cannam@148
|
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
cannam@148
|
2 // Licensed under the MIT License:
|
cannam@148
|
3 //
|
cannam@148
|
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
|
cannam@148
|
5 // of this software and associated documentation files (the "Software"), to deal
|
cannam@148
|
6 // in the Software without restriction, including without limitation the rights
|
cannam@148
|
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
cannam@148
|
8 // copies of the Software, and to permit persons to whom the Software is
|
cannam@148
|
9 // furnished to do so, subject to the following conditions:
|
cannam@148
|
10 //
|
cannam@148
|
11 // The above copyright notice and this permission notice shall be included in
|
cannam@148
|
12 // all copies or substantial portions of the Software.
|
cannam@148
|
13 //
|
cannam@148
|
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
cannam@148
|
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
cannam@148
|
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
cannam@148
|
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
cannam@148
|
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
cannam@148
|
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
cannam@148
|
20 // THE SOFTWARE.
|
cannam@148
|
21
|
cannam@148
|
22 #ifndef KJ_MEMORY_H_
|
cannam@148
|
23 #define KJ_MEMORY_H_
|
cannam@148
|
24
|
cannam@148
|
25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
cannam@148
|
26 #pragma GCC system_header
|
cannam@148
|
27 #endif
|
cannam@148
|
28
|
cannam@148
|
29 #include "common.h"
|
cannam@148
|
30
|
cannam@148
|
31 namespace kj {
|
cannam@148
|
32
|
cannam@148
|
33 // =======================================================================================
|
cannam@148
|
34 // Disposer -- Implementation details.
|
cannam@148
|
35
|
cannam@148
|
36 class Disposer {
|
cannam@148
|
37 // Abstract interface for a thing that "disposes" of objects, where "disposing" usually means
|
cannam@148
|
38 // calling the destructor followed by freeing the underlying memory. `Own<T>` encapsulates an
|
cannam@148
|
39 // object pointer with corresponding Disposer.
|
cannam@148
|
40 //
|
cannam@148
|
41 // Few developers will ever touch this interface. It is primarily useful for those implementing
|
cannam@148
|
42 // custom memory allocators.
|
cannam@148
|
43
|
cannam@148
|
44 protected:
|
cannam@148
|
45 // Do not declare a destructor, as doing so will force a global initializer for each HeapDisposer
|
cannam@148
|
46 // instance. Eww!
|
cannam@148
|
47
|
cannam@148
|
48 virtual void disposeImpl(void* pointer) const = 0;
|
cannam@148
|
49 // Disposes of the object, given a pointer to the beginning of the object. If the object is
|
cannam@148
|
50 // polymorphic, this pointer is determined by dynamic_cast<void*>(). For non-polymorphic types,
|
cannam@148
|
51 // Own<T> does not allow any casting, so the pointer exactly matches the original one given to
|
cannam@148
|
52 // Own<T>.
|
cannam@148
|
53
|
cannam@148
|
54 public:
|
cannam@148
|
55
|
cannam@148
|
56 template <typename T>
|
cannam@148
|
57 void dispose(T* object) const;
|
cannam@148
|
58 // Helper wrapper around disposeImpl().
|
cannam@148
|
59 //
|
cannam@148
|
60 // If T is polymorphic, calls `disposeImpl(dynamic_cast<void*>(object))`, otherwise calls
|
cannam@148
|
61 // `disposeImpl(implicitCast<void*>(object))`.
|
cannam@148
|
62 //
|
cannam@148
|
63 // Callers must not call dispose() on the same pointer twice, even if the first call throws
|
cannam@148
|
64 // an exception.
|
cannam@148
|
65
|
cannam@148
|
66 private:
|
cannam@148
|
67 template <typename T, bool polymorphic = __is_polymorphic(T)>
|
cannam@148
|
68 struct Dispose_;
|
cannam@148
|
69 };
|
cannam@148
|
70
|
cannam@148
|
71 template <typename T>
|
cannam@148
|
72 class DestructorOnlyDisposer: public Disposer {
|
cannam@148
|
73 // A disposer that merely calls the type's destructor and nothing else.
|
cannam@148
|
74
|
cannam@148
|
75 public:
|
cannam@148
|
76 static const DestructorOnlyDisposer instance;
|
cannam@148
|
77
|
cannam@148
|
78 void disposeImpl(void* pointer) const override {
|
cannam@148
|
79 reinterpret_cast<T*>(pointer)->~T();
|
cannam@148
|
80 }
|
cannam@148
|
81 };
|
cannam@148
|
82
|
cannam@148
|
83 template <typename T>
|
cannam@148
|
84 const DestructorOnlyDisposer<T> DestructorOnlyDisposer<T>::instance = DestructorOnlyDisposer<T>();
|
cannam@148
|
85
|
cannam@148
|
86 class NullDisposer: public Disposer {
|
cannam@148
|
87 // A disposer that does nothing.
