Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.5/dft/simd/common/n1fv_9.c @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
41:481f5f8c5634 | 42:2cd0e3b3e1fd |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sat Jul 30 16:38:39 EDT 2016 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include n1f.h */ | |
29 | |
30 /* | |
31 * This function contains 46 FP additions, 38 FP multiplications, | |
32 * (or, 12 additions, 4 multiplications, 34 fused multiply/add), | |
33 * 68 stack variables, 19 constants, and 18 memory accesses | |
34 */ | |
35 #include "n1f.h" | |
36 | |
37 static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
38 { | |
39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
40 DVK(KP826351822, +0.826351822333069651148283373230685203999624323); | |
41 DVK(KP879385241, +0.879385241571816768108218554649462939872416269); | |
42 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
43 DVK(KP666666666, +0.666666666666666666666666666666666666666666667); | |
44 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
45 DVK(KP907603734, +0.907603734547952313649323976213898122064543220); | |
46 DVK(KP420276625, +0.420276625461206169731530603237061658838781920); | |
47 DVK(KP673648177, +0.673648177666930348851716626769314796000375677); | |
48 DVK(KP898197570, +0.898197570222573798468955502359086394667167570); | |
49 DVK(KP347296355, +0.347296355333860697703433253538629592000751354); | |
50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
51 DVK(KP439692620, +0.439692620785908384054109277324731469936208134); | |
52 DVK(KP203604859, +0.203604859554852403062088995281827210665664861); | |
53 DVK(KP152703644, +0.152703644666139302296566746461370407999248646); | |
54 DVK(KP586256827, +0.586256827714544512072145703099641959914944179); | |
55 DVK(KP968908795, +0.968908795874236621082202410917456709164223497); | |
56 DVK(KP726681596, +0.726681596905677465811651808188092531873167623); | |
57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
58 { | |
59 INT i; | |
60 const R *xi; | |
61 R *xo; | |
62 xi = ri; | |
63 xo = ro; | |
64 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { | |
65 V T1, T2, T3, T6, Tb, T7, T8, Tc, Td, Tv, T4; | |
66 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
67 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
68 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
69 T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
70 Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
71 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
72 T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
73 Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
74 Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
75 Tv = VSUB(T3, T2); | |
76 T4 = VADD(T2, T3); | |
77 { | |
78 V Tl, T9, Tm, Te, Tj, T5; | |
79 Tl = VSUB(T7, T8); | |
80 T9 = VADD(T7, T8); | |
81 Tm = VSUB(Td, Tc); | |
82 Te = VADD(Tc, Td); | |
83 Tj = VFNMS(LDK(KP500000000), T4, T1); | |
84 T5 = VADD(T1, T4); | |
85 { | |
86 V Tn, Ta, Tk, Tf; | |
87 Tn = VFNMS(LDK(KP500000000), T9, T6); | |
88 Ta = VADD(T6, T9); | |
89 Tk = VFNMS(LDK(KP500000000), Te, Tb); | |
90 Tf = VADD(Tb, Te); | |
91 { | |
92 V Ty, TC, To, TB, Tx, Ts, Tg, Ti; | |
93 Ty = VFNMS(LDK(KP726681596), Tl, Tn); | |
94 TC = VFMA(LDK(KP968908795), Tn, Tl); | |
95 To = VFNMS(LDK(KP586256827), Tn, Tm); | |
96 TB = VFNMS(LDK(KP152703644), Tm, Tk); | |
97 Tx = VFMA(LDK(KP203604859), Tk, Tm); | |
