T8a + T8t;
1533 Cr[WS(csr, 13)] = FMA(KP803207531, T8W, T8P);
1534 Cr[WS(csr, 51)] = FNMS(KP803207531, T8W, T8P);
1535 Cr[WS(csr, 29)] = FNMS(KP989176509, T8M, T8L);
1536 Cr[WS(csr, 35)] = FMA(KP989176509, T8M, T8L);
1537 Ci[WS(csi, 61)] = FMS(KP989176509, T8K, T8H);
1538 Ci[WS(csi, 3)] = FMA(KP989176509, T8K, T8H);
1539 Ci[WS(csi, 35)] = FMA(KP989176509, T8G, T8F);
1540 Ci[WS(csi, 29)] = FMS(KP989176509, T8G, T8F);
1541 Cr[WS(csr, 3)] = FMA(KP989176509, T8u, T7R);
1542 Cr[WS(csr, 61)] = FNMS(KP989176509, T8u, T7R);
1543 T94 = T92 - T93;
1544 T96 = T93 + T92;
1545 }
1546 }
1547 Ci[WS(csi, 51)] = FMA(KP803207531, T94, T91);
1548 Ci[WS(csi, 13)] = FMS(KP803207531, T94, T91);
1549 Ci[WS(csi, 45)] = FMS(KP803207531, T90, T8Z);
1550 Ci[WS(csi, 19)] = FMA(KP803207531, T90, T8Z);
1551 }
1552 }
1553 }
1554 }
1555 }
1556 }
1557 }
1558 Cr[WS(csr, 19)] = FMA(KP803207531, T96, T95);
1559 Cr[WS(csr, 45)] = FNMS(KP803207531, T96, T95);
1560 }
1561 }
1562 }
1563
1564 static const kr2c_desc desc = { 128, "r2cf_128", {440, 0, 516, 0}, &GENUS };
1565
1566 void X(codelet_r2cf_128) (planner *p) {
1567 X(kr2c_register) (p, r2cf_128, &desc);
1568 }
1569
1570 #else /* HAVE_FMA */
1571
1572 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 128 -name r2cf_128 -include r2cf.h */
1573
1574 /*
1575 * This function contains 956 FP additions, 330 FP multiplications,
1576 * (or, 812 additions, 186 multiplications, 144 fused multiply/add),
1577 * 186 stack variables, 31 constants, and 256 memory accesses
1578 */
1579 #include "r2cf.h"
1580
1581 static void r2cf_128(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
1582 {
1583 DK(KP803207531, +0.803207531480644909806676512963141923879569427);
1584 DK(KP595699304, +0.595699304492433343467036528829969889511926338);
1585 DK(KP146730474, +0.146730474455361751658850129646717819706215317);
1586 DK(KP989176509, +0.989176509964780973451673738016243063983689533);
1587 DK(KP740951125, +0.740951125354959091175616897495162729728955309);
1588 DK(KP671558954, +0.671558954847018400625376850427421803228750632);
1589 DK(KP049067674, +0.049067674327418014254954976942682658314745363);
1590 DK(KP998795456, +0.998795456205172392714771604759100694443203615);
1591 DK(KP242980179, +0.242980179903263889948274162077471118320990783);
1592 DK(KP970031253, +0.970031253194543992603984207286100251456865962);
1593 DK(KP514102744, +0.514102744193221726593693838968815772608049120);
1594 DK(KP857728610, +0.857728610000272069902269984284770137042490799);
1595 DK(KP336889853, +0.336889853392220050689253212619147570477766780);
1596 DK(KP941544065, +0.941544065183020778412509402599502357185589796);
1597 DK(KP427555093, +0.427555093430282094320966856888798534304578629);
1598 DK(KP903989293, +0.903989293123443331586200297230537048710132025);
1599 DK(KP098017140, +0.098017140329560601994195563888641845861136673);
1600 DK(KP995184726, +0.995184726672196886244836953109479921575474869);
1601 DK(KP634393284, +0.634393284163645498215171613225493370675687095);
1602 DK(KP773010453, +0.773010453362736960810906609758469800971041293);
1603 DK(KP881921264, +0.881921264348355029712756863660388349508442621);
1604 DK(KP471396736, +0.471396736825997648556387625905254377657460319);
1605 DK(KP956940335, +0.956940335732208864935797886980269969482849206);
1606 DK(KP290284677, +0.290284677254462367636192375817395274691476278);
1607 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
1608 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
1609 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
1610 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
1611 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
1612 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
1613 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1614 {
1615 INT i;
1616 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(512, rs), MAKE_VOLATILE_STRIDE(512, csr), MAKE_VOLATILE_STRIDE(512, csi)) {
1617 E TcD, TdU, T27, T7r, T5S, T8y, Tf, Ta5, Tu, Tbq, TcG, TdV, T2e, T8z, T5V;
1618 E T7s, TK, Ta6, TcK, TdX, T2o, T5X, T7w, T8B, TZ, Ta7, TcN, TdY, T2x, T5Y;
1619 E T7z, T8C, T1g, Taa, TcU, TeA, TcX, Tez, T1v, Tab, T2M, T6z, T7E, T9e, T7H;
1620 E T9d, T2T, T6A, T4X, T6L, Tdz, TeL, TdK, TeP, T5G, T6P, T8d, T9p, TaV, Tc3;
1621 E Tbi, Tc4, T8o, T9t, T3I, T6H, Tde, TeH, Tdp, TeF, T4r, T6F, T7U, T9l, Tao;
1622 E TbW, TaL, TbX, T85, T9j, T1L, Tad, Td3, Tew, Td6, Tex, T20, Tae, T37, T6x;
1623 E T7L, T9a, T7O, T9b, T3e, T6w, TbZ, Tc0, T3Z, T4s, Tds, TeI, T4g, T4t, T80;
1624 E T87, Tdl, TeE, T7X, T86, TaD, TaM, Tc6, Tc7, T5e, T5H, TdN, TeM, T5v, T5I;
1625 E T8j, T8q, TdG, TeO, T8g, T8p, Tba, Tbj;
1626 {
1627 E T3, T23, Td, T25, T6, T5R, Ta, T24;
1628 {
1629 E T1, T2, Tb, Tc;
1630 T1 = R0[0];
1631 T2 = R0[WS(rs, 32)];
1632 T3 = T1 + T2;
1633 T23 = T1 - T2;
1634 Tb = R0[WS(rs, 56)];
1635 Tc = R0[WS(rs, 24)];
1636 Td = Tb + Tc;
1637 T25 = Tb - Tc;
1638 }
1639 {
1640 E T4, T5, T8, T9;
1641 T4 = R0[WS(rs, 16)];
1642 T5 = R0[WS(rs, 48)];
1643 T6 = T4 + T5;
1644 T5R = T4 - T5;
1645 T8 = R0[WS(rs, 8)];
1646 T9 = R0[WS(rs, 40)];
1647 Ta = T8 + T9;
1648 T24 = T8 - T9;
1649 }
1650 TcD = T3 - T6;
1651 TdU = Td - Ta;
1652 {
1653 E T26, T5Q, T7, Te;
1654 T26 = KP707106781 * (T24 + T25);
1655 T27 = T23 + T26;
1656 T7r = T23 - T26;
1657 T5Q = KP707106781 * (T25 - T24);
1658 T5S = T5Q - T5R;
1659 T8y = T5R + T5Q;
1660 T7 = T3 + T6;
1661 Te = Ta + Td;
1662 Tf = T7 + Te;
