Mercurial > hg > sv-dependency-builds
comparison src/libvorbis-1.3.3/lib/lsp.c @ 1:05aa0afa9217
Bring in flac, ogg, vorbis
author | Chris Cannam |
---|---|
date | Tue, 19 Mar 2013 17:37:49 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:c7265573341e | 1:05aa0afa9217 |
---|---|
1 /******************************************************************** | |
2 * * | |
3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * | |
4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * | |
5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * | |
6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * | |
7 * * | |
8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * | |
9 * by the Xiph.Org Foundation http://www.xiph.org/ * | |
10 * * | |
11 ******************************************************************** | |
12 | |
13 function: LSP (also called LSF) conversion routines | |
14 last mod: $Id: lsp.c 17538 2010-10-15 02:52:29Z tterribe $ | |
15 | |
16 The LSP generation code is taken (with minimal modification and a | |
17 few bugfixes) from "On the Computation of the LSP Frequencies" by | |
18 Joseph Rothweiler (see http://www.rothweiler.us for contact info). | |
19 The paper is available at: | |
20 | |
21 http://www.myown1.com/joe/lsf | |
22 | |
23 ********************************************************************/ | |
24 | |
25 /* Note that the lpc-lsp conversion finds the roots of polynomial with | |
26 an iterative root polisher (CACM algorithm 283). It *is* possible | |
27 to confuse this algorithm into not converging; that should only | |
28 happen with absurdly closely spaced roots (very sharp peaks in the | |
29 LPC f response) which in turn should be impossible in our use of | |
30 the code. If this *does* happen anyway, it's a bug in the floor | |
31 finder; find the cause of the confusion (probably a single bin | |
32 spike or accidental near-float-limit resolution problems) and | |
33 correct it. */ | |
34 | |
35 #include <math.h> | |
36 #include <string.h> | |
37 #include <stdlib.h> | |
38 #include "lsp.h" | |
39 #include "os.h" | |
40 #include "misc.h" | |
41 #include "lookup.h" | |
42 #include "scales.h" | |
43 | |
44 /* three possible LSP to f curve functions; the exact computation | |
45 (float), a lookup based float implementation, and an integer | |
46 implementation. The float lookup is likely the optimal choice on | |
47 any machine with an FPU. The integer implementation is *not* fixed | |
48 point (due to the need for a large dynamic range and thus a | |
49 separately tracked exponent) and thus much more complex than the | |
50 relatively simple float implementations. It's mostly for future | |
51 work on a fully fixed point implementation for processors like the | |
52 ARM family. */ | |
53 | |
54 /* define either of these (preferably FLOAT_LOOKUP) to have faster | |
55 but less precise implementation. */ | |
56 #undef FLOAT_LOOKUP | |
57 #undef INT_LOOKUP | |
58 | |
59 #ifdef FLOAT_LOOKUP | |
60 #include "lookup.c" /* catch this in the build system; we #include for | |
61 compilers (like gcc) that can't inline across | |
62 modules */ | |
63 | |
64 /* side effect: changes *lsp to cosines of lsp */ | |
65 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, | |
66 float amp,float ampoffset){ | |
67 int i; | |
68 float wdel=M_PI/ln; | |
69 vorbis_fpu_control fpu; | |
70 | |
71 vorbis_fpu_setround(&fpu); | |
72 for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]); | |
73 | |
74 i=0; | |
75 while(i<n){ | |
76 int k=map[i]; | |
77 int qexp; | |
78 float p=.7071067812f; | |
79 float q=.7071067812f; | |
