Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.5/rdft/hc2hc.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
41:481f5f8c5634 | 42:2cd0e3b3e1fd |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 #include "hc2hc.h" | |
22 | |
23 hc2hc_solver *(*X(mksolver_hc2hc_hook))(size_t, INT, hc2hc_mkinferior) = 0; | |
24 | |
25 typedef struct { | |
26 plan_rdft super; | |
27 plan *cld; | |
28 plan *cldw; | |
29 INT r; | |
30 } P; | |
31 | |
32 static void apply_dit(const plan *ego_, R *I, R *O) | |
33 { | |
34 const P *ego = (const P *) ego_; | |
35 plan_rdft *cld; | |
36 plan_hc2hc *cldw; | |
37 | |
38 cld = (plan_rdft *) ego->cld; | |
39 cld->apply(ego->cld, I, O); | |
40 | |
41 cldw = (plan_hc2hc *) ego->cldw; | |
42 cldw->apply(ego->cldw, O); | |
43 } | |
44 | |
45 static void apply_dif(const plan *ego_, R *I, R *O) | |
46 { | |
47 const P *ego = (const P *) ego_; | |
48 plan_rdft *cld; | |
49 plan_hc2hc *cldw; | |
50 | |
51 cldw = (plan_hc2hc *) ego->cldw; | |
52 cldw->apply(ego->cldw, I); | |
53 | |
54 cld = (plan_rdft *) ego->cld; | |
55 cld->apply(ego->cld, I, O); | |
56 } | |
57 | |
58 static void awake(plan *ego_, enum wakefulness wakefulness) | |
59 { | |
60 P *ego = (P *) ego_; | |
61 X(plan_awake)(ego->cld, wakefulness); | |
62 X(plan_awake)(ego->cldw, wakefulness); | |
63 } | |
64 | |
65 static void destroy(plan *ego_) | |
66 { | |
67 P *ego = (P *) ego_; | |
68 X(plan_destroy_internal)(ego->cldw); | |
69 X(plan_destroy_internal)(ego->cld); | |
70 } | |
71 | |
72 static void print(const plan *ego_, printer *p) | |
73 { | |
74 const P *ego = (const P *) ego_; | |
75 p->print(p, "(rdft-ct-%s/%D%(%p%)%(%p%))", | |
76 ego->super.apply == apply_dit ? "dit" : "dif", | |
77 ego->r, ego->cldw, ego->cld); | |
78 } | |
79 | |
80 static int applicable0(const hc2hc_solver *ego, const problem *p_, planner *plnr) | |
81 { | |
82 const problem_rdft *p = (const problem_rdft *) p_; | |
83 INT r; | |
84 | |
85 return (1 | |
86 && p->sz->rnk == 1 | |
87 && p->vecsz->rnk <= 1 | |
88 | |
89 && (/* either the problem is R2HC, which is solved by DIT */ | |
90 (p->kind[0] == R2HC) | |
91 || | |
92 /* or the problem is HC2R, in which case it is solved | |
93 by DIF, which destroys the input */ | |
94 (p->kind[0] == HC2R && | |
95 (p->I == p->O || !NO_DESTROY_INPUTP(plnr)))) | |
96 | |
97 && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0) | |
98 && p->sz->dims[0].n > r); | |
99 } | |
100 | |
101 int X(hc2hc_applicable)(const hc2hc_solver *ego, const problem *p_, planner *plnr) | |
102 { | |
103 const problem_rdft *p; | |
104 | |
105 if (!applicable0(ego, p_, plnr)) | |
106 return 0; | |
107 | |
108 p = (const problem_rdft *) p_; | |
109 | |
110 return (0 | |
111 || p->vecsz->rnk == 0 | |
112 || !NO_VRECURSEP(plnr) | |
113 ); | |
114 } | |
115 | |
116 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
117 { | |
118 const hc2hc_solver *ego = (const hc2hc_solver *) ego_; | |
119 const problem_rdft *p; | |
120 P *pln = 0; | |
121 plan *cld = 0, *cldw = 0; | |
122 INT n, r, m, v, ivs, ovs; | |
123 iodim *d; | |
124 | |
125 static const plan_adt padt = { | |
126 X(rdft_solve), awake, print, destroy | |
127 }; | |
128 | |
129 if (NO_NONTHREADEDP(plnr) || !X(hc2hc_applicable)(ego, p_, plnr)) | |
130 return (plan *) 0; | |
131 | |
132 p = (const problem_rdft *) p_; | |
133 d = p->sz->dims; | |
134 n = d[0].n; | |
135 r = X(choose_radix)(ego->r, n); | |
136 m = n / r; | |
137 | |
138 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs); | |
139 | |
140 switch (p->kind[0]) { | |
141 case R2HC: | |
142 cldw = ego->mkcldw(ego, | |
143 R2HC, r, m, d[0].os, v, ovs, 0, (m+2)/2, | |
144 p->O, plnr); | |
145 if (!cldw) goto nada; | |
146 | |
147 cld = X(mkplan_d)(plnr, | |
148 X(mkproblem_rdft_d)( | |
149 X(mktensor_1d)(m, r * d[0].is, d[0].os), | |
150 X(mktensor_2d)(r, d[0].is, m * d[0].os, | |
151 v, ivs, ovs), | |
152 p->I, p->O, p->kind) | |
153 ); | |
154 if (!cld) goto nada; | |
155 | |
156 pln = MKPLAN_RDFT(P, &padt, apply_dit); | |
157 break; | |
158 | |
159 case HC2R: | |
160 cldw = ego->mkcldw(ego, | |
161 HC2R, r, m, d[0].is, v, ivs, 0, (m+2)/2, | |
162 p->I, plnr); | |
163 if (!cldw) goto nada; | |
164 | |
165 cld = X(mkplan_d)(plnr, | |
166 X(mkproblem_rdft_d)( | |
167 X(mktensor_1d)(m, d[0].is, r * d[0].os), | |
168 X(mktensor_2d)(r, m * d[0].is, d[0].os, | |
169 v, ivs, ovs), | |
170 p->I, p->O, p->kind) | |
171 ); | |
172 if (!cld) goto nada; | |
173 | |
174 pln = MKPLAN_RDFT(P, &padt, apply_dif); | |
175 break; | |
176 | |
177 default: | |
178 A(0); | |
179 } | |
180 | |
181 pln->cld = cld; | |
182 pln->cldw = cldw; | |
183 pln->r = r; | |
184 X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops); | |
185 | |
186 /* inherit could_prune_now_p attribute from cldw */ | |
187 pln->super.super.could_prune_now_p = cldw->could_prune_now_p; | |
188 | |
189 return &(pln->super.super); | |
190 | |
191 nada: | |
192 X(plan_destroy_internal)(cldw); | |
193 X(plan_destroy_internal)(cld); | |
194 return (plan *) 0; | |
195 } | |
196 | |
197 hc2hc_solver *X(mksolver_hc2hc)(size_t size, INT r, hc2hc_mkinferior mkcldw) | |
198 { | |
199 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | |
200 hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt); | |
201 slv->r = r; | |
202 slv->mkcldw = mkcldw; | |
203 return slv; | |
204 } | |
205 | |
206 plan *X(mkplan_hc2hc)(size_t size, const plan_adt *adt, hc2hcapply apply) | |
207 { | |
208 plan_hc2hc *ego; | |
209 | |
210 ego = (plan_hc2hc *) X(mkplan)(size, adt); | |
211 ego->apply = apply; | |
212 | |
213 return &(ego->super); | |
214 } |