1663 Ta5 = T7 - Te;
1664 }
1665 }
1666 {
1667 E Ti, T28, Ts, T2c, Tl, T29, Tp, T2b;
1668 {
1669 E Tg, Th, Tq, Tr;
1670 Tg = R0[WS(rs, 4)];
1671 Th = R0[WS(rs, 36)];
1672 Ti = Tg + Th;
1673 T28 = Tg - Th;
1674 Tq = R0[WS(rs, 12)];
1675 Tr = R0[WS(rs, 44)];
1676 Ts = Tq + Tr;
1677 T2c = Tq - Tr;
1678 }
1679 {
1680 E Tj, Tk, Tn, To;
1681 Tj = R0[WS(rs, 20)];
1682 Tk = R0[WS(rs, 52)];
1683 Tl = Tj + Tk;
1684 T29 = Tj - Tk;
1685 Tn = R0[WS(rs, 60)];
1686 To = R0[WS(rs, 28)];
1687 Tp = Tn + To;
1688 T2b = Tn - To;
1689 }
1690 {
1691 E Tm, Tt, TcE, TcF;
1692 Tm = Ti + Tl;
1693 Tt = Tp + Ts;
1694 Tu = Tm + Tt;
1695 Tbq = Tt - Tm;
1696 TcE = Ti - Tl;
1697 TcF = Tp - Ts;
1698 TcG = KP707106781 * (TcE + TcF);
1699 TdV = KP707106781 * (TcF - TcE);
1700 }
1701 {
1702 E T2a, T2d, T5T, T5U;
1703 T2a = FNMS(KP382683432, T29, KP923879532 * T28);
1704 T2d = FMA(KP923879532, T2b, KP382683432 * T2c);
1705 T2e = T2a + T2d;
1706 T8z = T2d - T2a;
1707 T5T = FNMS(KP923879532, T2c, KP382683432 * T2b);
1708 T5U = FMA(KP382683432, T28, KP923879532 * T29);
1709 T5V = T5T - T5U;
1710 T7s = T5U + T5T;
1711 }
1712 }
1713 {
1714 E Ty, T2g, TB, T2m, TF, T2l, TI, T2j;
1715 {
1716 E Tw, Tx, Tz, TA;
1717 Tw = R0[WS(rs, 2)];
1718 Tx = R0[WS(rs, 34)];
1719 Ty = Tw + Tx;
1720 T2g = Tw - Tx;
1721 Tz = R0[WS(rs, 18)];
1722 TA = R0[WS(rs, 50)];
1723 TB = Tz + TA;
1724 T2m = Tz - TA;
1725 {
1726 E TD, TE, T2h, TG, TH, T2i;
1727 TD = R0[WS(rs, 10)];
1728 TE = R0[WS(rs, 42)];
1729 T2h = TD - TE;
1730 TG = R0[WS(rs, 58)];
1731 TH = R0[WS(rs, 26)];
1732 T2i = TG - TH;
1733 TF = TD + TE;
1734 T2l = KP707106781 * (T2i - T2h);
1735 TI = TG + TH;
1736 T2j = KP707106781 * (T2h + T2i);
1737 }
1738 }
1739 {
1740 E TC, TJ, TcI, TcJ;
1741 TC = Ty + TB;
1742 TJ = TF + TI;
1743 TK = TC + TJ;
1744 Ta6 = TC - TJ;
1745 TcI = Ty - TB;
1746 TcJ = TI - TF;
1747 TcK = FMA(KP923879532, TcI, KP382683432 * TcJ);
1748 TdX = FNMS(KP382683432, TcI, KP923879532 * TcJ);
1749 }
1750 {
1751 E T2k, T2n, T7u, T7v;
1752 T2k = T2g + T2j;
1753 T2n = T2l - T2m;
1754 T2o = FMA(KP980785280, T2k, KP195090322 * T2n);
1755 T5X = FNMS(KP195090322, T2k, KP980785280 * T2n);
1756 T7u = T2g - T2j;
1757 T7v = T2m + T2l;
1758 T7w = FMA(KP831469612, T7u, KP555570233 * T7v);
1759 T8B = FNMS(KP555570233, T7u, KP831469612 * T7v);
1760 }
1761 }
1762 {
1763 E TN, T2p, TQ, T2v, TU, T2u, TX, T2s;
1764 {
1765 E TL, TM, TO, TP;
1766 TL = R0[WS(rs, 62)];
1767 TM = R0[WS(rs, 30)];
1768 TN = TL + TM;
1769 T2p = TL - TM;
1770 TO = R0[WS(rs, 14)];
1771 TP = R0[WS(rs, 46)];
1772 TQ = TO + TP;
1773 T2v = TO - TP;
1774 {
1775 E TS, TT, T2q, TV, TW, T2r;
1776 TS = R0[WS(rs, 6)];
1777 TT = R0[WS(rs, 38)];
1778 T2q = TS - TT;
1779 TV = R0[WS(rs, 54)];
1780 TW = R0[WS(rs, 22)];
1781 T2r = TV - TW;
1782 TU = TS + TT;
1783 T2u = KP707106781 * (T2r - T2q);
1784 TX = TV + TW;
1785 T2s = KP707106781 * (T2q + T2r);
1786 }
1787 }
1788 {
1789 E TR, TY, TcL, TcM;
1790 TR = TN + TQ;
1791 TY = TU + TX;
1792 TZ = TR + TY;
1793 Ta7 = TR - TY;
1794 TcL = TN - TQ;
1795 TcM = TX - TU;
1796 TcN = FNMS(KP382683432, TcM, KP923879532 * TcL);
1797 TdY = FMA(KP382683432, TcL, KP923879532 * TcM);
1798 }
1799 {
1800 E T2t, T2w, T7x, T7y;
1801 T2t = T2p + T2s;
1802 T2w = T2u - T2v;
1803 T2x = FNMS(KP195090322, T2w, KP980785280 * T2t);
1804 T5Y = FMA(KP195090322, T2t, KP980785280 * T2w);
1805 T7x = T2p - T2s;
1806 T7y = T2v + T2u;
1807 T7z = FNMS(KP555570233, T7y, KP831469612 * T7x);
1808 T8C = FMA(KP555570233, T7x, KP831469612 * T7y);
1809 }
1810 }
1811 {
1812 E T14, T2N, T17, T2D, T1b, T2O, T1e, T2C, T1j, T1m, T2K, TcR, T2Q, T1q, T1t;
1813 E T2H, TcS, T2R;
1814 {
1815 E T12, T13, T15, T16;
1816 T12 = R0[WS(rs, 1)];
1817 T13 = R0[WS(rs, 33)];
1818 T14 = T12 + T13;
1819 T2N = T12 - T13;
1820 T15 = R0[WS(rs, 17)];
1821 T16 = R0[WS(rs, 49)];
1822 T17 = T15 + T16;
1823 T2D = T15 - T16;
1824 }
1825 {
1826 E T19, T1a, T2B, T1c, T1d, T2A;
1827 T19 = R0[WS(rs, 9)];
1828 T1a = R0[WS(rs, 41)];
1829 T2B = T19 - T1a;
1830 T1c = R0[WS(rs, 57)];
1831 T1d = R0[WS(rs, 25)];
1832 T2A = T1c - T1d;
1833 T1b = T19 + T1a;
1834 T2O = KP707106781 * (T2B + T2A);
1835 T1e = T1c + T1d;
1836 T2C = KP707106781 * (T2A - T2B);
1837 }
1838 {
1839 E T2I, T2J, T2F, T2G;
1840 {
1841 E T1h, T1i, T1k, T1l;
1842 T1h = R0[WS(rs, 5)];
1843 T1i = R0[WS(rs, 37)];
1844 T1j = T1h + T1i;
1845 T2I = T1h - T1i;
1846 T1k = R0[WS(rs, 21)];
1847 T1l = R0[WS(rs, 53)];
1848 T1m = T1k + T1l;
1849 T2J = T1k - T1l;
1850 }
1851 T2K = FMA(KP382683432, T2I, KP923879532 * T2J);
1852 TcR = T1j - T1m;
1853 T2Q = FNMS(KP382683432, T2J, KP923879532 * T2I);
1854 {
1855 E T1o, T1p, T1r, T1s;
1856 T1o = R0[WS(rs, 61)];
1857 T1p = R0[WS(rs, 29)];
1858 T1q = T1o + T1p;
1859 T2F = T1o - T1p;
1860 T1r = R0[WS(rs, 13)];
1861 T1s = R0[WS(rs, 45)];
1862 T1t = T1r + T1s;
1863 T2G = T1r - T1s;
1864 }
1865 T2H = FNMS(KP923879532, T2G, KP382683432 * T2F);
1866 TcS = T1q - T1t;
1867 T2R = FMA(KP923879532, T2F, KP382683432 * T2G);
1868 }
1869 {
1870 E T18, T1f, TcQ, TcT;
1871 T18 = T14 + T17;
1872 T1f = T1b + T1e;
1873 T1g = T18 + T1f;
1874 Taa = T18 - T1f;
1875 TcQ = T14 - T17;
1876 TcT = KP707106781 * (TcR + TcS);
1877 TcU = TcQ + TcT;
1878 TeA = TcQ - TcT;
1879 }
1880 {
1881 E TcV, TcW, T1n, T1u;
1882 TcV = T1e - T1b;
1883 TcW = KP707106781 * (TcS - TcR);
1884 TcX = TcV + TcW;
1885 Tez = TcW - TcV;
1886 T1n = T1j + T1m;
1887 T1u = T1q + T1t;
1888 T1v = T1n + T1u;
1889 Tab = T1u - T1n;
1890 }
1891 {
