comparison src/fftw-3.3.5/dft/simd/common/n1fv_20.c @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
comparison
equal deleted inserted replaced
41:481f5f8c5634 42:2cd0e3b3e1fd
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sat Jul 30 16:38:49 EDT 2016 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name n1fv_20 -include n1f.h */
29
30 /*
31 * This function contains 104 FP additions, 50 FP multiplications,
32 * (or, 58 additions, 4 multiplications, 46 fused multiply/add),
33 * 71 stack variables, 4 constants, and 40 memory accesses
34 */
35 #include "n1f.h"
36
37 static void n1fv_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
43 {
44 INT i;
45 const R *xi;
46 R *xo;
47 xi = ri;
48 xo = ro;
49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) {
50 V TU, TI, TP, TX, TM, TW, TT, TF;
51 {
52 V T3, Tm, T1r, T13, Ta, TN, TH, TA, TG, Tt, Th, TO, T1u, T1C, T1n;
53 V T1a, T1m, T1h, T1x, T1D, TE, Ti;
54 {
55 V T1, T2, Tk, Tl;
56 T1 = LD(&(xi[0]), ivs, &(xi[0]));
57 T2 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
58 Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
59 Tl = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
60 {
61 V T14, T6, T1c, Tw, Tn, T1f, Tz, T17, T9, To, Tq, T1b, Td, Tr, Te;
62 V Tf, T15, Tp;
63 {
64 V Tx, Ty, T7, T8, Tb, Tc;
65 {
66 V T4, T5, Tu, Tv, T11, T12;
67 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
68 T5 = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
69 Tu = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
70 Tv = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
71 Tx = LD(&(xi[WS(is, 17)]), ivs, &(xi[WS(is, 1)]));
72 T3 = VSUB(T1, T2);
73 T11 = VADD(T1, T2);
74 Tm = VSUB(Tk, Tl);
75 T12 = VADD(Tk, Tl);
76 T14 = VADD(T4, T5);
77 T6 = VSUB(T4, T5);
78 T1c = VADD(Tu, Tv);
79 Tw = VSUB(Tu, Tv);
80 Ty = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
81 T7 = LD(&(xi[WS(is, 16)]), ivs, &(xi[0]));
82 T8 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
83 T1r = VADD(T11, T12);
84 T13 = VSUB(T11, T12);
85 }
86 Tb = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
87 Tc = LD(&(xi[WS(is, 18)]), ivs, &(xi[0]));
88 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
89 T1f = VADD(Tx, Ty);
90 Tz = VSUB(Tx, Ty);
91 T17 = VADD(T7, T8);
92 T9 = VSUB(T7, T8);
93 To = LD(&(xi[WS(is, 19)]), ivs, &(xi[WS(is, 1)]));
94 Tq = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
95 T1b = VADD(Tb, Tc);
96 Td = VSUB(Tb, Tc);
97 Tr = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
98 Te = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
99 Tf = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
100 }
101 Ta = VADD(T6, T9);
102 TN = VSUB(T6, T9);
