Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.5/mpi/rdft2-rank-geq2-transposed.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
41:481f5f8c5634 | 42:2cd0e3b3e1fd |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* Real-input (r2c) DFTs of rank >= 2, for the case where we are distributed | |
22 across the first dimension only, and the output is transposed both | |
23 in data distribution and in ordering (for the first 2 dimensions). | |
24 | |
25 Conversely, real-output (c2r) DFTs where the input is transposed. | |
26 | |
27 We don't currently support transposed-input r2c or transposed-output | |
28 c2r transforms. */ | |
29 | |
30 #include "mpi-rdft2.h" | |
31 #include "mpi-transpose.h" | |
32 #include "rdft.h" | |
33 #include "dft.h" | |
34 | |
35 typedef struct { | |
36 solver super; | |
37 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ | |
38 } S; | |
39 | |
40 typedef struct { | |
41 plan_mpi_rdft2 super; | |
42 | |
43 plan *cld1, *cldt, *cld2; | |
44 INT vn; | |
45 int preserve_input; | |
46 } P; | |
47 | |
48 static void apply_r2c(const plan *ego_, R *I, R *O) | |
49 { | |
50 const P *ego = (const P *) ego_; | |
51 plan_rdft2 *cld1; | |
52 plan_dft *cld2; | |
53 plan_rdft *cldt; | |
54 | |
55 /* RDFT2 local dimensions */ | |
56 cld1 = (plan_rdft2 *) ego->cld1; | |
57 if (ego->preserve_input) { | |
58 cld1->apply(ego->cld1, I, I+ego->vn, O, O+1); | |
59 I = O; | |
60 } | |
61 else | |
62 cld1->apply(ego->cld1, I, I+ego->vn, I, I+1); | |
63 | |
64 /* global transpose */ | |
65 cldt = (plan_rdft *) ego->cldt; | |
66 cldt->apply(ego->cldt, I, O); | |
67 | |
68 /* DFT final local dimension */ | |
69 cld2 = (plan_dft *) ego->cld2; | |
70 cld2->apply(ego->cld2, O, O+1, O, O+1); | |
71 } | |
72 | |
73 static void apply_c2r(const plan *ego_, R *I, R *O) | |
74 { | |
75 const P *ego = (const P *) ego_; | |
76 plan_rdft2 *cld1; | |
77 plan_dft *cld2; | |
78 plan_rdft *cldt; | |
79 | |
80 /* IDFT local dimensions */ | |
81 cld2 = (plan_dft *) ego->cld2; | |
82 if (ego->preserve_input) { | |
83 cld2->apply(ego->cld2, I+1, I, O+1, O); | |
84 I = O; | |
85 } | |
86 else | |
87 cld2->apply(ego->cld2, I+1, I, I+1, I); | |
88 | |
89 /* global transpose */ | |
90 cldt = (plan_rdft *) ego->cldt; | |
91 cldt->apply(ego->cldt, I, O); | |
92 | |
93 /* RDFT2 final local dimension */ | |
94 cld1 = (plan_rdft2 *) ego->cld1; | |
95 cld1->apply(ego->cld1, O, O+ego->vn, O, O+1); | |
96 } | |
97 | |
98 static int applicable(const S *ego, const problem *p_, | |
99 const planner *plnr) | |
100 { | |
101 const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_; | |
102 return (1 | |
103 && p->sz->rnk > 1 | |
104 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) | |
105 && p->I != p->O)) | |
106 && ((p->flags == TRANSPOSED_OUT && p->kind == R2HC | |
107 && XM(is_local_after)(1, p->sz, IB) | |
108 && XM(is_local_after)(2, p->sz, OB) | |
109 && XM(num_blocks)(p->sz->dims[0].n, | |
110 p->sz->dims[0].b[OB]) == 1) | |
111 || | |
112 (p->flags == TRANSPOSED_IN && p->kind == HC2R | |
113 && XM(is_local_after)(1, p->sz, OB) | |
114 && XM(is_local_after)(2, p->sz, IB) | |
115 && XM(num_blocks)(p->sz->dims[0].n, | |
116 p->sz->dims[0].b[IB]) == 1)) | |
117 && (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */ | |
118 || !XM(rdft2_serial_applicable)(p)) | |
119 ); | |
120 } | |
121 | |
122 static void awake(plan *ego_, enum wakefulness wakefulness) | |
123 { | |
124 P *ego = (P *) ego_; | |
125 X(plan_awake)(ego->cld1, wakefulness); | |
126 X(plan_awake)(ego->cldt, wakefulness); | |
127 X(plan_awake)(ego->cld2, wakefulness); | |
128 } | |
129 | |
130 static void destroy(plan *ego_) | |
131 { | |
132 P *ego = (P *) ego_; | |
133 X(plan_destroy_internal)(ego->cld2); | |
134 X(plan_destroy_internal)(ego->cldt); | |
135 X(plan_destroy_internal)(ego->cld1); | |
136 } | |
137 | |
138 static void print(const plan *ego_, printer *p) | |
139 { | |
140 const P *ego = (const P *) ego_; | |
141 p->print(p, "(mpi-rdft2-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))", | |
142 ego->preserve_input==2 ?"/p":"", | |
143 ego->cld1, ego->cldt, ego->cld2); | |
144 } | |
145 | |
146 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
147 { | |
148 const S *ego = (const S *) ego_; | |
149 const problem_mpi_rdft2 *p; | |
150 P *pln; | |