1892 E T2E, T2L, T7C, T7D;
1893 T2E = T2C - T2D;
1894 T2L = T2H - T2K;
1895 T2M = T2E + T2L;
1896 T6z = T2L - T2E;
1897 T7C = T2N - T2O;
1898 T7D = T2K + T2H;
1899 T7E = T7C + T7D;
1900 T9e = T7C - T7D;
1901 }
1902 {
1903 E T7F, T7G, T2P, T2S;
1904 T7F = T2D + T2C;
1905 T7G = T2R - T2Q;
1906 T7H = T7F + T7G;
1907 T9d = T7G - T7F;
1908 T2P = T2N + T2O;
1909 T2S = T2Q + T2R;
1910 T2T = T2P + T2S;
1911 T6A = T2P - T2S;
1912 }
1913 }
1914 {
1915 E T4z, TaP, T5B, TaQ, T4G, TaT, T5y, TaS, Tbf, Tbg, T4O, Tdw, T5E, Tbc, Tbd;
1916 E T4V, Tdx, T5D;
1917 {
1918 E T4x, T4y, T5z, T5A;
1919 T4x = R1[WS(rs, 63)];
1920 T4y = R1[WS(rs, 31)];
1921 T4z = T4x - T4y;
1922 TaP = T4x + T4y;
1923 T5z = R1[WS(rs, 15)];
1924 T5A = R1[WS(rs, 47)];
1925 T5B = T5z - T5A;
1926 TaQ = T5z + T5A;
1927 }
1928 {
1929 E T4A, T4B, T4C, T4D, T4E, T4F;
1930 T4A = R1[WS(rs, 7)];
1931 T4B = R1[WS(rs, 39)];
1932 T4C = T4A - T4B;
1933 T4D = R1[WS(rs, 55)];
1934 T4E = R1[WS(rs, 23)];
1935 T4F = T4D - T4E;
1936 T4G = KP707106781 * (T4C + T4F);
1937 TaT = T4D + T4E;
1938 T5y = KP707106781 * (T4F - T4C);
1939 TaS = T4A + T4B;
1940 }
1941 {
1942 E T4K, T4N, T4R, T4U;
1943 {
1944 E T4I, T4J, T4L, T4M;
1945 T4I = R1[WS(rs, 3)];
1946 T4J = R1[WS(rs, 35)];
1947 T4K = T4I - T4J;
1948 Tbf = T4I + T4J;
1949 T4L = R1[WS(rs, 19)];
1950 T4M = R1[WS(rs, 51)];
1951 T4N = T4L - T4M;
1952 Tbg = T4L + T4M;
1953 }
1954 T4O = FNMS(KP382683432, T4N, KP923879532 * T4K);
1955 Tdw = Tbf - Tbg;
1956 T5E = FMA(KP382683432, T4K, KP923879532 * T4N);
1957 {
1958 E T4P, T4Q, T4S, T4T;
1959 T4P = R1[WS(rs, 59)];
1960 T4Q = R1[WS(rs, 27)];
1961 T4R = T4P - T4Q;
1962 Tbc = T4P + T4Q;
1963 T4S = R1[WS(rs, 11)];
1964 T4T = R1[WS(rs, 43)];
1965 T4U = T4S - T4T;
1966 Tbd = T4S + T4T;
1967 }
1968 T4V = FMA(KP923879532, T4R, KP382683432 * T4U);
1969 Tdx = Tbc - Tbd;
1970 T5D = FNMS(KP923879532, T4U, KP382683432 * T4R);
1971 }
1972 {
1973 E T4H, T4W, Tdv, Tdy;
1974 T4H = T4z + T4G;
1975 T4W = T4O + T4V;
1976 T4X = T4H + T4W;
1977 T6L = T4H - T4W;
1978 Tdv = TaP - TaQ;
1979 Tdy = KP707106781 * (Tdw + Tdx);
1980 Tdz = Tdv + Tdy;
1981 TeL = Tdv - Tdy;
1982 }
1983 {
1984 E TdI, TdJ, T5C, T5F;
1985 TdI = TaT - TaS;
1986 TdJ = KP707106781 * (Tdx - Tdw);
1987 TdK = TdI + TdJ;
1988 TeP = TdJ - TdI;
1989 T5C = T5y - T5B;
1990 T5F = T5D - T5E;
1991 T5G = T5C + T5F;
1992 T6P = T5F - T5C;
1993 }
1994 {
1995 E T8b, T8c, TaR, TaU;
1996 T8b = T4z - T4G;
1997 T8c = T5E + T5D;
1998 T8d = T8b + T8c;
1999 T9p = T8b - T8c;
2000 TaR = TaP + TaQ;
2001 TaU = TaS + TaT;
2002 TaV = TaR - TaU;
2003 Tc3 = TaR + TaU;
2004 }
2005 {
2006 E Tbe, Tbh, T8m, T8n;
2007 Tbe = Tbc + Tbd;
2008 Tbh = Tbf + Tbg;
2009 Tbi = Tbe - Tbh;
2010 Tc4 = Tbh + Tbe;
2011 T8m = T5B + T5y;
2012 T8n = T4V - T4O;
2013 T8o = T8m + T8n;
2014 T9t = T8n - T8m;
2015 }
2016 }
2017 {
2018 E T3k, Tai, T4m, Taj, T3r, Tam, T4j, Tal, TaI, TaJ, T3z, Tdb, T4p, TaF, TaG;
2019 E T3G, Tdc, T4o;
2020 {
2021 E T3i, T3j, T4k, T4l;
2022 T3i = R1[0];
2023 T3j = R1[WS(rs, 32)];
2024 T3k = T3i - T3j;
2025 Tai = T3i + T3j;
2026 T4k = R1[WS(rs, 16)];
2027 T4l = R1[WS(rs, 48)];
2028 T4m = T4k - T4l;
2029 Taj = T4k + T4l;
2030 }
2031 {
2032 E T3l, T3m, T3n, T3o, T3p, T3q;
2033 T3l = R1[WS(rs, 8)];
2034 T3m = R1[WS(rs, 40)];
2035 T3n = T3l - T3m;
2036 T3o = R1[WS(rs, 56)];
2037 T3p = R1[WS(rs, 24)];
2038 T3q = T3o - T3p;
2039 T3r = KP707106781 * (T3n + T3q);
2040 Tam = T3o + T3p;
2041 T4j = KP707106781 * (T3q - T3n);
2042 Tal = T3l + T3m;
2043 }
2044 {
2045 E T3v, T3y, T3C, T3F;
2046 {
2047 E T3t, T3u, T3w, T3x;
2048 T3t = R1[WS(rs, 4)];
2049 T3u = R1[WS(rs, 36)];
2050 T3v = T3t - T3u;
2051 TaI = T3t + T3u;
2052 T3w = R1[WS(rs, 20)];
2053 T3x = R1[WS(rs, 52)];
2054 T3y = T3w - T3x;
2055 TaJ = T3w + T3x;
2056 }
2057 T3z = FNMS(KP382683432, T3y, KP923879532 * T3v);
2058 Tdb = TaI - TaJ;
2059 T4p = FMA(KP382683432, T3v, KP923879532 * T3y);
2060 {
2061 E T3A, T3B, T3D, T3E;
2062 T3A = R1[WS(rs, 60)];
2063 T3B = R1[WS(rs, 28)];
2064 T3C = T3A - T3B;
2065 TaF = T3A + T3B;
2066 T3D = R1[WS(rs, 12)];
2067 T3E = R1[WS(rs, 44)];
2068 T3F = T3D - T3E;
2069 TaG = T3D + T3E;
2070 }
2071 T3G = FMA(KP923879532, T3C, KP382683432 * T3F);
2072 Tdc = TaF - TaG;
2073 T4o = FNMS(KP923879532, T3F, KP382683432 * T3C);
2074 }
2075 {
2076 E T3s, T3H, Tda, Tdd;
2077 T3s = T3k + T3r;
2078 T3H = T3z + T3G;
2079 T3I = T3s + T3H;
2080 T6H = T3s - T3H;
2081 Tda = Tai - Taj;
2082 Tdd = KP707106781 * (Tdb + Tdc);
2083 Tde = Tda + Tdd;
2084 TeH = Tda - Tdd;
2085 }
2086 {
2087 E Tdn, Tdo, T4n, T4q;
2088 Tdn = Tam - Tal;
2089 Tdo = KP707106781 * (Tdc - Tdb);
2090 Tdp = Tdn + Tdo;
2091 TeF = Tdo - Tdn;
2092 T4n = T4j - T4m;
2093 T4q = T4o - T4p;
2094 T4r = T4n + T4q;
2095 T6F = T4q - T4n;
2096 }
2097 {
2098 E T7S, T7T, Tak, Tan;
2099 T7S = T3k - T3r;
2100 T7T = T4p + T4o;
2101 T7U = T7S + T7T;
2102 T9l = T7S - T7T;
2103 Tak = Tai + Taj;
2104 Tan = Tal + Tam;
2105 Tao = Tak - Tan;
2106 TbW = Tak + Tan;
2107 }
2108 {
2109 E TaH, TaK, T83, T84;
2110 TaH = TaF + TaG;
2111 TaK = TaI + TaJ;
2112 TaL = TaH - TaK;
2113 TbX = TaK + TaH;
2114 T83 = T4m + T4j;
2115 T84 = T3G - T3z;
2116 T85 = T83 + T84;
2117 T9j = T84 - T83;
2118 }
2119 }
2120 {
2121 E T1z, T2V, T1C, T39, T1G, T38, T1J, T2Y, T1O, T1R, T32, Td0, T3c, T1V, T1Y;
2122 E T35, Td1, T3b;
2123 {
2124 E T1x, T1y, T1A, T1B;
2125 T1x = R0[WS(rs, 63)];
2126 T1y = R0[WS(rs, 31)];
2127 T1z = T1x + T1y;
2128 T2V = T1x - T1y;
2129 T1A = R0[WS(rs, 15)];