|
cannam@148
|
88
|
cannam@148
|
89 public:
|
cannam@148
|
90 static const NullDisposer instance;
|
cannam@148
|
91
|
cannam@148
|
92 void disposeImpl(void* pointer) const override {}
|
cannam@148
|
93 };
|
cannam@148
|
94
|
cannam@148
|
95 // =======================================================================================
|
cannam@148
|
96 // Own<T> -- An owned pointer.
|
cannam@148
|
97
|
cannam@148
|
98 template <typename T>
|
cannam@148
|
99 class Own {
|
cannam@148
|
100 // A transferrable title to a T. When an Own<T> goes out of scope, the object's Disposer is
|
cannam@148
|
101 // called to dispose of it. An Own<T> can be efficiently passed by move, without relocating the
|
cannam@148
|
102 // underlying object; this transfers ownership.
|
cannam@148
|
103 //
|
cannam@148
|
104 // This is much like std::unique_ptr, except:
|
cannam@148
|
105 // - You cannot release(). An owned object is not necessarily allocated with new (see next
|
cannam@148
|
106 // point), so it would be hard to use release() correctly.
|
cannam@148
|
107 // - The deleter is made polymorphic by virtual call rather than by template. This is much
|
cannam@148
|
108 // more powerful -- it allows the use of custom allocators, freelists, etc. This could
|
cannam@148
|
109 // _almost_ be accomplished with unique_ptr by forcing everyone to use something like
|
cannam@148
|
110 // std::unique_ptr<T, kj::Deleter>, except that things get hairy in the presence of multiple
|
cannam@148
|
111 // inheritance and upcasting, and anyway if you force everyone to use a custom deleter
|
cannam@148
|
112 // then you've lost any benefit to interoperating with the "standard" unique_ptr.
|
cannam@148
|
113
|
cannam@148
|
114 public:
|
cannam@148
|
115 KJ_DISALLOW_COPY(Own);
|
cannam@148
|
116 inline Own(): disposer(nullptr), ptr(nullptr) {}
|
cannam@148
|
117 inline Own(Own&& other) noexcept
|
cannam@148
|
118 : disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; }
|
cannam@148
|
119 inline Own(Own<RemoveConstOrDisable<T>>&& other) noexcept
|
cannam@148
|
120 : disposer(other.disposer), ptr(other.ptr) { other.ptr = nullptr; }
|
cannam@148
|
121 template <typename U, typename = EnableIf<canConvert<U*, T*>()>>
|
cannam@148
|
122 inline Own(Own<U>&& other) noexcept
|
cannam@148
|
123 : disposer(other.disposer), ptr(other.ptr) {
|
cannam@148
|
124 static_assert(__is_polymorphic(T),
|
cannam@148
|
125 "Casting owned pointers requires that the target type is polymorphic.");
|
cannam@148
|
126 other.ptr = nullptr;
|
cannam@148
|
127 }
|
cannam@148
|
128 inline Own(T* ptr, const Disposer& disposer) noexcept: disposer(&disposer), ptr(ptr) {}
|
cannam@148
|
129
|
cannam@148
|
130 ~Own() noexcept(false) { dispose(); }
|
cannam@148
|
131
|
cannam@148
|
132 inline Own& operator=(Own&& other) {
|
cannam@148
|
133 // Move-assingnment operator.
|
cannam@148
|
134
|
cannam@148
|
135 // Careful, this might own `other`. Therefore we have to transfer the pointers first, then
|
cannam@148
|
136 // dispose.
|
cannam@148
|
137 const Disposer* disposerCopy = disposer;
|
cannam@148
|
138 T* ptrCopy = ptr;
|
cannam@148
|
139 disposer = other.disposer;
|
cannam@148
|
140 ptr = other.ptr;
|
cannam@148
|
141 other.ptr = nullptr;
|
cannam@148
|
142 if (ptrCopy != nullptr) {
|
cannam@148
|
143 disposerCopy->dispose(const_cast<RemoveConst<T>*>(ptrCopy));
|
cannam@148
|
144 }
|
cannam@148
|
145 return *this;
|
cannam@148
|
146 }
|
cannam@148
|
147
|
cannam@148
|
148 inline Own& operator=(decltype(nullptr)) {
|
cannam@148
|
149 dispose();
|
cannam@148
|
150 return *this;
|
cannam@148
|
151 }
|
cannam@148
|
152
|
cannam@148
|
153 template <typename U>
|
cannam@148
|
154 Own<U> downcast() {
|
cannam@148
|
155 // Downcast the pointer to Own<U>, destroying the original pointer. If this pointer does not
|
cannam@148
|
156 // actually point at an instance of U, the results are undefined (throws an exception in debug
|
cannam@148
|
157 // mode if RTTI is enabled, otherwise you're on your own).