80 float w=vorbis_coslook(wdel*k); | |
81 float *ftmp=lsp; | |
82 int c=m>>1; | |
83 | |
84 while(c--){ | |
85 q*=ftmp[0]-w; | |
86 p*=ftmp[1]-w; | |
87 ftmp+=2; | |
88 } | |
89 | |
90 if(m&1){ | |
91 /* odd order filter; slightly assymetric */ | |
92 /* the last coefficient */ | |
93 q*=ftmp[0]-w; | |
94 q*=q; | |
95 p*=p*(1.f-w*w); | |
96 }else{ | |
97 /* even order filter; still symmetric */ | |
98 q*=q*(1.f+w); | |
99 p*=p*(1.f-w); | |
100 } | |
101 | |
102 q=frexp(p+q,&qexp); | |
103 q=vorbis_fromdBlook(amp* | |
104 vorbis_invsqlook(q)* | |
105 vorbis_invsq2explook(qexp+m)- | |
106 ampoffset); | |
107 | |
108 do{ | |
109 curve[i++]*=q; | |
110 }while(map[i]==k); | |
111 } | |
112 vorbis_fpu_restore(fpu); | |
113 } | |
114 | |
115 #else | |
116 | |
117 #ifdef INT_LOOKUP | |
118 #include "lookup.c" /* catch this in the build system; we #include for | |
119 compilers (like gcc) that can't inline across | |
120 modules */ | |
121 | |
122 static const int MLOOP_1[64]={ | |
123 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13, | |
124 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14, | |
125 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, | |
126 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, | |
127 }; | |
128 | |
129 static const int MLOOP_2[64]={ | |
130 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7, | |
131 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8, | |
132 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, | |
133 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, | |
134 }; | |
135 | |
136 static const int MLOOP_3[8]={0,1,2,2,3,3,3,3}; | |
137 | |
138 | |
139 /* side effect: changes *lsp to cosines of lsp */ | |
140 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, | |
141 float amp,float ampoffset){ | |
142 | |
143 /* 0 <= m < 256 */ | |
144 | |
145 /* set up for using all int later */ | |
146 int i; | |
147 int ampoffseti=rint(ampoffset*4096.f); | |
148 int ampi=rint(amp*16.f); | |
149 long *ilsp=alloca(m*sizeof(*ilsp)); | |
150 for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f); | |
151 | |
152 i=0; | |
153 while(i<n){ | |
154 int j,k=map[i]; | |
155 unsigned long pi=46341; /* 2**-.5 in 0.16 */ | |
156 unsigned long qi=46341; | |
157 int qexp=0,shift; | |
158 long wi=vorbis_coslook_i(k*65536/ln); | |
159 | |
160 qi*=labs(ilsp[0]-wi); | |
161 pi*=labs(ilsp[1]-wi); | |
162 | |
163 for(j=3;j<m;j+=2){ | |
164 if(!(shift=MLOOP_1[(pi|qi)>>25])) | |
165 if(!(shift=MLOOP_2[(pi|qi)>>19])) | |
166 shift=MLOOP_3[(pi|qi)>>16]; | |
167 qi=(qi>>shift)*labs(ilsp[j-1]-wi); | |
168 pi=(pi>>shift)*labs(ilsp[j]-wi); | |
169 qexp+=shift; | |
170 } | |
171 if(!(shift=MLOOP_1[(pi|qi)>>25])) | |
172 if(!(shift=MLOOP_2[(pi|qi)>>19])) | |
173 shift=MLOOP_3[(pi|qi)>>16]; | |
174 | |
175 /* pi,qi normalized collectively, both tracked using qexp */ | |
176 | |
177 if(m&1){ | |
178 /* odd order filter; slightly assymetric */ | |
179 /* the last coefficient */ | |
180 qi=(qi>>shift)*labs(ilsp[j-1]-wi); | |
181 pi=(pi>>shift)<<14; | |
182 qexp+=shift; | |
183 | |
184 if(!(shift=MLOOP_1[(pi|qi)>>25])) | |
185 if(!(shift=MLOOP_2[(pi|qi)>>19])) | |
186 shift=MLOOP_3[(pi|qi)>>16]; | |
187 | |
188 pi>>=shift; | |
189 qi>>=shift; | |
190 qexp+=shift-14*((m+1)>>1); | |
191 | |
192 pi=((pi*pi)>>16); | |
193 qi=((qi*qi)>>16); | |
194 qexp=qexp*2+m; | |
195 | |
196 pi*=(1<<14)-((wi*wi)>>14); | |
197 qi+=pi>>14; | |
198 | |
199 }else{ | |
200 /* even order filter; still symmetric */ | |
201 | |
202 /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't | |
203 worth tracking step by step */ | |
204 | |
205 pi>>=shift; | |