2130 T1B = R0[WS(rs, 47)];
2131 T1C = T1A + T1B;
2132 T39 = T1A - T1B;
2133 }
2134 {
2135 E T1E, T1F, T2W, T1H, T1I, T2X;
2136 T1E = R0[WS(rs, 7)];
2137 T1F = R0[WS(rs, 39)];
2138 T2W = T1E - T1F;
2139 T1H = R0[WS(rs, 55)];
2140 T1I = R0[WS(rs, 23)];
2141 T2X = T1H - T1I;
2142 T1G = T1E + T1F;
2143 T38 = KP707106781 * (T2X - T2W);
2144 T1J = T1H + T1I;
2145 T2Y = KP707106781 * (T2W + T2X);
2146 }
2147 {
2148 E T30, T31, T33, T34;
2149 {
2150 E T1M, T1N, T1P, T1Q;
2151 T1M = R0[WS(rs, 3)];
2152 T1N = R0[WS(rs, 35)];
2153 T1O = T1M + T1N;
2154 T30 = T1M - T1N;
2155 T1P = R0[WS(rs, 19)];
2156 T1Q = R0[WS(rs, 51)];
2157 T1R = T1P + T1Q;
2158 T31 = T1P - T1Q;
2159 }
2160 T32 = FNMS(KP382683432, T31, KP923879532 * T30);
2161 Td0 = T1O - T1R;
2162 T3c = FMA(KP382683432, T30, KP923879532 * T31);
2163 {
2164 E T1T, T1U, T1W, T1X;
2165 T1T = R0[WS(rs, 59)];
2166 T1U = R0[WS(rs, 27)];
2167 T1V = T1T + T1U;
2168 T33 = T1T - T1U;
2169 T1W = R0[WS(rs, 11)];
2170 T1X = R0[WS(rs, 43)];
2171 T1Y = T1W + T1X;
2172 T34 = T1W - T1X;
2173 }
2174 T35 = FMA(KP923879532, T33, KP382683432 * T34);
2175 Td1 = T1V - T1Y;
2176 T3b = FNMS(KP923879532, T34, KP382683432 * T33);
2177 }
2178 {
2179 E T1D, T1K, TcZ, Td2;
2180 T1D = T1z + T1C;
2181 T1K = T1G + T1J;
2182 T1L = T1D + T1K;
2183 Tad = T1D - T1K;
2184 TcZ = T1z - T1C;
2185 Td2 = KP707106781 * (Td0 + Td1);
2186 Td3 = TcZ + Td2;
2187 Tew = TcZ - Td2;
2188 }
2189 {
2190 E Td4, Td5, T1S, T1Z;
2191 Td4 = T1J - T1G;
2192 Td5 = KP707106781 * (Td1 - Td0);
2193 Td6 = Td4 + Td5;
2194 Tex = Td5 - Td4;
2195 T1S = T1O + T1R;
2196 T1Z = T1V + T1Y;
2197 T20 = T1S + T1Z;
2198 Tae = T1Z - T1S;
2199 }
2200 {
2201 E T2Z, T36, T7J, T7K;
2202 T2Z = T2V + T2Y;
2203 T36 = T32 + T35;
2204 T37 = T2Z + T36;
2205 T6x = T2Z - T36;
2206 T7J = T2V - T2Y;
2207 T7K = T3c + T3b;
2208 T7L = T7J + T7K;
2209 T9a = T7J - T7K;
2210 }
2211 {
2212 E T7M, T7N, T3a, T3d;
2213 T7M = T39 + T38;
2214 T7N = T35 - T32;
2215 T7O = T7M + T7N;
2216 T9b = T7N - T7M;
2217 T3a = T38 - T39;
2218 T3d = T3b - T3c;
2219 T3e = T3a + T3d;
2220 T6w = T3d - T3a;
2221 }
2222 }
2223 {
2224 E T3L, Tdf, T3X, Tar, T42, Tdi, T4e, Tay, T3S, Tdg, T3U, Tau, T49, Tdj, T4b;
2225 E TaB, Tdh, Tdk;
2226 {
2227 E T3J, T3K, Tap, T3V, T3W, Taq;
2228 T3J = R1[WS(rs, 2)];
2229 T3K = R1[WS(rs, 34)];
2230 Tap = T3J + T3K;
2231 T3V = R1[WS(rs, 18)];
2232 T3W = R1[WS(rs, 50)];
2233 Taq = T3V + T3W;
2234 T3L = T3J - T3K;
2235 Tdf = Tap - Taq;
2236 T3X = T3V - T3W;
2237 Tar = Tap + Taq;
2238 }
2239 {
2240 E T40, T41, Taw, T4c, T4d, Tax;
2241 T40 = R1[WS(rs, 62)];
2242 T41 = R1[WS(rs, 30)];
2243 Taw = T40 + T41;
2244 T4c = R1[WS(rs, 14)];
2245 T4d = R1[WS(rs, 46)];
2246 Tax = T4c + T4d;
2247 T42 = T40 - T41;
2248 Tdi = Taw - Tax;
2249 T4e = T4c - T4d;
2250 Tay = Taw + Tax;
2251 }
2252 {
2253 E T3O, Tas, T3R, Tat;
2254 {
2255 E T3M, T3N, T3P, T3Q;
2256 T3M = R1[WS(rs, 10)];
2257 T3N = R1[WS(rs, 42)];
2258 T3O = T3M - T3N;
2259 Tas = T3M + T3N;
2260 T3P = R1[WS(rs, 58)];
2261 T3Q = R1[WS(rs, 26)];
2262 T3R = T3P - T3Q;
2263 Tat = T3P + T3Q;
2264 }
2265 T3S = KP707106781 * (T3O + T3R);
2266 Tdg = Tat - Tas;
2267 T3U = KP707106781 * (T3R - T3O);
2268 Tau = Tas + Tat;
2269 }
2270 {
2271 E T45, Taz, T48, TaA;
2272 {
2273 E T43, T44, T46, T47;
2274 T43 = R1[WS(rs, 6)];
2275 T44 = R1[WS(rs, 38)];
2276 T45 = T43 - T44;
2277 Taz = T43 + T44;
2278 T46 = R1[WS(rs, 54)];
2279 T47 = R1[WS(rs, 22)];
2280 T48 = T46 - T47;
2281 TaA = T46 + T47;
2282 }
2283 T49 = KP707106781 * (T45 + T48);
2284 Tdj = TaA - Taz;
2285 T4b = KP707106781 * (T48 - T45);
2286 TaB = Taz + TaA;
2287 }
2288 TbZ = Tar + Tau;
2289 Tc0 = Tay + TaB;
2290 {
2291 E T3T, T3Y, Tdq, Tdr;
2292 T3T = T3L + T3S;
2293 T3Y = T3U - T3X;
2294 T3Z = FMA(KP980785280, T3T, KP195090322 * T3Y);
2295 T4s = FNMS(KP195090322, T3T, KP980785280 * T3Y);
2296 Tdq = FNMS(KP382683432, Tdf, KP923879532 * Tdg);
2297 Tdr = FMA(KP382683432, Tdi, KP923879532 * Tdj);
2298 Tds = Tdq + Tdr;
2299 TeI = Tdr - Tdq;
2300 }
2301 {
2302 E T4a, T4f, T7Y, T7Z;
2303 T4a = T42 + T49;
2304 T4f = T4b - T4e;
2305 T4g = FNMS(KP195090322, T4f, KP980785280 * T4a);
2306 T4t = FMA(KP195090322, T4a, KP980785280 * T4f);
2307 T7Y = T42 - T49;
2308 T7Z = T4e + T4b;
2309 T80 = FNMS(KP555570233, T7Z, KP831469612 * T7Y);
2310 T87 = FMA(KP555570233, T7Y, KP831469612 * T7Z);
2311 }
2312 Tdh = FMA(KP923879532, Tdf, KP382683432 * Tdg);
2313 Tdk = FNMS(KP382683432, Tdj, KP923879532 * Tdi);
2314 Tdl = Tdh + Tdk;
2315 TeE = Tdk - Tdh;
2316 {
2317 E T7V, T7W, Tav, TaC;
2318 T7V = T3L - T3S;
2319 T7W = T3X + T3U;
2320 T7X = FMA(KP831469612, T7V, KP555570233 * T7W);
2321 T86 = FNMS(KP555570233, T7V, KP831469612 * T7W);
2322 Tav = Tar - Tau;
2323 TaC = Tay - TaB;
2324 TaD = KP707106781 * (Tav + TaC);
2325 TaM = KP707106781 * (TaC - Tav);
2326 }
2327 }
2328 {
2329 E T50, TdA, T5c, TaY, T5h, TdD, T5t, Tb5, T57, TdB, T59, Tb1, T5o, TdE, T5q;
2330 E Tb8, TdC, TdF;
2331 {
2332 E T4Y, T4Z, TaW, T5a, T5b, TaX;
2333 T4Y = R1[WS(rs, 1)];
2334 T4Z = R1[WS(rs, 33)];
2335 TaW = T4Y + T4Z;
2336 T5a = R1[WS(rs, 17)];
2337 T5b = R1[WS(rs, 49)];
2338 TaX = T5a + T5b;
2339 T50 = T4Y - T4Z;
2340 TdA = TaW - TaX;
2341 T5c = T5a - T5b;
2342 TaY = TaW + TaX;
2343 }
2344 {
2345 E T5f, T5g, Tb3, T5r, T5s, Tb4;
2346 T5f = R1[WS(rs, 61)];
2347 T5g = R1[WS(rs, 29)];
2348 Tb3 = T5f + T5g;
2349 T5r = R1[WS(rs, 13)];
2350 T5s = R1[WS(rs, 45)];
2351 Tb4 = T5r + T5s;
2352 T5h = T5f - T5g;
2353 TdD = Tb3 - Tb4;
