Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.5/dft/simd/common/t1fv_7.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
41:481f5f8c5634 | 42:2cd0e3b3e1fd |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sat Jul 30 16:41:55 EDT 2016 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fv_7 -include t1f.h */ | |
29 | |
30 /* | |
31 * This function contains 36 FP additions, 36 FP multiplications, | |
32 * (or, 15 additions, 15 multiplications, 21 fused multiply/add), | |
33 * 42 stack variables, 6 constants, and 14 memory accesses | |
34 */ | |
35 #include "t1f.h" | |
36 | |
37 static void t1fv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
40 DVK(KP801937735, +0.801937735804838252472204639014890102331838324); | |
41 DVK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
42 DVK(KP692021471, +0.692021471630095869627814897002069140197260599); | |
43 DVK(KP554958132, +0.554958132087371191422194871006410481067288862); | |
44 DVK(KP356895867, +0.356895867892209443894399510021300583399127187); | |
45 { | |
46 INT m; | |
47 R *x; | |
48 x = ri; | |
49 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) { | |
50 V T1, T2, T4, Te, Tc, T9, T7; | |
51 T1 = LD(&(x[0]), ms, &(x[0])); | |
52 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
53 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
54 Te = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
55 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
56 T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
57 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
58 { | |
59 V T3, T5, Tf, Td, Ta, T8; | |
60 T3 = BYTWJ(&(W[0]), T2); | |
61 T5 = BYTWJ(&(W[TWVL * 10]), T4); | |
62 Tf = BYTWJ(&(W[TWVL * 6]), Te); | |
63 Td = BYTWJ(&(W[TWVL * 4]), Tc); | |
64 Ta = BYTWJ(&(W[TWVL * 8]), T9); | |
65 T8 = BYTWJ(&(W[TWVL * 2]), T7); | |
66 { | |
67 V T6, Tk, Tg, Tl, Tb, Tm; | |
68 T6 = VADD(T3, T5); | |
69 Tk = VSUB(T5, T3); | |
70 Tg = VADD(Td, Tf); | |
71 Tl = VSUB(Tf, Td); | |
72 Tb = VADD(T8, Ta); | |
73 Tm = VSUB(Ta, T8); | |
74 { | |
75 V Th, Ts, Tp, Tu, Tn, Tx, Ti, Tt; | |
76 Th = VFNMS(LDK(KP356895867), T6, Tg); | |
77 Ts = VFMA(LDK(KP554958132), Tl, Tk); | |
78 ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0])); | |
79 Tp = VFNMS(LDK(KP356895867), Tb, T6); | |
80 Tu = VFNMS(LDK(KP356895867), Tg, Tb); | |
81 Tn = VFMA(LDK(KP554958132), Tm, Tl); | |
82 Tx = VFNMS(LDK(KP554958132), Tk, Tm); | |
83 Ti = VFNMS(LDK(KP692021471), Th, Tb); | |
84 Tt = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Ts, Tm)); | |
85 { | |
86 V Tq, Tv, To, Ty, Tj, Tr, Tw; | |
87 Tq = VFNMS(LDK(KP692021471), Tp, Tg); | |
88 Tv = VFNMS(LDK(KP692021471), Tu, T6); | |
89 To = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tn, Tk)); | |
90 Ty = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tx, Tl)); | |
91 Tj = VFNMS(LDK(KP900968867), Ti, T1); | |
92 Tr = VFNMS(LDK(KP900968867), Tq, T1); | |
93 Tw = VFNMS(LDK(KP900968867), Tv, T1); | |
94 ST(&(x[WS(rs, 2)]), VFMAI(To, Tj), ms, &(x[0])); | |
95 ST(&(x[WS(rs, 5)]), VFNMSI(To, Tj), ms, &(x[WS(rs, 1)])); | |
96 ST(&(x[WS(rs, 1)]), VFMAI(Tt, Tr), ms, &(x[WS(rs, 1)])); | |
97 ST(&(x[WS(rs, 6)]), VFNMSI(Tt, Tr), ms, &(x[0])); | |
98 ST(&(x[WS(rs, 3)]), VFMAI(Ty, Tw), ms, &(x[WS(rs, 1)])); | |
99 ST(&(x[WS(rs, 4)]), VFNMSI(Ty, Tw), ms, &(x[0])); | |
100 } | |
101 } | |
102 } | |
103 } | |
104 } | |
105 } | |
106 VLEAVE(); | |
107 } | |
108 | |
109 static const tw_instr twinstr[] = { | |
110 VTW(0, 1), | |
111 VTW(0, 2), | |
112 VTW(0, 3), | |
113 VTW(0, 4), | |
114 VTW(0, 5), | |
115 VTW(0, 6), | |
116 {TW_NEXT, VL, 0} | |
117 }; | |
118 | |
119 static const ct_desc desc = { 7, XSIMD_STRING("t1fv_7"), twinstr, &GENUS, {15, 15, 21, 0}, 0, 0, 0 }; | |
120 | |