103 T15 = VADD(Tn, To);
104 Tp = VSUB(Tn, To);
105 TH = VSUB(Tz, Tw);
106 TA = VADD(Tw, Tz);
107 {
108 V T1d, T1v, T18, Ts, T1e, Tg, T16, T1s;
109 T1d = VSUB(T1b, T1c);
110 T1v = VADD(T1b, T1c);
111 T18 = VADD(Tq, Tr);
112 Ts = VSUB(Tq, Tr);
113 T1e = VADD(Te, Tf);
114 Tg = VSUB(Te, Tf);
115 T16 = VSUB(T14, T15);
116 T1s = VADD(T14, T15);
117 {
118 V T1t, T19, T1w, T1g;
119 T1t = VADD(T17, T18);
120 T19 = VSUB(T17, T18);
121 TG = VSUB(Ts, Tp);
122 Tt = VADD(Tp, Ts);
123 T1w = VADD(T1e, T1f);
124 T1g = VSUB(T1e, T1f);
125 Th = VADD(Td, Tg);
126 TO = VSUB(Td, Tg);
127 T1u = VADD(T1s, T1t);
128 T1C = VSUB(T1s, T1t);
129 T1n = VSUB(T16, T19);
130 T1a = VADD(T16, T19);
131 T1m = VSUB(T1d, T1g);
132 T1h = VADD(T1d, T1g);
133 T1x = VADD(T1v, T1w);
134 T1D = VSUB(T1v, T1w);
135 }
136 }
137 }
138 }
139 TE = VSUB(Ta, Th);
140 Ti = VADD(Ta, Th);
141 {
142 V TL, T1k, T1A, Tj, TD, T1E, T1G, TK, TC, T1j, T1z, T1i, T1y, TB;
143 TL = VSUB(TA, Tt);
144 TB = VADD(Tt, TA);
145 T1i = VADD(T1a, T1h);
146 T1k = VSUB(T1a, T1h);
147 T1y = VADD(T1u, T1x);
148 T1A = VSUB(T1u, T1x);
149 Tj = VADD(T3, Ti);
150 TD = VFNMS(LDK(KP250000000), Ti, T3);
151 T1E = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1D, T1C));
152 T1G = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1C, T1D));
153 TK = VFNMS(LDK(KP250000000), TB, Tm);
154 TC = VADD(Tm, TB);
155 T1j = VFNMS(LDK(KP250000000), T1i, T13);
156 ST(&(xo[0]), VADD(T1r, T1y), ovs, &(xo[0]));
157 T1z = VFNMS(LDK(KP250000000), T1y, T1r);
158 ST(&(xo[WS(os, 10)]), VADD(T13, T1i), ovs, &(xo[0]));
159 {
160 V T1p, T1l, T1o, T1q, T1F, T1B;
161 TU = VFNMS(LDK(KP618033988), TG, TH);
162 TI = VFMA(LDK(KP618033988), TH, TG);
163 TP = VFMA(LDK(KP618033988), TO, TN);
164 TX = VFNMS(LDK(KP618033988), TN, TO);
165 ST(&(xo[WS(os, 15)]), VFMAI(TC, Tj), ovs, &(xo[WS(os, 1)]));
166 ST(&(xo[WS(os, 5)]), VFNMSI(TC, Tj), ovs, &(xo[WS(os, 1)]));
167 T1p = VFMA(LDK(KP559016994), T1k, T1j);
168 T1l = VFNMS(LDK(KP559016994), T1k, T1j);
169 T1o = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1n, T1m));
170 T1q = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1m, T1n));
171 T1F = VFNMS(LDK(KP559016994), T1A, T1z);
172 T1B = VFMA(LDK(KP559016994), T1A, T1z);
173 ST(&(xo[WS(os, 14)]), VFMAI(T1q, T1p), ovs, &(xo[0]));
174 ST(&(xo[WS(os, 6)]), VFNMSI(T1q, T1p), ovs, &(xo[0]));
175 ST(&(xo[WS(os, 18)]), VFNMSI(T1o, T1l), ovs, &(xo[0]));
176 ST(&(xo[WS(os, 2)]), VFMAI(T1o, T1l), ovs, &(xo[0]));
177 ST(&(xo[WS(os, 16)]), VFNMSI(T1E, T1B), ovs, &(xo[0]));
178 ST(&(xo[WS(os, 4)]), VFMAI(T1E, T1B), ovs, &(xo[0]));
179 ST(&(xo[WS(os, 12)]), VFMAI(T1G, T1F), ovs, &(xo[0]));
180 ST(&(xo[WS(os, 8)]), VFNMSI(T1G, T1F), ovs, &(xo[0]));