2354 T5t = T5r - T5s;
2355 Tb5 = Tb3 + Tb4;
2356 }
2357 {
2358 E T53, TaZ, T56, Tb0;
2359 {
2360 E T51, T52, T54, T55;
2361 T51 = R1[WS(rs, 9)];
2362 T52 = R1[WS(rs, 41)];
2363 T53 = T51 - T52;
2364 TaZ = T51 + T52;
2365 T54 = R1[WS(rs, 57)];
2366 T55 = R1[WS(rs, 25)];
2367 T56 = T54 - T55;
2368 Tb0 = T54 + T55;
2369 }
2370 T57 = KP707106781 * (T53 + T56);
2371 TdB = Tb0 - TaZ;
2372 T59 = KP707106781 * (T56 - T53);
2373 Tb1 = TaZ + Tb0;
2374 }
2375 {
2376 E T5k, Tb6, T5n, Tb7;
2377 {
2378 E T5i, T5j, T5l, T5m;
2379 T5i = R1[WS(rs, 5)];
2380 T5j = R1[WS(rs, 37)];
2381 T5k = T5i - T5j;
2382 Tb6 = T5i + T5j;
2383 T5l = R1[WS(rs, 53)];
2384 T5m = R1[WS(rs, 21)];
2385 T5n = T5l - T5m;
2386 Tb7 = T5l + T5m;
2387 }
2388 T5o = KP707106781 * (T5k + T5n);
2389 TdE = Tb7 - Tb6;
2390 T5q = KP707106781 * (T5n - T5k);
2391 Tb8 = Tb6 + Tb7;
2392 }
2393 Tc6 = TaY + Tb1;
2394 Tc7 = Tb5 + Tb8;
2395 {
2396 E T58, T5d, TdL, TdM;
2397 T58 = T50 + T57;
2398 T5d = T59 - T5c;
2399 T5e = FMA(KP980785280, T58, KP195090322 * T5d);
2400 T5H = FNMS(KP195090322, T58, KP980785280 * T5d);
2401 TdL = FNMS(KP382683432, TdA, KP923879532 * TdB);
2402 TdM = FMA(KP382683432, TdD, KP923879532 * TdE);
2403 TdN = TdL + TdM;
2404 TeM = TdM - TdL;
2405 }
2406 {
2407 E T5p, T5u, T8h, T8i;
2408 T5p = T5h + T5o;
2409 T5u = T5q - T5t;
2410 T5v = FNMS(KP195090322, T5u, KP980785280 * T5p);
2411 T5I = FMA(KP195090322, T5p, KP980785280 * T5u);
2412 T8h = T5h - T5o;
2413 T8i = T5t + T5q;
2414 T8j = FNMS(KP555570233, T8i, KP831469612 * T8h);
2415 T8q = FMA(KP555570233, T8h, KP831469612 * T8i);
2416 }
2417 TdC = FMA(KP923879532, TdA, KP382683432 * TdB);
2418 TdF = FNMS(KP382683432, TdE, KP923879532 * TdD);
2419 TdG = TdC + TdF;
2420 TeO = TdF - TdC;
2421 {
2422 E T8e, T8f, Tb2, Tb9;
2423 T8e = T50 - T57;
2424 T8f = T5c + T59;
2425 T8g = FMA(KP831469612, T8e, KP555570233 * T8f);
2426 T8p = FNMS(KP555570233, T8e, KP831469612 * T8f);
2427 Tb2 = TaY - Tb1;
2428 Tb9 = Tb5 - Tb8;
2429 Tba = KP707106781 * (Tb2 + Tb9);
2430 Tbj = KP707106781 * (Tb9 - Tb2);
2431 }
2432 }
2433 {
2434 E T11, TbV, Tc9, Tcf, T22, Tcb, Tc2, Tce;
2435 {
2436 E Tv, T10, Tc5, Tc8;
2437 Tv = Tf + Tu;
2438 T10 = TK + TZ;
2439 T11 = Tv + T10;
2440 TbV = Tv - T10;
2441 Tc5 = Tc3 + Tc4;
2442 Tc8 = Tc6 + Tc7;
2443 Tc9 = Tc5 - Tc8;
2444 Tcf = Tc5 + Tc8;
2445 }
2446 {
2447 E T1w, T21, TbY, Tc1;
2448 T1w = T1g + T1v;
2449 T21 = T1L + T20;
2450 T22 = T1w + T21;
2451 Tcb = T21 - T1w;
2452 TbY = TbW + TbX;
2453 Tc1 = TbZ + Tc0;
2454 Tc2 = TbY - Tc1;
2455 Tce = TbY + Tc1;
2456 }
2457 Cr[WS(csr, 32)] = T11 - T22;
2458 Ci[WS(csi, 32)] = Tcf - Tce;
2459 {
2460 E Tca, Tcc, Tcd, Tcg;
2461 Tca = KP707106781 * (Tc2 + Tc9);
2462 Cr[WS(csr, 48)] = TbV - Tca;
2463 Cr[WS(csr, 16)] = TbV + Tca;
2464 Tcc = KP707106781 * (Tc9 - Tc2);
2465 Ci[WS(csi, 16)] = Tcb + Tcc;
2466 Ci[WS(csi, 48)] = Tcc - Tcb;
2467 Tcd = T11 + T22;
2468 Tcg = Tce + Tcf;
2469 Cr[WS(csr, 64)] = Tcd - Tcg;
2470 Cr[0] = Tcd + Tcg;
2471 }
2472 }
2473 {
2474 E Tch, Tcu, Tck, Tct, Tco, Tcy, Tcr, Tcz, Tci, Tcj;
2475 Tch = Tf - Tu;
2476 Tcu = TZ - TK;
2477 Tci = T1g - T1v;
2478 Tcj = T1L - T20;
2479 Tck = KP707106781 * (Tci + Tcj);
2480 Tct = KP707106781 * (Tcj - Tci);
2481 {
2482 E Tcm, Tcn, Tcp, Tcq;
2483 Tcm = TbW - TbX;
2484 Tcn = Tc0 - TbZ;
2485 Tco = FMA(KP923879532, Tcm, KP382683432 * Tcn);
2486 Tcy = FNMS(KP382683432, Tcm, KP923879532 * Tcn);
2487 Tcp = Tc3 - Tc4;
2488 Tcq = Tc7 - Tc6;
2489 Tcr = FNMS(KP382683432, Tcq, KP923879532 * Tcp);
2490 Tcz = FMA(KP382683432, Tcp, KP923879532 * Tcq);
2491 }
2492 {
2493 E Tcl, Tcs, Tcx, TcA;
2494 Tcl = Tch + Tck;
2495 Tcs = Tco + Tcr;
2496 Cr[WS(csr, 56)] = Tcl - Tcs;
2497 Cr[WS(csr, 8)] = Tcl + Tcs;
2498 Tcx = Tcu + Tct;
2499 TcA = Tcy + Tcz;
2500 Ci[WS(csi, 8)] = Tcx + TcA;
2501 Ci[WS(csi, 56)] = TcA - Tcx;
2502 }
2503 {
2504 E Tcv, Tcw, TcB, TcC;
2505 Tcv = Tct - Tcu;
2506 Tcw = Tcr - Tco;
2507 Ci[WS(csi, 24)] = Tcv + Tcw;
2508 Ci[WS(csi, 40)] = Tcw - Tcv;
2509 TcB = Tch - Tck;
2510 TcC = Tcz - Tcy;
2511 Cr[WS(csr, 40)] = TcB - TcC;
2512 Cr[WS(csr, 24)] = TcB + TcC;
2513 }
2514 }
2515 {
2516 E Ta9, TbB, Tbs, TbM, Tag, TbL, TbJ, TbR, TaO, Tbw, Tbp, TbC, TbG, TbQ, Tbl;
2517 E Tbx, Ta8, Tbr;
2518 Ta8 = KP707106781 * (Ta6 + Ta7);
2519 Ta9 = Ta5 + Ta8;
2520 TbB = Ta5 - Ta8;
2521 Tbr = KP707106781 * (Ta7 - Ta6);
2522 Tbs = Tbq + Tbr;
2523 TbM = Tbr - Tbq;
2524 {
2525 E Tac, Taf, TbH, TbI;
2526 Tac = FMA(KP923879532, Taa, KP382683432 * Tab);
2527 Taf = FNMS(KP382683432, Tae, KP923879532 * Tad);
2528 Tag = Tac + Taf;
2529 TbL = Taf - Tac;
2530 TbH = TaV - Tba;
2531 TbI = Tbj - Tbi;
2532 TbJ = FNMS(KP555570233, TbI, KP831469612 * TbH);
2533 TbR = FMA(KP555570233, TbH, KP831469612 * TbI);
2534 }
2535 {
2536 E TaE, TaN, Tbn, Tbo;
2537 TaE = Tao + TaD;
2538 TaN = TaL + TaM;
2539 TaO = FMA(KP980785280, TaE, KP195090322 * TaN);
2540 Tbw = FNMS(KP195090322, TaE, KP980785280 * TaN);
2541 Tbn = FNMS(KP382683432, Taa, KP923879532 * Tab);
2542 Tbo = FMA(KP382683432, Tad, KP923879532 * Tae);
2543 Tbp = Tbn + Tbo;
2544 TbC = Tbo - Tbn;
2545 }
2546 {
2547 E TbE, TbF, Tbb, Tbk;
2548 TbE = Tao - TaD;
2549 TbF = TaM - TaL;
2550 TbG = FMA(KP831469612, TbE, KP555570233 * TbF);
2551 TbQ = FNMS(KP555570233, TbE, KP831469612 * TbF);
2552 Tbb = TaV + Tba;
2553 Tbk = Tbi + Tbj;
2554 Tbl = FNMS(KP195090322, Tbk, KP980785280 * Tbb);
2555 Tbx = FMA(KP195090322, Tbb, KP980785280 * Tbk);
2556 }
2557 {
2558 E Tah, Tbm, Tbv, Tby;
