Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.5/rdft/scalar/r2cf/r2cfII_12.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
41:481f5f8c5634 | 42:2cd0e3b3e1fd |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sat Jul 30 16:47:26 EDT 2016 */ | |
23 | |
24 #include "codelet-rdft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include r2cfII.h */ | |
29 | |
30 /* | |
31 * This function contains 45 FP additions, 24 FP multiplications, | |
32 * (or, 21 additions, 0 multiplications, 24 fused multiply/add), | |
33 * 37 stack variables, 3 constants, and 24 memory accesses | |
34 */ | |
35 #include "r2cfII.h" | |
36 | |
37 static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
41 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
42 { | |
43 INT i; | |
44 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { | |
45 E TD, TB, Tp, T9, Tq, Tr, TE, To, Ts, TC; | |
46 { | |
47 E T8, T1, Tv, Tm, TF, Tz, Tl, Ta, Tb, Tt, TA, T4, Tc; | |
48 { | |
49 E Tx, Th, Ti, Tj, Ty, T6, T7, T2, T3, Tk; | |
50 Tx = R0[WS(rs, 3)]; | |
51 T6 = R0[WS(rs, 5)]; | |
52 T7 = R0[WS(rs, 1)]; | |
53 Th = R1[WS(rs, 4)]; | |
54 Ti = R1[WS(rs, 2)]; | |
55 Tj = R1[0]; | |
56 Ty = T6 + T7; | |
57 T8 = T6 - T7; | |
58 T1 = R0[0]; | |
59 Tv = Ti - Tj - Th; | |
60 Tk = Ti - Tj; | |
61 Tm = Ti + Tj; | |
62 TF = Tx - Ty; | |
63 Tz = FMA(KP500000000, Ty, Tx); | |
64 T2 = R0[WS(rs, 2)]; | |
65 T3 = R0[WS(rs, 4)]; | |
66 Tl = FMA(KP500000000, Tk, Th); | |
67 Ta = R1[WS(rs, 1)]; | |
68 Tb = R1[WS(rs, 3)]; | |
69 Tt = T1 + T3 - T2; | |
70 TA = T3 + T2; | |
71 T4 = T2 - T3; | |
72 Tc = R1[WS(rs, 5)]; | |
73 } | |
74 { | |
75 E Tn, Tg, T5, Tu; | |
76 TD = FNMS(KP866025403, TA, Tz); | |
77 TB = FMA(KP866025403, TA, Tz); | |
78 T5 = FMA(KP500000000, T4, T1); | |
79 Tu = Ta + Tc - Tb; | |
80 { | |
81 E Td, Tf, TG, Tw, Te; | |
82 Td = Tb - Tc; | |
83 Tf = Tc + Tb; | |
84 Tp = FMA(KP866025403, T8, T5); | |
85 T9 = FNMS(KP866025403, T8, T5); | |
86 TG = Tv - Tu; | |
87 Tw = Tu + Tv; | |
88 Te = FMA(KP500000000, Td, Ta); | |
89 Tq = FMA(KP866025403, Tm, Tl); | |
90 Tn = FNMS(KP866025403, Tm, Tl); | |
91 Ci[WS(csi, 1)] = FMA(KP707106781, TG, TF); | |
92 Ci[WS(csi, 4)] = FMS(KP707106781, TG, TF); | |
93 Cr[WS(csr, 4)] = FMA(KP707106781, Tw, Tt); | |
94 Cr[WS(csr, 1)] = FNMS(KP707106781, Tw, Tt); | |
95 Tg = FNMS(KP866025403, Tf, Te); | |
96 Tr = FMA(KP866025403, Tf, Te); | |
97 } | |
98 TE = Tg + Tn; | |
99 To = Tg - Tn; | |
100 } | |
101 } | |
102 Ci[WS(csi, 2)] = FMS(KP707106781, TE, TD); | |
103 Ci[WS(csi, 3)] = FMA(KP707106781, TE, TD); | |
104 Cr[0] = FMA(KP707106781, To, T9); | |
105 Cr[WS(csr, 5)] = FNMS(KP707106781, To, T9); | |
106 Ts = Tq - Tr; | |
107 TC = Tr + Tq; | |
108 Ci[0] = -(FMA(KP707106781, TC, TB)); | |
109 Ci[WS(csi, 5)] = FNMS(KP707106781, TC, TB); | |
110 Cr[WS(csr, 2)] = FMA(KP707106781, Ts, Tp); | |
111 Cr[WS(csr, 3)] = FNMS(KP707106781, Ts, Tp); | |
112 } | |
113 } | |
114 } | |
115 | |
116 static const kr2c_desc desc = { 12, "r2cfII_12", {21, 0, 24, 0}, &GENUS }; | |
117 | |
118 void X(codelet_r2cfII_12) (planner *p) { | |
119 X(kr2c_register) (p, r2cfII_12, &desc); | |