206 qi>>=shift; | |
207 qexp+=shift-7*m; | |
208 | |
209 pi=((pi*pi)>>16); | |
210 qi=((qi*qi)>>16); | |
211 qexp=qexp*2+m; | |
212 | |
213 pi*=(1<<14)-wi; | |
214 qi*=(1<<14)+wi; | |
215 qi=(qi+pi)>>14; | |
216 | |
217 } | |
218 | |
219 | |
220 /* we've let the normalization drift because it wasn't important; | |
221 however, for the lookup, things must be normalized again. We | |
222 need at most one right shift or a number of left shifts */ | |
223 | |
224 if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ | |
225 qi>>=1; qexp++; | |
226 }else | |
227 while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ | |
228 qi<<=1; qexp--; | |
229 } | |
230 | |
231 amp=vorbis_fromdBlook_i(ampi* /* n.4 */ | |
232 vorbis_invsqlook_i(qi,qexp)- | |
233 /* m.8, m+n<=8 */ | |
234 ampoffseti); /* 8.12[0] */ | |
235 | |
236 curve[i]*=amp; | |
237 while(map[++i]==k)curve[i]*=amp; | |
238 } | |
239 } | |
240 | |
241 #else | |
242 | |
243 /* old, nonoptimized but simple version for any poor sap who needs to | |
244 figure out what the hell this code does, or wants the other | |
245 fraction of a dB precision */ | |
246 | |
247 /* side effect: changes *lsp to cosines of lsp */ | |
248 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, | |
249 float amp,float ampoffset){ | |
250 int i; | |
251 float wdel=M_PI/ln; | |
252 for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]); | |
253 | |
254 i=0; | |
255 while(i<n){ | |
256 int j,k=map[i]; | |
257 float p=.5f; | |
258 float q=.5f; | |
259 float w=2.f*cos(wdel*k); | |
260 for(j=1;j<m;j+=2){ | |
261 q *= w-lsp[j-1]; | |
262 p *= w-lsp[j]; | |
263 } | |
264 if(j==m){ | |
265 /* odd order filter; slightly assymetric */ | |
266 /* the last coefficient */ | |
267 q*=w-lsp[j-1]; | |
268 p*=p*(4.f-w*w); | |
269 q*=q; | |
270 }else{ | |
271 /* even order filter; still symmetric */ | |
272 p*=p*(2.f-w); | |
273 q*=q*(2.f+w); | |
274 } | |
275 | |
276 q=fromdB(amp/sqrt(p+q)-ampoffset); | |
277 | |
278 curve[i]*=q; | |
279 while(map[++i]==k)curve[i]*=q; | |
280 } | |
281 } | |
282 | |
283 #endif | |
284 #endif | |
285 | |
286 static void cheby(float *g, int ord) { | |
287 int i, j; | |
288 | |
289 g[0] *= .5f; | |
290 for(i=2; i<= ord; i++) { | |
291 for(j=ord; j >= i; j--) { | |
292 g[j-2] -= g[j]; | |
293 g[j] += g[j]; | |
294 } | |
295 } | |
296 } | |
297 | |
298 static int comp(const void *a,const void *b){ | |
299 return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); | |
300 } | |
301 | |
302 /* Newton-Raphson-Maehly actually functioned as a decent root finder, | |
303 but there are root sets for which it gets into limit cycles | |
304 (exacerbated by zero suppression) and fails. We can't afford to | |
305 fail, even if the failure is 1 in 100,000,000, so we now use | |
306 Laguerre and later polish with Newton-Raphson (which can then | |
307 afford to fail) */ | |
308 | |
309 #define EPSILON 10e-7 | |
310 static int Laguerre_With_Deflation(float *a,int ord,float *r){ | |
311 int i,m; | |
312 double lastdelta=0.f; | |
313 double *defl=alloca(sizeof(*defl)*(ord+1)); | |
314 for(i=0;i<=ord;i++)defl[i]=a[i]; | |
315 | |
316 for(m=ord;m>0;m--){ | |
317 double new=0.f,delta; | |
318 | |
319 /* iterate a root */ | |
320 while(1){ | |
321 double p=defl[m],pp=0.f,ppp=0.f,denom; | |
322 | |
323 /* eval the polynomial and its first two derivatives */ | |
324 for(i=m;i>0;i--){ | |
325 ppp = new*ppp + pp; | |
326 pp = new*pp + p; | |
327 p = new*p + defl[i-1]; | |
328 } | |
329 | |
330 /* Laguerre's method */ | |
331 denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); | |
332 if(denom<0) | |