2559 Tah = Ta9 + Tag;
2560 Tbm = TaO + Tbl;
2561 Cr[WS(csr, 60)] = Tah - Tbm;
2562 Cr[WS(csr, 4)] = Tah + Tbm;
2563 Tbv = Tbs + Tbp;
2564 Tby = Tbw + Tbx;
2565 Ci[WS(csi, 4)] = Tbv + Tby;
2566 Ci[WS(csi, 60)] = Tby - Tbv;
2567 }
2568 {
2569 E Tbt, Tbu, Tbz, TbA;
2570 Tbt = Tbp - Tbs;
2571 Tbu = Tbl - TaO;
2572 Ci[WS(csi, 28)] = Tbt + Tbu;
2573 Ci[WS(csi, 36)] = Tbu - Tbt;
2574 Tbz = Ta9 - Tag;
2575 TbA = Tbx - Tbw;
2576 Cr[WS(csr, 36)] = Tbz - TbA;
2577 Cr[WS(csr, 28)] = Tbz + TbA;
2578 }
2579 {
2580 E TbD, TbK, TbP, TbS;
2581 TbD = TbB + TbC;
2582 TbK = TbG + TbJ;
2583 Cr[WS(csr, 52)] = TbD - TbK;
2584 Cr[WS(csr, 12)] = TbD + TbK;
2585 TbP = TbM + TbL;
2586 TbS = TbQ + TbR;
2587 Ci[WS(csi, 12)] = TbP + TbS;
2588 Ci[WS(csi, 52)] = TbS - TbP;
2589 }
2590 {
2591 E TbN, TbO, TbT, TbU;
2592 TbN = TbL - TbM;
2593 TbO = TbJ - TbG;
2594 Ci[WS(csi, 20)] = TbN + TbO;
2595 Ci[WS(csi, 44)] = TbO - TbN;
2596 TbT = TbB - TbC;
2597 TbU = TbR - TbQ;
2598 Cr[WS(csr, 44)] = TbT - TbU;
2599 Cr[WS(csr, 20)] = TbT + TbU;
2600 }
2601 }
2602 {
2603 E Tev, Tf7, Tfc, Tfm, Tff, Tfn, TeC, Tfh, TeK, Tf2, TeV, Tf8, TeY, Tfi, TeR;
2604 E Tf3;
2605 {
2606 E Tet, Teu, Tfa, Tfb;
2607 Tet = TcD - TcG;
2608 Teu = TdY - TdX;
2609 Tev = Tet - Teu;
2610 Tf7 = Tet + Teu;
2611 Tfa = TeF + TeE;
2612 Tfb = TeH + TeI;
2613 Tfc = FMA(KP290284677, Tfa, KP956940335 * Tfb);
2614 Tfm = FNMS(KP290284677, Tfb, KP956940335 * Tfa);
2615 }
2616 {
2617 E Tfd, Tfe, Tey, TeB;
2618 Tfd = TeL + TeM;
2619 Tfe = TeP + TeO;
2620 Tff = FNMS(KP290284677, Tfe, KP956940335 * Tfd);
2621 Tfn = FMA(KP956940335, Tfe, KP290284677 * Tfd);
2622 Tey = FMA(KP555570233, Tew, KP831469612 * Tex);
2623 TeB = FNMS(KP555570233, TeA, KP831469612 * Tez);
2624 TeC = Tey - TeB;
2625 Tfh = TeB + Tey;
2626 }
2627 {
2628 E TeG, TeJ, TeT, TeU;
2629 TeG = TeE - TeF;
2630 TeJ = TeH - TeI;
2631 TeK = FMA(KP471396736, TeG, KP881921264 * TeJ);
2632 Tf2 = FNMS(KP471396736, TeJ, KP881921264 * TeG);
2633 TeT = FNMS(KP555570233, Tex, KP831469612 * Tew);
2634 TeU = FMA(KP831469612, TeA, KP555570233 * Tez);
2635 TeV = TeT - TeU;
2636 Tf8 = TeU + TeT;
2637 }
2638 {
2639 E TeW, TeX, TeN, TeQ;
2640 TeW = TcN - TcK;
2641 TeX = TdV - TdU;
2642 TeY = TeW - TeX;
2643 Tfi = TeX + TeW;
2644 TeN = TeL - TeM;
2645 TeQ = TeO - TeP;
2646 TeR = FNMS(KP471396736, TeQ, KP881921264 * TeN);
2647 Tf3 = FMA(KP881921264, TeQ, KP471396736 * TeN);
2648 }
2649 {
2650 E TeD, TeS, Tf1, Tf4;
2651 TeD = Tev + TeC;
2652 TeS = TeK + TeR;
2653 Cr[WS(csr, 54)] = TeD - TeS;
2654 Cr[WS(csr, 10)] = TeD + TeS;
2655 Tf1 = TeY + TeV;
2656 Tf4 = Tf2 + Tf3;
2657 Ci[WS(csi, 10)] = Tf1 + Tf4;
2658 Ci[WS(csi, 54)] = Tf4 - Tf1;
2659 }
2660 {
2661 E TeZ, Tf0, Tf5, Tf6;
2662 TeZ = TeV - TeY;
2663 Tf0 = TeR - TeK;
2664 Ci[WS(csi, 22)] = TeZ + Tf0;
2665 Ci[WS(csi, 42)] = Tf0 - TeZ;
2666 Tf5 = Tev - TeC;
2667 Tf6 = Tf3 - Tf2;
2668 Cr[WS(csr, 42)] = Tf5 - Tf6;
2669 Cr[WS(csr, 22)] = Tf5 + Tf6;
2670 }
2671 {
2672 E Tf9, Tfg, Tfl, Tfo;
2673 Tf9 = Tf7 + Tf8;
2674 Tfg = Tfc + Tff;
2675 Cr[WS(csr, 58)] = Tf9 - Tfg;
2676 Cr[WS(csr, 6)] = Tf9 + Tfg;
2677 Tfl = Tfi + Tfh;
2678 Tfo = Tfm + Tfn;
2679 Ci[WS(csi, 6)] = Tfl + Tfo;
2680 Ci[WS(csi, 58)] = Tfo - Tfl;
2681 }
2682 {
2683 E Tfj, Tfk, Tfp, Tfq;
2684 Tfj = Tfh - Tfi;
2685 Tfk = Tff - Tfc;
2686 Ci[WS(csi, 26)] = Tfj + Tfk;
2687 Ci[WS(csi, 38)] = Tfk - Tfj;
2688 Tfp = Tf7 - Tf8;
2689 Tfq = Tfn - Tfm;
2690 Cr[WS(csr, 38)] = Tfp - Tfq;
2691 Cr[WS(csr, 26)] = Tfp + Tfq;
2692 }
2693 }
2694 {
2695 E TcP, Te9, Tee, Teo, Teh, Tep, Td8, Tej, Tdu, Te4, TdT, Tea, Te0, Tek, TdP;
2696 E Te5;
2697 {
2698 E TcH, TcO, Tec, Ted;
2699 TcH = TcD + TcG;
2700 TcO = TcK + TcN;
2701 TcP = TcH + TcO;
2702 Te9 = TcH - TcO;
2703 Tec = Tde - Tdl;
2704 Ted = Tds - Tdp;
2705 Tee = FMA(KP773010453, Tec, KP634393284 * Ted);
2706 Teo = FNMS(KP634393284, Tec, KP773010453 * Ted);
2707 }
2708 {
2709 E Tef, Teg, TcY, Td7;
2710 Tef = Tdz - TdG;
2711 Teg = TdN - TdK;
2712 Teh = FNMS(KP634393284, Teg, KP773010453 * Tef);
2713 Tep = FMA(KP634393284, Tef, KP773010453 * Teg);
2714 TcY = FMA(KP980785280, TcU, KP195090322 * TcX);
2715 Td7 = FNMS(KP195090322, Td6, KP980785280 * Td3);
2716 Td8 = TcY + Td7;
2717 Tej = Td7 - TcY;
2718 }
2719 {
2720 E Tdm, Tdt, TdR, TdS;
2721 Tdm = Tde + Tdl;
2722 Tdt = Tdp + Tds;
2723 Tdu = FMA(KP995184726, Tdm, KP098017140 * Tdt);
2724 Te4 = FNMS(KP098017140, Tdm, KP995184726 * Tdt);
2725 TdR = FNMS(KP195090322, TcU, KP980785280 * TcX);
2726 TdS = FMA(KP195090322, Td3, KP980785280 * Td6);
2727 TdT = TdR + TdS;
2728 Tea = TdS - TdR;
2729 }
2730 {
2731 E TdW, TdZ, TdH, TdO;
2732 TdW = TdU + TdV;
2733 TdZ = TdX + TdY;
2734 Te0 = TdW + TdZ;
2735 Tek = TdZ - TdW;
2736 TdH = Tdz + TdG;
2737 TdO = TdK + TdN;
2738 TdP = FNMS(KP098017140, TdO, KP995184726 * TdH);
2739 Te5 = FMA(KP098017140, TdH, KP995184726 * TdO);
2740 }
2741 {
2742 E Td9, TdQ, Te3, Te6;
2743 Td9 = TcP + Td8;
2744 TdQ = Tdu + TdP;
2745 Cr[WS(csr, 62)] = Td9 - TdQ;
2746 Cr[WS(csr, 2)] = Td9 + TdQ;
2747 Te3 = Te0 + TdT;
2748 Te6 = Te4 + Te5;
2749 Ci[WS(csi, 2)] = Te3 + Te6;
2750 Ci[WS(csi, 62)] = Te6 - Te3;
2751 }
2752 {
2753 E Te1, Te2, Te7, Te8;
2754 Te1 = TdT - Te0;
2755 Te2 = TdP - Tdu;
2756 Ci[WS(csi, 30)] = Te1 + Te2;
2757 Ci[WS(csi, 34)] = Te2 - Te1;
2758 Te7 = TcP - Td8;
2759 Te8 = Te5 - Te4;
2760 Cr[WS(csr, 34)] = Te7 - Te8;
2761 Cr[WS(csr, 30)] = Te7 + Te8;
2762 }
2763 {
2764 E Teb, Tei, Ten, Teq;
2765 Teb = Te9 + Tea;
2766 Tei = Tee + Teh;