181 TM = VFNMS(LDK(KP559016994), TL, TK);
182 TW = VFMA(LDK(KP559016994), TL, TK);
183 TT = VFNMS(LDK(KP559016994), TE, TD);
184 TF = VFMA(LDK(KP559016994), TE, TD);
185 }
186 }
187 }
188 {
189 V T10, TY, TQ, TS, TJ, TR, TZ, TV;
190 T10 = VFMA(LDK(KP951056516), TX, TW);
191 TY = VFNMS(LDK(KP951056516), TX, TW);
192 TQ = VFMA(LDK(KP951056516), TP, TM);
193 TS = VFNMS(LDK(KP951056516), TP, TM);
194 TJ = VFMA(LDK(KP951056516), TI, TF);
195 TR = VFNMS(LDK(KP951056516), TI, TF);
196 TZ = VFMA(LDK(KP951056516), TU, TT);
197 TV = VFNMS(LDK(KP951056516), TU, TT);
198 ST(&(xo[WS(os, 11)]), VFMAI(TS, TR), ovs, &(xo[WS(os, 1)]));
199 ST(&(xo[WS(os, 9)]), VFNMSI(TS, TR), ovs, &(xo[WS(os, 1)]));
200 ST(&(xo[WS(os, 19)]), VFMAI(TQ, TJ), ovs, &(xo[WS(os, 1)]));
201 ST(&(xo[WS(os, 1)]), VFNMSI(TQ, TJ), ovs, &(xo[WS(os, 1)]));
202 ST(&(xo[WS(os, 3)]), VFMAI(TY, TV), ovs, &(xo[WS(os, 1)]));
203 ST(&(xo[WS(os, 17)]), VFNMSI(TY, TV), ovs, &(xo[WS(os, 1)]));
204 ST(&(xo[WS(os, 7)]), VFMAI(T10, TZ), ovs, &(xo[WS(os, 1)]));
205 ST(&(xo[WS(os, 13)]), VFNMSI(T10, TZ), ovs, &(xo[WS(os, 1)]));
206 }
207 }
208 }
209 VLEAVE();
210 }
211
212 static const kdft_desc desc = { 20, XSIMD_STRING("n1fv_20"), {58, 4, 46, 0}, &GENUS, 0, 0, 0, 0 };
213
214 void XSIMD(codelet_n1fv_20) (planner *p) {
215 X(kdft_register) (p, n1fv_20, &desc);
216 }
217
218 #else /* HAVE_FMA */
219
220 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 20 -name n1fv_20 -include n1f.h */
221
222 /*
223 * This function contains 104 FP additions, 24 FP multiplications,
224 * (or, 92 additions, 12 multiplications, 12 fused multiply/add),
225 * 53 stack variables, 4 constants, and 40 memory accesses
226 */
227 #include "n1f.h"
228
229 static void n1fv_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
230 {
231 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
232 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
233 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
234 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
235 {
236 INT i;
237 const R *xi;
238 R *xo;
239 xi = ri;
240 xo = ro;
241 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) {
242 V T3, T1B, Tm, T1i, TG, TN, TO, TH, T13, T16, T1k, T1u, T1v, T1z, T1r;
243 V T1s, T1y, T1a, T1d, T1j, Ti, TD, TB, TL, Tj, TC;
244 {
245 V T1, T2, T1g, Tk, Tl, T1h;
246 T1 = LD(&(xi[0]), ivs, &(xi[0]));
247 T2 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
248 T1g = VADD(T1, T2);
249 Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
250 Tl = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
251 T1h = VADD(Tk, Tl);
252 T3 = VSUB(T1, T2);
253 T1B = VADD(T1g, T1h);
254 Tm = VSUB(Tk, Tl);
255 T1i = VSUB(T1g, T1h);
256 }
257 {