121 void XSIMD(codelet_t1fv_7) (planner *p) { | |
122 X(kdft_dit_register) (p, t1fv_7, &desc); | |
123 } | |
124 #else /* HAVE_FMA */ | |
125 | |
126 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1fv_7 -include t1f.h */ | |
127 | |
128 /* | |
129 * This function contains 36 FP additions, 30 FP multiplications, | |
130 * (or, 24 additions, 18 multiplications, 12 fused multiply/add), | |
131 * 21 stack variables, 6 constants, and 14 memory accesses | |
132 */ | |
133 #include "t1f.h" | |
134 | |
135 static void t1fv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
136 { | |
137 DVK(KP900968867, +0.900968867902419126236102319507445051165919162); | |
138 DVK(KP222520933, +0.222520933956314404288902564496794759466355569); | |
139 DVK(KP623489801, +0.623489801858733530525004884004239810632274731); | |
140 DVK(KP781831482, +0.781831482468029808708444526674057750232334519); | |
141 DVK(KP974927912, +0.974927912181823607018131682993931217232785801); | |
142 DVK(KP433883739, +0.433883739117558120475768332848358754609990728); | |
143 { | |
144 INT m; | |
145 R *x; | |
146 x = ri; | |
147 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) { | |
148 V T1, Tg, Tj, T6, Ti, Tb, Tk, Tp, To; | |
149 T1 = LD(&(x[0]), ms, &(x[0])); | |
150 { | |
151 V Td, Tf, Tc, Te; | |
152 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
153 Td = BYTWJ(&(W[TWVL * 4]), Tc); | |
154 Te = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
155 Tf = BYTWJ(&(W[TWVL * 6]), Te); | |
156 Tg = VADD(Td, Tf); | |
157 Tj = VSUB(Tf, Td); | |
158 } | |
159 { | |
160 V T3, T5, T2, T4; | |
161 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
162 T3 = BYTWJ(&(W[0]), T2); | |
163 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
164 T5 = BYTWJ(&(W[TWVL * 10]), T4); | |
165 T6 = VADD(T3, T5); | |
166 Ti = VSUB(T5, T3); | |
167 } | |
168 { | |
169 V T8, Ta, T7, T9; | |
170 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
171 T8 = BYTWJ(&(W[TWVL * 2]), T7); | |
172 T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
173 Ta = BYTWJ(&(W[TWVL * 8]), T9); | |
174 Tb = VADD(T8, Ta); | |
175 Tk = VSUB(Ta, T8); | |
176 } | |
177 ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0])); | |
178 Tp = VBYI(VFMA(LDK(KP433883739), Ti, VFNMS(LDK(KP781831482), Tk, VMUL(LDK(KP974927912), Tj)))); | |
179 To = VFMA(LDK(KP623489801), Tb, VFNMS(LDK(KP222520933), Tg, VFNMS(LDK(KP900968867), T6, T1))); | |
180 ST(&(x[WS(rs, 4)]), VSUB(To, Tp), ms, &(x[0])); | |
181 ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)])); | |
182 { | |
183 V Tl, Th, Tn, Tm; | |
184 Tl = VBYI(VFNMS(LDK(KP781831482), Tj, VFNMS(LDK(KP433883739), Tk, VMUL(LDK(KP974927912), Ti)))); | |
185 Th = VFMA(LDK(KP623489801), Tg, VFNMS(LDK(KP900968867), Tb, VFNMS(LDK(KP222520933), T6, T1))); | |
186 ST(&(x[WS(rs, 5)]), VSUB(Th, Tl), ms, &(x[WS(rs, 1)])); | |
187 ST(&(x[WS(rs, 2)]), VADD(Th, Tl), ms, &(x[0])); | |
188 Tn = VBYI(VFMA(LDK(KP781831482), Ti, VFMA(LDK(KP974927912), Tk, VMUL(LDK(KP433883739), Tj)))); | |
189 Tm = VFMA(LDK(KP623489801), T6, VFNMS(LDK(KP900968867), Tg, VFNMS(LDK(KP222520933), Tb, T1))); | |
190 ST(&(x[WS(rs, 6)]), VSUB(Tm, Tn), ms, &(x[0])); | |
191 ST(&(x[WS(rs, 1)]), VADD(Tm, Tn), ms, &(x[WS(rs, 1)])); | |
192 } | |
193 } | |
194 } | |
195 VLEAVE(); | |
196 } | |
197 | |
198 static const tw_instr twinstr[] = { | |
199 VTW(0, 1), | |
200 VTW(0, 2), | |
201 VTW(0, 3), | |
202 VTW(0, 4), | |
203 VTW(0, 5), | |
204 VTW(0, 6), | |
205 {TW_NEXT, VL, 0} | |
206 }; | |
207 | |
208 static const ct_desc desc = { 7, XSIMD_STRING("t1fv_7"), twinstr, &GENUS, {24, 18, 12, 0}, 0, 0, 0 }; | |
209 | |
210 void XSIMD(codelet_t1fv_7) (planner *p) { | |
211 X(kdft_dit_register) (p, t1fv_7, &desc); | |
212 } | |
213 #endif /* HAVE_FMA */ |