2767 Cr[WS(csr, 50)] = Teb - Tei;
2768 Cr[WS(csr, 14)] = Teb + Tei;
2769 Ten = Tek + Tej;
2770 Teq = Teo + Tep;
2771 Ci[WS(csi, 14)] = Ten + Teq;
2772 Ci[WS(csi, 50)] = Teq - Ten;
2773 }
2774 {
2775 E Tel, Tem, Ter, Tes;
2776 Tel = Tej - Tek;
2777 Tem = Teh - Tee;
2778 Ci[WS(csi, 18)] = Tel + Tem;
2779 Ci[WS(csi, 46)] = Tem - Tel;
2780 Ter = Te9 - Tea;
2781 Tes = Tep - Teo;
2782 Cr[WS(csr, 46)] = Ter - Tes;
2783 Cr[WS(csr, 18)] = Ter + Tes;
2784 }
2785 }
2786 {
2787 E T6v, T77, T6C, T7h, T6Y, T7i, T6V, T78, T6R, T7n, T73, T7f, T6K, T7m, T72;
2788 E T7c;
2789 {
2790 E T6t, T6u, T6T, T6U;
2791 T6t = T27 - T2e;
2792 T6u = T5Y - T5X;
2793 T6v = T6t - T6u;
2794 T77 = T6t + T6u;
2795 {
2796 E T6y, T6B, T6W, T6X;
2797 T6y = FMA(KP773010453, T6w, KP634393284 * T6x);
2798 T6B = FNMS(KP634393284, T6A, KP773010453 * T6z);
2799 T6C = T6y - T6B;
2800 T7h = T6B + T6y;
2801 T6W = T2x - T2o;
2802 T6X = T5V - T5S;
2803 T6Y = T6W - T6X;
2804 T7i = T6X + T6W;
2805 }
2806 T6T = FNMS(KP634393284, T6w, KP773010453 * T6x);
2807 T6U = FMA(KP634393284, T6z, KP773010453 * T6A);
2808 T6V = T6T - T6U;
2809 T78 = T6U + T6T;
2810 {
2811 E T6N, T7d, T6Q, T7e, T6M, T6O;
2812 T6M = T5I - T5H;
2813 T6N = T6L - T6M;
2814 T7d = T6L + T6M;
2815 T6O = T5v - T5e;
2816 T6Q = T6O - T6P;
2817 T7e = T6P + T6O;
2818 T6R = FNMS(KP427555093, T6Q, KP903989293 * T6N);
2819 T7n = FMA(KP941544065, T7e, KP336889853 * T7d);
2820 T73 = FMA(KP903989293, T6Q, KP427555093 * T6N);
2821 T7f = FNMS(KP336889853, T7e, KP941544065 * T7d);
2822 }
2823 {
2824 E T6G, T7a, T6J, T7b, T6E, T6I;
2825 T6E = T4g - T3Z;
2826 T6G = T6E - T6F;
2827 T7a = T6F + T6E;
2828 T6I = T4t - T4s;
2829 T6J = T6H - T6I;
2830 T7b = T6H + T6I;
2831 T6K = FMA(KP427555093, T6G, KP903989293 * T6J);
2832 T7m = FNMS(KP336889853, T7b, KP941544065 * T7a);
2833 T72 = FNMS(KP427555093, T6J, KP903989293 * T6G);
2834 T7c = FMA(KP336889853, T7a, KP941544065 * T7b);
2835 }
2836 }
2837 {
2838 E T6D, T6S, T71, T74;
2839 T6D = T6v + T6C;
2840 T6S = T6K + T6R;
2841 Cr[WS(csr, 55)] = T6D - T6S;
2842 Cr[WS(csr, 9)] = T6D + T6S;
2843 T71 = T6Y + T6V;
2844 T74 = T72 + T73;
2845 Ci[WS(csi, 9)] = T71 + T74;
2846 Ci[WS(csi, 55)] = T74 - T71;
2847 }
2848 {
2849 E T6Z, T70, T75, T76;
2850 T6Z = T6V - T6Y;
2851 T70 = T6R - T6K;
2852 Ci[WS(csi, 23)] = T6Z + T70;
2853 Ci[WS(csi, 41)] = T70 - T6Z;
2854 T75 = T6v - T6C;
2855 T76 = T73 - T72;
2856 Cr[WS(csr, 41)] = T75 - T76;
2857 Cr[WS(csr, 23)] = T75 + T76;
2858 }
2859 {
2860 E T79, T7g, T7l, T7o;
2861 T79 = T77 + T78;
2862 T7g = T7c + T7f;
2863 Cr[WS(csr, 57)] = T79 - T7g;
2864 Cr[WS(csr, 7)] = T79 + T7g;
2865 T7l = T7i + T7h;
2866 T7o = T7m + T7n;
2867 Ci[WS(csi, 7)] = T7l + T7o;
2868 Ci[WS(csi, 57)] = T7o - T7l;
2869 }
2870 {
2871 E T7j, T7k, T7p, T7q;
2872 T7j = T7h - T7i;
2873 T7k = T7f - T7c;
2874 Ci[WS(csi, 25)] = T7j + T7k;
2875 Ci[WS(csi, 39)] = T7k - T7j;
2876 T7p = T77 - T78;
2877 T7q = T7n - T7m;
2878 Cr[WS(csr, 39)] = T7p - T7q;
2879 Cr[WS(csr, 25)] = T7p + T7q;
2880 }
2881 }
2882 {
2883 E T99, T9L, T9g, T9V, T9C, T9W, T9z, T9M, T9v, Ta1, T9H, T9T, T9o, Ta0, T9G;
2884 E T9Q;
2885 {
2886 E T97, T98, T9x, T9y;
2887 T97 = T7r - T7s;
2888 T98 = T8C - T8B;
2889 T99 = T97 - T98;
2890 T9L = T97 + T98;
2891 {
2892 E T9c, T9f, T9A, T9B;
2893 T9c = FMA(KP471396736, T9a, KP881921264 * T9b);
2894 T9f = FNMS(KP471396736, T9e, KP881921264 * T9d);
2895 T9g = T9c - T9f;
2896 T9V = T9f + T9c;
2897 T9A = T7z - T7w;
2898 T9B = T8z - T8y;
2899 T9C = T9A - T9B;
2900 T9W = T9B + T9A;
2901 }
2902 T9x = FNMS(KP471396736, T9b, KP881921264 * T9a);
2903 T9y = FMA(KP881921264, T9e, KP471396736 * T9d);
2904 T9z = T9x - T9y;
2905 T9M = T9y + T9x;
2906 {
2907 E T9r, T9R, T9u, T9S, T9q, T9s;
2908 T9q = T8q - T8p;
2909 T9r = T9p - T9q;
2910 T9R = T9p + T9q;
2911 T9s = T8j - T8g;
2912 T9u = T9s - T9t;
2913 T9S = T9t + T9s;
2914 T9v = FNMS(KP514102744, T9u, KP857728610 * T9r);
2915 Ta1 = FMA(KP970031253, T9S, KP242980179 * T9R);
2916 T9H = FMA(KP857728610, T9u, KP514102744 * T9r);
2917 T9T = FNMS(KP242980179, T9S, KP970031253 * T9R);
2918 }
2919 {
2920 E T9k, T9O, T9n, T9P, T9i, T9m;
2921 T9i = T80 - T7X;
2922 T9k = T9i - T9j;
2923 T9O = T9j + T9i;
2924 T9m = T87 - T86;
2925 T9n = T9l - T9m;
2926 T9P = T9l + T9m;
2927 T9o = FMA(KP514102744, T9k, KP857728610 * T9n);
2928 Ta0 = FNMS(KP242980179, T9P, KP970031253 * T9O);
2929 T9G = FNMS(KP514102744, T9n, KP857728610 * T9k);
2930 T9Q = FMA(KP242980179, T9O, KP970031253 * T9P);
2931 }
2932 }
2933 {
2934 E T9h, T9w, T9F, T9I;
2935 T9h = T99 + T9g;
2936 T9w = T9o + T9v;
2937 Cr[WS(csr, 53)] = T9h - T9w;
2938 Cr[WS(csr, 11)] = T9h + T9w;
2939 T9F = T9C + T9z;
2940 T9I = T9G + T9H;
2941 Ci[WS(csi, 11)] = T9F + T9I;
2942 Ci[WS(csi, 53)] = T9I - T9F;
2943 }
2944 {
2945 E T9D, T9E, T9J, T9K;
2946 T9D = T9z - T9C;
2947 T9E = T9v - T9o;
2948 Ci[WS(csi, 21)] = T9D + T9E;
2949 Ci[WS(csi, 43)] = T9E - T9D;
2950 T9J = T99 - T9g;
2951 T9K = T9H - T9G;
2952 Cr[WS(csr, 43)] = T9J - T9K;
2953 Cr[WS(csr, 21)] = T9J + T9K;
2954 }
2955 {
2956 E T9N, T9U, T9Z, Ta2;
2957 T9N = T9L + T9M;
2958 T9U = T9Q + T9T;
2959 Cr[WS(csr, 59)] = T9N - T9U;
2960 Cr[WS(csr, 5)] = T9N + T9U;
2961 T9Z = T9W + T9V;
2962 Ta2 = Ta0 + Ta1;
2963 Ci[WS(csi, 5)] = T9Z + Ta2;
2964 Ci[WS(csi, 59)] = Ta2 - T9Z;
2965 }
2966 {
2967 E T9X, T9Y, Ta3, Ta4;
2968 T9X = T9V - T9W;
2969 T9Y = T9T - T9Q;
2970 Ci[WS(csi, 27)] = T9X + T9Y;
2971 Ci[WS(csi, 37)] = T9Y - T9X;
2972 Ta3 = T9L - T9M;