98 Ts = VFNMS(LDK(KP439692620), Tl, Tk); | |
99 Tg = VADD(Ta, Tf); | |
100 Ti = VMUL(LDK(KP866025403), VSUB(Tf, Ta)); | |
101 { | |
102 V Tz, TI, TF, TD, Tt, Th, Tq, Tp; | |
103 Tp = VFNMS(LDK(KP347296355), To, Tl); | |
104 Tz = VFMA(LDK(KP898197570), Ty, Tx); | |
105 TI = VFNMS(LDK(KP898197570), Ty, Tx); | |
106 TF = VFNMS(LDK(KP673648177), TC, TB); | |
107 TD = VFMA(LDK(KP673648177), TC, TB); | |
108 Tt = VFNMS(LDK(KP420276625), Ts, Tm); | |
109 ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0])); | |
110 Th = VFNMS(LDK(KP500000000), Tg, T5); | |
111 Tq = VFNMS(LDK(KP907603734), Tp, Tk); | |
112 { | |
113 V TA, TJ, TE, TG, Tu, Tr, TK, TH, Tw; | |
114 TA = VFMA(LDK(KP852868531), Tz, Tj); | |
115 TJ = VFMA(LDK(KP666666666), TD, TI); | |
116 TE = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), Tv, TD)); | |
117 TG = VFNMS(LDK(KP500000000), Tz, TF); | |
118 Tu = VFNMS(LDK(KP826351822), Tt, Tn); | |
119 ST(&(xo[WS(os, 6)]), VFNMSI(Ti, Th), ovs, &(xo[0])); | |
120 ST(&(xo[WS(os, 3)]), VFMAI(Ti, Th), ovs, &(xo[WS(os, 1)])); | |
121 Tr = VFNMS(LDK(KP939692620), Tq, Tj); | |
122 TK = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TJ, Tv)); | |
123 ST(&(xo[WS(os, 8)]), VFMAI(TE, TA), ovs, &(xo[0])); | |
124 ST(&(xo[WS(os, 1)]), VFNMSI(TE, TA), ovs, &(xo[WS(os, 1)])); | |
125 TH = VFMA(LDK(KP852868531), TG, Tj); | |
126 Tw = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), Tv, Tu)); | |
127 ST(&(xo[WS(os, 4)]), VFMAI(TK, TH), ovs, &(xo[0])); | |
128 ST(&(xo[WS(os, 5)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)])); | |
129 ST(&(xo[WS(os, 7)]), VFMAI(Tw, Tr), ovs, &(xo[WS(os, 1)])); | |
130 ST(&(xo[WS(os, 2)]), VFNMSI(Tw, Tr), ovs, &(xo[0])); | |
131 } | |
132 } | |
133 } | |
134 } | |
135 } | |
136 } | |
137 } | |
138 VLEAVE(); | |
139 } | |
140 | |
141 static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), {12, 4, 34, 0}, &GENUS, 0, 0, 0, 0 }; | |
142 | |
143 void XSIMD(codelet_n1fv_9) (planner *p) { | |
144 X(kdft_register) (p, n1fv_9, &desc); | |
145 } | |
146 | |
147 #else /* HAVE_FMA */ | |
148 | |
149 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name n1fv_9 -include n1f.h */ | |
150 | |
151 /* | |
152 * This function contains 46 FP additions, 26 FP multiplications, | |
153 * (or, 30 additions, 10 multiplications, 16 fused multiply/add), | |
154 * 41 stack variables, 14 constants, and 18 memory accesses | |
155 */ | |
156 #include "n1f.h" | |
157 | |
158 static void n1fv_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) | |
159 { | |
160 DVK(KP342020143, +0.342020143325668733044099614682259580763083368); | |
161 DVK(KP813797681, +0.813797681349373692844693217248393223289101568); | |
162 DVK(KP939692620, +0.939692620785908384054109277324731469936208134); | |
163 DVK(KP296198132, +0.296198132726023843175338011893050938967728390); | |
164 DVK(KP642787609, +0.642787609686539326322643409907263432907559884); | |
165 DVK(KP663413948, +0.663413948168938396205421319635891297216863310); | |
166 DVK(KP556670399, +0.556670399226419366452912952047023132968291906); | |
167 DVK(KP766044443, +0.766044443118978035202392650555416673935832457); | |
168 DVK(KP984807753, +0.984807753012208059366743024589523013670643252); | |
169 DVK(KP150383733, +0.150383733180435296639271897612501926072238258); | |
170 DVK(KP852868531, +0.852868531952443209628250963940074071936020296); | |
171 DVK(KP173648177, +0.173648177666930348851716626769314796000375677); | |