258 V T6, T18, Tw, T12, Tz, T15, T9, T1b, Td, T11, Tp, T19, Ts, T1c, Tg;
259 V T14;
260 {
261 V T4, T5, Tu, Tv;
262 T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
263 T5 = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
264 T6 = VSUB(T4, T5);
265 T18 = VADD(T4, T5);
266 Tu = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
267 Tv = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
268 Tw = VSUB(Tu, Tv);
269 T12 = VADD(Tu, Tv);
270 }
271 {
272 V Tx, Ty, T7, T8;
273 Tx = LD(&(xi[WS(is, 17)]), ivs, &(xi[WS(is, 1)]));
274 Ty = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
275 Tz = VSUB(Tx, Ty);
276 T15 = VADD(Tx, Ty);
277 T7 = LD(&(xi[WS(is, 16)]), ivs, &(xi[0]));
278 T8 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
279 T9 = VSUB(T7, T8);
280 T1b = VADD(T7, T8);
281 }
282 {
283 V Tb, Tc, Tn, To;
284 Tb = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
285 Tc = LD(&(xi[WS(is, 18)]), ivs, &(xi[0]));
286 Td = VSUB(Tb, Tc);
287 T11 = VADD(Tb, Tc);
288 Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
289 To = LD(&(xi[WS(is, 19)]), ivs, &(xi[WS(is, 1)]));
290 Tp = VSUB(Tn, To);
291 T19 = VADD(Tn, To);
292 }
293 {
294 V Tq, Tr, Te, Tf;
295 Tq = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
296 Tr = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
297 Ts = VSUB(Tq, Tr);
298 T1c = VADD(Tq, Tr);
299 Te = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
300 Tf = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
301 Tg = VSUB(Te, Tf);
302 T14 = VADD(Te, Tf);
303 }
304 TG = VSUB(Ts, Tp);
305 TN = VSUB(T6, T9);
306 TO = VSUB(Td, Tg);
307 TH = VSUB(Tz, Tw);
308 T13 = VSUB(T11, T12);
309 T16 = VSUB(T14, T15);
310 T1k = VADD(T13, T16);
311 T1u = VADD(T11, T12);
312 T1v = VADD(T14, T15);
313 T1z = VADD(T1u, T1v);
314 T1r = VADD(T18, T19);
315 T1s = VADD(T1b, T1c);
316 T1y = VADD(T1r, T1s);
317 T1a = VSUB(T18, T19);
318 T1d = VSUB(T1b, T1c);
319 T1j = VADD(T1a, T1d);
320 {
321 V Ta, Th, Tt, TA;
322 Ta = VADD(T6, T9);
323 Th = VADD(Td, Tg);
324 Ti = VADD(Ta, Th);
325 TD = VMUL(LDK(KP559016994), VSUB(Ta, Th));
326 Tt = VADD(Tp, Ts);
327 TA = VADD(Tw, Tz);
328 TB = VADD(Tt, TA);
329 TL = VMUL(LDK(KP559016994), VSUB(TA, Tt));
330 }
331 }
332 Tj = VADD(T3, Ti);
333 TC = VBYI(VADD(Tm, TB));
334 ST(&(xo[WS(os, 5)]), VSUB(Tj, TC), ovs, &(xo[WS(os, 1)]));
335 ST(&(xo[WS(os, 15)]), VADD(Tj, TC), ovs, &(xo[WS(os, 1)]));
336 {
337 V T1A, T1C, T1D, T1x, T1G, T1t, T1w, T1F, T1E;
338 T1A = VMUL(LDK(KP559016994), VSUB(T1y, T1z));
339 T1C = VADD(T1y, T1z);
340 T1D = VFNMS(LDK(KP250000000), T1C, T1B);
341 T1t = VSUB(T1r, T1s);
342 T1w = VSUB(T1u, T1v);
343 T1x = VBYI(VFMA(LDK(KP951056516), T1t, VMUL(LDK(KP587785252), T1w)));