151 plan *cld1 = 0, *cldt = 0, *cld2 = 0; | |
152 R *r0, *r1, *cr, *ci, *ri, *ii, *ro, *io, *I, *O; | |
153 tensor *sz; | |
154 int i, my_pe, n_pes; | |
155 INT nrest, n1, b1; | |
156 static const plan_adt padt = { | |
157 XM(rdft2_solve), awake, print, destroy | |
158 }; | |
159 block_kind k1, k2; | |
160 | |
161 UNUSED(ego); | |
162 | |
163 if (!applicable(ego, p_, plnr)) | |
164 return (plan *) 0; | |
165 | |
166 p = (const problem_mpi_rdft2 *) p_; | |
167 | |
168 I = p->I; O = p->O; | |
169 if (p->kind == R2HC) { | |
170 k1 = IB; k2 = OB; | |
171 r1 = (r0 = I) + p->vn; | |
172 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { | |
173 ci = (cr = O) + 1; | |
174 I = O; | |
175 } | |
176 else | |
177 ci = (cr = I) + 1; | |
178 io = ii = (ro = ri = O) + 1; | |
179 } | |
180 else { | |
181 k1 = OB; k2 = IB; | |
182 r1 = (r0 = O) + p->vn; | |
183 ci = (cr = O) + 1; | |
184 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { | |
185 ri = (ii = I) + 1; | |
186 ro = (io = O) + 1; | |
187 I = O; | |
188 } | |
189 else | |
190 ro = ri = (io = ii = I) + 1; | |
191 } | |
192 | |
193 MPI_Comm_rank(p->comm, &my_pe); | |
194 MPI_Comm_size(p->comm, &n_pes); | |
195 | |
196 sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */ | |
197 i = p->sz->rnk - 2; A(i >= 0); | |
198 sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1; | |
199 sz->dims[i].is = sz->dims[i].os = 2 * p->vn; | |
200 for (--i; i >= 0; --i) { | |
201 sz->dims[i].n = p->sz->dims[i+1].n; | |
202 sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is; | |
203 } | |
204 nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n; | |
205 { | |
206 INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC); | |
207 INT is = sz->dims[0].n * sz->dims[0].is; | |
208 INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[k1], my_pe); | |
209 sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n; | |
210 cld1 = X(mkplan_d)(plnr, | |
211 X(mkproblem_rdft2_d)(sz, | |
212 X(mktensor_2d)(b, is, is, | |
213 p->vn,ivs,ovs), | |
214 r0, r1, cr, ci, p->kind)); | |
215 if (XM(any_true)(!cld1, p->comm)) goto nada; | |
216 } | |
217 | |
218 nrest *= p->vn; | |
219 n1 = p->sz->dims[1].n; | |
220 b1 = p->sz->dims[1].b[k2]; | |
221 if (p->sz->rnk == 2) { /* n1 dimension is cut in ~half */ | |
222 n1 = n1 / 2 + 1; | |
223 b1 = b1 == p->sz->dims[1].n ? n1 : b1; | |
224 } | |
225 | |
226 if (p->kind == R2HC) | |
227 cldt = X(mkplan_d)(plnr, | |
228 XM(mkproblem_transpose)( | |
229 p->sz->dims[0].n, n1, nrest * 2, | |
230 I, O, | |
231 p->sz->dims[0].b[IB], b1, | |
232 p->comm, 0)); | |
233 else | |
234 cldt = X(mkplan_d)(plnr, | |
235 XM(mkproblem_transpose)( | |
236 n1, p->sz->dims[0].n, nrest * 2, | |
237 I, O, | |
238 b1, p->sz->dims[0].b[OB], | |
239 p->comm, 0)); | |
240 if (XM(any_true)(!cldt, p->comm)) goto nada; | |
241 | |
242 { | |
243 INT is = p->sz->dims[0].n * nrest * 2; | |
244 INT b = XM(block)(n1, b1, my_pe); | |
245 cld2 = X(mkplan_d)(plnr, | |
246 X(mkproblem_dft_d)(X(mktensor_1d)( | |
247 p->sz->dims[0].n, | |
248 nrest * 2, nrest * 2), | |
249 X(mktensor_2d)(b, is, is, | |
250 nrest, 2, 2), | |
251 ri, ii, ro, io)); | |
252 if (XM(any_true)(!cld2, p->comm)) goto nada; | |
253 } | |
254 | |
255 pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r); | |
256 pln->cld1 = cld1; | |
257 pln->cldt = cldt; | |
258 pln->cld2 = cld2; | |
259 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); | |
260 pln->vn = p->vn; | |
261 | |
262 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); | |
263 X(ops_add2)(&cldt->ops, &pln->super.super.ops); | |
264 | |
265 return &(pln->super.super); | |
266 | |
267 nada: | |
268 X(plan_destroy_internal)(cld2); | |
269 X(plan_destroy_internal)(cldt); | |
270 X(plan_destroy_internal)(cld1); | |
271 return (plan *) 0; | |
272 } | |
273 | |
274 static solver *mksolver(int preserve_input) | |
275 { | |
276 static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 }; | |
277 S *slv = MKSOLVER(S, &sadt); | |
278 slv->preserve_input = preserve_input; | |
279 return &(slv->super); | |
280 } | |
281 | |
282 void XM(rdft2_rank_geq2_transposed_register)(planner *p) | |
283 { | |
284 int preserve_input; | |
285 for (preserve_input = 0; preserve_input <= 1; ++preserve_input) | |
286 REGISTER_SOLVER(p, mksolver(preserve_input)); | |
287 } |