172 DVK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
173 DVK(KP866025403, +0.866025403784438646763723170752936183471402627); | |
174 { | |
175 INT i; | |
176 const R *xi; | |
177 R *xo; | |
178 xi = ri; | |
179 xo = ro; | |
180 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(18, is), MAKE_VOLATILE_STRIDE(18, os)) { | |
181 V T5, Ts, Tj, To, Tf, Tn, Tp, Tu, Tl, Ta, Tk, Tm, Tt; | |
182 { | |
183 V T1, T2, T3, T4; | |
184 T1 = LD(&(xi[0]), ivs, &(xi[0])); | |
185 T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); | |
186 T3 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); | |
187 T4 = VADD(T2, T3); | |
188 T5 = VADD(T1, T4); | |
189 Ts = VMUL(LDK(KP866025403), VSUB(T3, T2)); | |
190 Tj = VFNMS(LDK(KP500000000), T4, T1); | |
191 } | |
192 { | |
193 V Tb, Te, Tc, Td; | |
194 Tb = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); | |
195 Tc = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); | |
196 Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); | |
197 Te = VADD(Tc, Td); | |
198 To = VSUB(Td, Tc); | |
199 Tf = VADD(Tb, Te); | |
200 Tn = VFNMS(LDK(KP500000000), Te, Tb); | |
201 Tp = VFMA(LDK(KP173648177), Tn, VMUL(LDK(KP852868531), To)); | |
202 Tu = VFNMS(LDK(KP984807753), Tn, VMUL(LDK(KP150383733), To)); | |
203 } | |
204 { | |
205 V T6, T9, T7, T8; | |
206 T6 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); | |
207 T7 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); | |
208 T8 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); | |
209 T9 = VADD(T7, T8); | |
210 Tl = VSUB(T8, T7); | |
211 Ta = VADD(T6, T9); | |
212 Tk = VFNMS(LDK(KP500000000), T9, T6); | |
213 Tm = VFMA(LDK(KP766044443), Tk, VMUL(LDK(KP556670399), Tl)); | |
214 Tt = VFNMS(LDK(KP642787609), Tk, VMUL(LDK(KP663413948), Tl)); | |
215 } | |
216 { | |
217 V Ti, Tg, Th, Tz, TA; | |
218 Ti = VBYI(VMUL(LDK(KP866025403), VSUB(Tf, Ta))); | |
219 Tg = VADD(Ta, Tf); | |
220 Th = VFNMS(LDK(KP500000000), Tg, T5); | |
221 ST(&(xo[0]), VADD(T5, Tg), ovs, &(xo[0])); | |
222 ST(&(xo[WS(os, 3)]), VADD(Th, Ti), ovs, &(xo[WS(os, 1)])); | |
223 ST(&(xo[WS(os, 6)]), VSUB(Th, Ti), ovs, &(xo[0])); | |
224 Tz = VFMA(LDK(KP173648177), Tk, VFNMS(LDK(KP296198132), To, VFNMS(LDK(KP939692620), Tn, VFNMS(LDK(KP852868531), Tl, Tj)))); | |
225 TA = VBYI(VSUB(VFNMS(LDK(KP342020143), Tn, VFNMS(LDK(KP150383733), Tl, VFNMS(LDK(KP984807753), Tk, VMUL(LDK(KP813797681), To)))), Ts)); | |
226 ST(&(xo[WS(os, 7)]), VSUB(Tz, TA), ovs, &(xo[WS(os, 1)])); | |
227 ST(&(xo[WS(os, 2)]), VADD(Tz, TA), ovs, &(xo[0])); | |
228 { | |
229 V Tr, Tx, Tw, Ty, Tq, Tv; | |
230 Tq = VADD(Tm, Tp); | |
231 Tr = VADD(Tj, Tq); | |
232 Tx = VFMA(LDK(KP866025403), VSUB(Tt, Tu), VFNMS(LDK(KP500000000), Tq, Tj)); | |
233 Tv = VADD(Tt, Tu); | |
234 Tw = VBYI(VADD(Ts, Tv)); | |
235 Ty = VBYI(VADD(Ts, VFNMS(LDK(KP500000000), Tv, VMUL(LDK(KP866025403), VSUB(Tp, Tm))))); | |
236 ST(&(xo[WS(os, 8)]), VSUB(Tr, Tw), ovs, &(xo[0])); | |
237 ST(&(xo[WS(os, 4)]), VADD(Tx, Ty), ovs, &(xo[0])); | |
238 ST(&(xo[WS(os, 1)]), VADD(Tw, Tr), ovs, &(xo[WS(os, 1)])); | |
239 ST(&(xo[WS(os, 5)]), VSUB(Tx, Ty), ovs, &(xo[WS(os, 1)])); | |
240 } | |
241 } | |
242 } | |
243 } | |
244 VLEAVE(); | |
245 } | |
246 | |
247 static const kdft_desc desc = { 9, XSIMD_STRING("n1fv_9"), {30, 10, 16, 0}, &GENUS, 0, 0, 0, 0 }; | |
248 | |
249 void XSIMD(codelet_n1fv_9) (planner *p) { | |
250 X(kdft_register) (p, n1fv_9, &desc); | |
251 } | |
252 | |
253 #endif /* HAVE_FMA */ |