344 T1G = VBYI(VFNMS(LDK(KP587785252), T1t, VMUL(LDK(KP951056516), T1w)));
345 ST(&(xo[0]), VADD(T1B, T1C), ovs, &(xo[0]));
346 T1F = VSUB(T1D, T1A);
347 ST(&(xo[WS(os, 8)]), VSUB(T1F, T1G), ovs, &(xo[0]));
348 ST(&(xo[WS(os, 12)]), VADD(T1G, T1F), ovs, &(xo[0]));
349 T1E = VADD(T1A, T1D);
350 ST(&(xo[WS(os, 4)]), VADD(T1x, T1E), ovs, &(xo[0]));
351 ST(&(xo[WS(os, 16)]), VSUB(T1E, T1x), ovs, &(xo[0]));
352 }
353 {
354 V T1n, T1l, T1m, T1f, T1q, T17, T1e, T1p, T1o;
355 T1n = VMUL(LDK(KP559016994), VSUB(T1j, T1k));
356 T1l = VADD(T1j, T1k);
357 T1m = VFNMS(LDK(KP250000000), T1l, T1i);
358 T17 = VSUB(T13, T16);
359 T1e = VSUB(T1a, T1d);
360 T1f = VBYI(VFNMS(LDK(KP587785252), T1e, VMUL(LDK(KP951056516), T17)));
361 T1q = VBYI(VFMA(LDK(KP951056516), T1e, VMUL(LDK(KP587785252), T17)));
362 ST(&(xo[WS(os, 10)]), VADD(T1i, T1l), ovs, &(xo[0]));
363 T1p = VADD(T1n, T1m);
364 ST(&(xo[WS(os, 6)]), VSUB(T1p, T1q), ovs, &(xo[0]));
365 ST(&(xo[WS(os, 14)]), VADD(T1q, T1p), ovs, &(xo[0]));
366 T1o = VSUB(T1m, T1n);
367 ST(&(xo[WS(os, 2)]), VADD(T1f, T1o), ovs, &(xo[0]));
368 ST(&(xo[WS(os, 18)]), VSUB(T1o, T1f), ovs, &(xo[0]));
369 }
370 {
371 V TI, TP, TX, TU, TM, TW, TF, TT, TK, TE;
372 TI = VFMA(LDK(KP951056516), TG, VMUL(LDK(KP587785252), TH));
373 TP = VFMA(LDK(KP951056516), TN, VMUL(LDK(KP587785252), TO));
374 TX = VFNMS(LDK(KP587785252), TN, VMUL(LDK(KP951056516), TO));
375 TU = VFNMS(LDK(KP587785252), TG, VMUL(LDK(KP951056516), TH));
376 TK = VFMS(LDK(KP250000000), TB, Tm);
377 TM = VADD(TK, TL);
378 TW = VSUB(TL, TK);
379 TE = VFNMS(LDK(KP250000000), Ti, T3);
380 TF = VADD(TD, TE);
381 TT = VSUB(TE, TD);
382 {
383 V TJ, TQ, TZ, T10;
384 TJ = VADD(TF, TI);
385 TQ = VBYI(VSUB(TM, TP));
386 ST(&(xo[WS(os, 19)]), VSUB(TJ, TQ), ovs, &(xo[WS(os, 1)]));
387 ST(&(xo[WS(os, 1)]), VADD(TJ, TQ), ovs, &(xo[WS(os, 1)]));
388 TZ = VADD(TT, TU);
389 T10 = VBYI(VADD(TX, TW));
390 ST(&(xo[WS(os, 13)]), VSUB(TZ, T10), ovs, &(xo[WS(os, 1)]));
391 ST(&(xo[WS(os, 7)]), VADD(TZ, T10), ovs, &(xo[WS(os, 1)]));
392 }
393 {
394 V TR, TS, TV, TY;
395 TR = VSUB(TF, TI);
396 TS = VBYI(VADD(TP, TM));
397 ST(&(xo[WS(os, 11)]), VSUB(TR, TS), ovs, &(xo[WS(os, 1)]));
398 ST(&(xo[WS(os, 9)]), VADD(TR, TS), ovs, &(xo[WS(os, 1)]));
399 TV = VSUB(TT, TU);
400 TY = VBYI(VSUB(TW, TX));
401 ST(&(xo[WS(os, 17)]), VSUB(TV, TY), ovs, &(xo[WS(os, 1)]));
402 ST(&(xo[WS(os, 3)]), VADD(TV, TY), ovs, &(xo[WS(os, 1)]));
403 }
404 }
405 }
406 }
407 VLEAVE();
408 }
409
410 static const kdft_desc desc = { 20, XSIMD_STRING("n1fv_20"), {92, 12, 12, 0}, &GENUS, 0, 0, 0, 0 };
411
412 void XSIMD(codelet_n1fv_20) (planner *p) {
413 X(kdft_register) (p, n1fv_20, &desc);
414 }
415
416 #endif /* HAVE_FMA */