120 } | |
121 | |
122 #else /* HAVE_FMA */ | |
123 | |
124 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 12 -name r2cfII_12 -dft-II -include r2cfII.h */ | |
125 | |
126 /* | |
127 * This function contains 43 FP additions, 12 FP multiplications, | |
128 * (or, 39 additions, 8 multiplications, 4 fused multiply/add), | |
129 * 28 stack variables, 5 constants, and 24 memory accesses | |
130 */ | |
131 #include "r2cfII.h" | |
132 | |
133 static void r2cfII_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
134 { | |
135 DK(KP353553390, +0.353553390593273762200422181052424519642417969); | |
136 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
137 DK(KP612372435, +0.612372435695794524549321018676472847991486870); | |
138 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
139 DK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
140 { | |
141 INT i; | |
142 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { | |
143 E Tx, Tg, T4, Tz, Ty, Tj, TA, T9, Tm, Tl, Te, Tp, To, Tf, TE; | |
144 E TF; | |
145 { | |
146 E T1, T3, T2, Th, Ti; | |
147 T1 = R0[0]; | |
148 T3 = R0[WS(rs, 2)]; | |
149 T2 = R0[WS(rs, 4)]; | |
150 Tx = KP866025403 * (T2 + T3); | |
151 Tg = FMA(KP500000000, T3 - T2, T1); | |
152 T4 = T1 + T2 - T3; | |
153 Tz = R0[WS(rs, 3)]; | |
154 Th = R0[WS(rs, 5)]; | |
155 Ti = R0[WS(rs, 1)]; | |
156 Ty = Th + Ti; | |
157 Tj = KP866025403 * (Th - Ti); | |
158 TA = FMA(KP500000000, Ty, Tz); | |
159 } | |
160 { | |
161 E T5, T6, T7, T8; | |
162 T5 = R1[WS(rs, 1)]; | |
163 T6 = R1[WS(rs, 5)]; | |
164 T7 = R1[WS(rs, 3)]; | |
165 T8 = T6 - T7; | |
166 T9 = T5 + T8; | |
167 Tm = KP612372435 * (T6 + T7); | |
168 Tl = FNMS(KP353553390, T8, KP707106781 * T5); | |
169 } | |
170 { | |
171 E Td, Ta, Tb, Tc; | |
172 Td = R1[WS(rs, 4)]; | |
173 Ta = R1[WS(rs, 2)]; | |
174 Tb = R1[0]; | |
175 Tc = Ta - Tb; | |
176 Te = Tc - Td; | |
177 Tp = FMA(KP353553390, Tc, KP707106781 * Td); | |
178 To = KP612372435 * (Ta + Tb); | |
179 } | |
180 Tf = KP707106781 * (T9 + Te); | |
181 Cr[WS(csr, 1)] = T4 - Tf; | |
182 Cr[WS(csr, 4)] = T4 + Tf; | |
183 TE = KP707106781 * (Te - T9); | |
184 TF = Tz - Ty; | |
185 Ci[WS(csi, 4)] = TE - TF; | |
186 Ci[WS(csi, 1)] = TE + TF; | |
187 { | |
188 E Tk, TB, Tr, Tw, Tn, Tq; | |
189 Tk = Tg - Tj; | |
190 TB = Tx - TA; | |
191 Tn = Tl - Tm; | |
192 Tq = To - Tp; | |
193 Tr = Tn + Tq; | |
194 Tw = Tn - Tq; | |
195 Cr[WS(csr, 5)] = Tk - Tr; | |
196 Ci[WS(csi, 2)] = Tw + TB; | |
197 Cr[0] = Tk + Tr; | |
198 Ci[WS(csi, 3)] = Tw - TB; | |
199 } | |
200 { | |
201 E Ts, TD, Tv, TC, Tt, Tu; | |
202 Ts = Tg + Tj; | |
203 TD = Tx + TA; | |
204 Tt = To + Tp; | |
205 Tu = Tm + Tl; | |
206 Tv = Tt - Tu; | |
207 TC = Tu + Tt; | |
208 Cr[WS(csr, 3)] = Ts - Tv; | |
209 Ci[WS(csi, 5)] = TD - TC; | |
210 Cr[WS(csr, 2)] = Ts + Tv; | |
211 Ci[0] = -(TC + TD); | |
212 } | |
213 } | |
214 } | |
215 } | |
216 | |
217 static const kr2c_desc desc = { 12, "r2cfII_12", {39, 8, 4, 0}, &GENUS }; | |
218 | |
219 void X(codelet_r2cfII_12) (planner *p) { | |
220 X(kr2c_register) (p, r2cfII_12, &desc); | |
221 } | |
222 | |
223 #endif /* HAVE_FMA */ |