2973 Ta4 = Ta1 - Ta0;
2974 Cr[WS(csr, 37)] = Ta3 - Ta4;
2975 Cr[WS(csr, 27)] = Ta3 + Ta4;
2976 }
2977 }
2978 {
2979 E T2z, T69, T3g, T6j, T60, T6k, T5P, T6a, T5L, T6p, T65, T6h, T4w, T6o, T64;
2980 E T6e;
2981 {
2982 E T2f, T2y, T5N, T5O;
2983 T2f = T27 + T2e;
2984 T2y = T2o + T2x;
2985 T2z = T2f + T2y;
2986 T69 = T2f - T2y;
2987 {
2988 E T2U, T3f, T5W, T5Z;
2989 T2U = FMA(KP098017140, T2M, KP995184726 * T2T);
2990 T3f = FNMS(KP098017140, T3e, KP995184726 * T37);
2991 T3g = T2U + T3f;
2992 T6j = T3f - T2U;
2993 T5W = T5S + T5V;
2994 T5Z = T5X + T5Y;
2995 T60 = T5W + T5Z;
2996 T6k = T5Z - T5W;
2997 }
2998 T5N = FNMS(KP098017140, T2T, KP995184726 * T2M);
2999 T5O = FMA(KP995184726, T3e, KP098017140 * T37);
3000 T5P = T5N + T5O;
3001 T6a = T5O - T5N;
3002 {
3003 E T5x, T6f, T5K, T6g, T5w, T5J;
3004 T5w = T5e + T5v;
3005 T5x = T4X + T5w;
3006 T6f = T4X - T5w;
3007 T5J = T5H + T5I;
3008 T5K = T5G + T5J;
3009 T6g = T5J - T5G;
3010 T5L = FNMS(KP049067674, T5K, KP998795456 * T5x);
3011 T6p = FMA(KP671558954, T6f, KP740951125 * T6g);
3012 T65 = FMA(KP049067674, T5x, KP998795456 * T5K);
3013 T6h = FNMS(KP671558954, T6g, KP740951125 * T6f);
3014 }
3015 {
3016 E T4i, T6c, T4v, T6d, T4h, T4u;
3017 T4h = T3Z + T4g;
3018 T4i = T3I + T4h;
3019 T6c = T3I - T4h;
3020 T4u = T4s + T4t;
3021 T4v = T4r + T4u;
3022 T6d = T4u - T4r;
3023 T4w = FMA(KP998795456, T4i, KP049067674 * T4v);
3024 T6o = FNMS(KP671558954, T6c, KP740951125 * T6d);
3025 T64 = FNMS(KP049067674, T4i, KP998795456 * T4v);
3026 T6e = FMA(KP740951125, T6c, KP671558954 * T6d);
3027 }
3028 }
3029 {
3030 E T3h, T5M, T63, T66;
3031 T3h = T2z + T3g;
3032 T5M = T4w + T5L;
3033 Cr[WS(csr, 63)] = T3h - T5M;
3034 Cr[WS(csr, 1)] = T3h + T5M;
3035 T63 = T60 + T5P;
3036 T66 = T64 + T65;
3037 Ci[WS(csi, 1)] = T63 + T66;
3038 Ci[WS(csi, 63)] = T66 - T63;
3039 }
3040 {
3041 E T61, T62, T67, T68;
3042 T61 = T5P - T60;
3043 T62 = T5L - T4w;
3044 Ci[WS(csi, 31)] = T61 + T62;
3045 Ci[WS(csi, 33)] = T62 - T61;
3046 T67 = T2z - T3g;
3047 T68 = T65 - T64;
3048 Cr[WS(csr, 33)] = T67 - T68;
3049 Cr[WS(csr, 31)] = T67 + T68;
3050 }
3051 {
3052 E T6b, T6i, T6n, T6q;
3053 T6b = T69 + T6a;
3054 T6i = T6e + T6h;
3055 Cr[WS(csr, 49)] = T6b - T6i;
3056 Cr[WS(csr, 15)] = T6b + T6i;
3057 T6n = T6k + T6j;
3058 T6q = T6o + T6p;
3059 Ci[WS(csi, 15)] = T6n + T6q;
3060 Ci[WS(csi, 49)] = T6q - T6n;
3061 }
3062 {
3063 E T6l, T6m, T6r, T6s;
3064 T6l = T6j - T6k;
3065 T6m = T6h - T6e;
3066 Ci[WS(csi, 17)] = T6l + T6m;
3067 Ci[WS(csi, 47)] = T6m - T6l;
3068 T6r = T69 - T6a;
3069 T6s = T6p - T6o;
3070 Cr[WS(csr, 47)] = T6r - T6s;
3071 Cr[WS(csr, 17)] = T6r + T6s;
3072 }
3073 }
3074 {
3075 E T7B, T8N, T7Q, T8X, T8E, T8Y, T8x, T8O, T8t, T93, T8J, T8V, T8a, T92, T8I;
3076 E T8S;
3077 {
3078 E T7t, T7A, T8v, T8w;
3079 T7t = T7r + T7s;
3080 T7A = T7w + T7z;
3081 T7B = T7t + T7A;
3082 T8N = T7t - T7A;
3083 {
3084 E T7I, T7P, T8A, T8D;
3085 T7I = FMA(KP956940335, T7E, KP290284677 * T7H);
3086 T7P = FNMS(KP290284677, T7O, KP956940335 * T7L);
3087 T7Q = T7I + T7P;
3088 T8X = T7P - T7I;
3089 T8A = T8y + T8z;
3090 T8D = T8B + T8C;
3091 T8E = T8A + T8D;
3092 T8Y = T8D - T8A;
3093 }
3094 T8v = FNMS(KP290284677, T7E, KP956940335 * T7H);
3095 T8w = FMA(KP290284677, T7L, KP956940335 * T7O);
3096 T8x = T8v + T8w;
3097 T8O = T8w - T8v;
3098 {
3099 E T8l, T8T, T8s, T8U, T8k, T8r;
3100 T8k = T8g + T8j;
3101 T8l = T8d + T8k;
3102 T8T = T8d - T8k;
3103 T8r = T8p + T8q;
3104 T8s = T8o + T8r;
3105 T8U = T8r - T8o;
3106 T8t = FNMS(KP146730474, T8s, KP989176509 * T8l);
3107 T93 = FMA(KP595699304, T8T, KP803207531 * T8U);
3108 T8J = FMA(KP146730474, T8l, KP989176509 * T8s);
3109 T8V = FNMS(KP595699304, T8U, KP803207531 * T8T);
3110 }
3111 {
3112 E T82, T8Q, T89, T8R, T81, T88;
3113 T81 = T7X + T80;
3114 T82 = T7U + T81;
3115 T8Q = T7U - T81;
3116 T88 = T86 + T87;
3117 T89 = T85 + T88;
3118 T8R = T88 - T85;
3119 T8a = FMA(KP989176509, T82, KP146730474 * T89);
3120 T92 = FNMS(KP595699304, T8Q, KP803207531 * T8R);
3121 T8I = FNMS(KP146730474, T82, KP989176509 * T89);
3122 T8S = FMA(KP803207531, T8Q, KP595699304 * T8R);
3123 }
3124 }
3125 {
3126 E T7R, T8u, T8H, T8K;
3127 T7R = T7B + T7Q;
3128 T8u = T8a + T8t;
3129 Cr[WS(csr, 61)] = T7R - T8u;
3130 Cr[WS(csr, 3)] = T7R + T8u;
3131 T8H = T8E + T8x;
3132 T8K = T8I + T8J;
3133 Ci[WS(csi, 3)] = T8H + T8K;
3134 Ci[WS(csi, 61)] = T8K - T8H;
3135 }
3136 {
3137 E T8F, T8G, T8L, T8M;
3138 T8F = T8x - T8E;
3139 T8G = T8t - T8a;
3140 Ci[WS(csi, 29)] = T8F + T8G;
3141 Ci[WS(csi, 35)] = T8G - T8F;
3142 T8L = T7B - T7Q;
3143 T8M = T8J - T8I;
3144 Cr[WS(csr, 35)] = T8L - T8M;
3145 Cr[WS(csr, 29)] = T8L + T8M;
3146 }
3147 {
3148 E T8P, T8W, T91, T94;
3149 T8P = T8N + T8O;
3150 T8W = T8S + T8V;
3151 Cr[WS(csr, 51)] = T8P - T8W;
3152 Cr[WS(csr, 13)] = T8P + T8W;
3153 T91 = T8Y + T8X;
3154 T94 = T92 + T93;
3155 Ci[WS(csi, 13)] = T91 + T94;
3156 Ci[WS(csi, 51)] = T94 - T91;
3157 }
3158 {
3159 E T8Z, T90, T95, T96;
3160 T8Z = T8X - T8Y;
3161 T90 = T8V - T8S;
3162 Ci[WS(csi, 19)] = T8Z + T90;
3163 Ci[WS(csi, 45)] = T90 - T8Z;
3164 T95 = T8N - T8O;
3165 T96 = T93 - T92;
3166 Cr[WS(csr, 45)] = T95 - T96;
3167 Cr[WS(csr, 19)] = T95 + T96;
3168 }
3169 }
3170 }
3171 }
3172 }
3173
3174 static const kr2c_desc desc = { 128, "r2cf_128", {812, 186, 144, 0}, &GENUS };
3175
3176 void X(codelet_r2cf_128) (planner *p) {
3177 X(kr2c_register) (p, r2cf_128, &desc);
3178 }
3179
3180 #endif /* HAVE_FMA */