333 return(-1); /* complex root! The LPC generator handed us a bad filter */ | |
334 | |
335 if(pp>0){ | |
336 denom = pp + sqrt(denom); | |
337 if(denom<EPSILON)denom=EPSILON; | |
338 }else{ | |
339 denom = pp - sqrt(denom); | |
340 if(denom>-(EPSILON))denom=-(EPSILON); | |
341 } | |
342 | |
343 delta = m*p/denom; | |
344 new -= delta; | |
345 | |
346 if(delta<0.f)delta*=-1; | |
347 | |
348 if(fabs(delta/new)<10e-12)break; | |
349 lastdelta=delta; | |
350 } | |
351 | |
352 r[m-1]=new; | |
353 | |
354 /* forward deflation */ | |
355 | |
356 for(i=m;i>0;i--) | |
357 defl[i-1]+=new*defl[i]; | |
358 defl++; | |
359 | |
360 } | |
361 return(0); | |
362 } | |
363 | |
364 | |
365 /* for spit-and-polish only */ | |
366 static int Newton_Raphson(float *a,int ord,float *r){ | |
367 int i, k, count=0; | |
368 double error=1.f; | |
369 double *root=alloca(ord*sizeof(*root)); | |
370 | |
371 for(i=0; i<ord;i++) root[i] = r[i]; | |
372 | |
373 while(error>1e-20){ | |
374 error=0; | |
375 | |
376 for(i=0; i<ord; i++) { /* Update each point. */ | |
377 double pp=0.,delta; | |
378 double rooti=root[i]; | |
379 double p=a[ord]; | |
380 for(k=ord-1; k>= 0; k--) { | |
381 | |
382 pp= pp* rooti + p; | |
383 p = p * rooti + a[k]; | |
384 } | |
385 | |
386 delta = p/pp; | |
387 root[i] -= delta; | |
388 error+= delta*delta; | |
389 } | |
390 | |
391 if(count>40)return(-1); | |
392 | |
393 count++; | |
394 } | |
395 | |
396 /* Replaced the original bubble sort with a real sort. With your | |
397 help, we can eliminate the bubble sort in our lifetime. --Monty */ | |
398 | |
399 for(i=0; i<ord;i++) r[i] = root[i]; | |
400 return(0); | |
401 } | |
402 | |
403 | |
404 /* Convert lpc coefficients to lsp coefficients */ | |
405 int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){ | |
406 int order2=(m+1)>>1; | |
407 int g1_order,g2_order; | |
408 float *g1=alloca(sizeof(*g1)*(order2+1)); | |
409 float *g2=alloca(sizeof(*g2)*(order2+1)); | |
410 float *g1r=alloca(sizeof(*g1r)*(order2+1)); | |
411 float *g2r=alloca(sizeof(*g2r)*(order2+1)); | |
412 int i; | |
413 | |
414 /* even and odd are slightly different base cases */ | |
415 g1_order=(m+1)>>1; | |
416 g2_order=(m) >>1; | |
417 | |
418 /* Compute the lengths of the x polynomials. */ | |
419 /* Compute the first half of K & R F1 & F2 polynomials. */ | |
420 /* Compute half of the symmetric and antisymmetric polynomials. */ | |
421 /* Remove the roots at +1 and -1. */ | |
422 | |
423 g1[g1_order] = 1.f; | |
424 for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i]; | |
425 g2[g2_order] = 1.f; | |
426 for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i]; | |
427 | |
428 if(g1_order>g2_order){ | |
429 for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; | |
430 }else{ | |
431 for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; | |
432 for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; | |
433 } | |
434 | |
435 /* Convert into polynomials in cos(alpha) */ | |
436 cheby(g1,g1_order); | |
437 cheby(g2,g2_order); | |
438 | |
439 /* Find the roots of the 2 even polynomials.*/ | |
440 if(Laguerre_With_Deflation(g1,g1_order,g1r) || | |
441 Laguerre_With_Deflation(g2,g2_order,g2r)) | |
442 return(-1); | |
443 | |
444 Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */ | |
445 Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */ | |
446 | |
447 qsort(g1r,g1_order,sizeof(*g1r),comp); | |
448 qsort(g2r,g2_order,sizeof(*g2r),comp); | |
449 | |
450 for(i=0;i<g1_order;i++) | |
451 lsp[i*2] = acos(g1r[i]); | |
452 | |
453 for(i=0;i<g2_order;i++) | |
454 lsp[i*2+1] = acos(g2r[i]); | |
455 return(0); | |
456 } |