|
cannam@148
|
158
|
cannam@148
|
159 Own<U> result;
|
cannam@148
|
160 if (ptr != nullptr) {
|
cannam@148
|
161 result.ptr = &kj::downcast<U>(*ptr);
|
cannam@148
|
162 result.disposer = disposer;
|
cannam@148
|
163 ptr = nullptr;
|
cannam@148
|
164 }
|
cannam@148
|
165 return result;
|
cannam@148
|
166 }
|
cannam@148
|
167
|
cannam@148
|
168 #define NULLCHECK KJ_IREQUIRE(ptr != nullptr, "null Own<> dereference")
|
cannam@148
|
169 inline T* operator->() { NULLCHECK; return ptr; }
|
cannam@148
|
170 inline const T* operator->() const { NULLCHECK; return ptr; }
|
cannam@148
|
171 inline T& operator*() { NULLCHECK; return *ptr; }
|
cannam@148
|
172 inline const T& operator*() const { NULLCHECK; return *ptr; }
|
cannam@148
|
173 #undef NULLCHECK
|
cannam@148
|
174 inline T* get() { return ptr; }
|
cannam@148
|
175 inline const T* get() const { return ptr; }
|
cannam@148
|
176 inline operator T*() { return ptr; }
|
cannam@148
|
177 inline operator const T*() const { return ptr; }
|
cannam@148
|
178
|
cannam@148
|
179 private:
|
cannam@148
|
180 const Disposer* disposer; // Only valid if ptr != nullptr.
|
cannam@148
|
181 T* ptr;
|
cannam@148
|
182
|
cannam@148
|
183 inline explicit Own(decltype(nullptr)): disposer(nullptr), ptr(nullptr) {}
|
cannam@148
|
184
|
cannam@148
|
185 inline bool operator==(decltype(nullptr)) { return ptr == nullptr; }
|
cannam@148
|
186 inline bool operator!=(decltype(nullptr)) { return ptr != nullptr; }
|
cannam@148
|
187 // Only called by Maybe<Own<T>>.
|
cannam@148
|
188
|
cannam@148
|
189 inline void dispose() {
|
cannam@148
|
190 // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
|
cannam@148
|
191 // dispose again.
|
cannam@148
|
192 T* ptrCopy = ptr;
|
cannam@148
|
193 if (ptrCopy != nullptr) {
|
cannam@148
|
194 ptr = nullptr;
|
cannam@148
|
195 disposer->dispose(const_cast<RemoveConst<T>*>(ptrCopy));
|
cannam@148
|
196 }
|
cannam@148
|
197 }
|
cannam@148
|
198
|
cannam@148
|
199 template <typename U>
|
cannam@148
|
200 friend class Own;
|
cannam@148
|
201 friend class Maybe<Own<T>>;
|
cannam@148
|
202 };
|
cannam@148
|
203
|
cannam@148
|
204 namespace _ { // private
|
cannam@148
|
205
|
cannam@148
|
206 template <typename T>
|
cannam@148
|
207 class OwnOwn {
|
cannam@148
|
208 public:
|
cannam@148
|
209 inline OwnOwn(Own<T>&& value) noexcept: value(kj::mv(value)) {}
|
cannam@148
|
210
|
cannam@148
|
211 inline Own<T>& operator*() & { return value; }
|
cannam@148
|
212 inline const Own<T>& operator*() const & { return value; }
|
cannam@148
|
213 inline Own<T>&& operator*() && { return kj::mv(value); }
|
cannam@148
|
214 inline const Own<T>&& operator*() const && { return kj::mv(value); }
|
cannam@148
|
215 inline Own<T>* operator->() { return &value; }
|
cannam@148
|
216 inline const Own<T>* operator->() const { return &value; }
|
cannam@148
|
217 inline operator Own<T>*() { return value ? &value : nullptr; }
|
cannam@148
|
218 inline operator const Own<T>*() const { return value ? &value : nullptr; }
|
cannam@148
|
219
|
cannam@148
|
220 private:
|
cannam@148
|
221 Own<T> value;
|
cannam@148
|
222 };
|
cannam@148
|
223
|
cannam@148
|
224 template <typename T>
|
cannam@148
|
225 OwnOwn<T> readMaybe(Maybe<Own<T>>&& maybe) { return OwnOwn<T>(kj::mv(maybe.ptr)); }
|
cannam@148
|
226 template <typename T>
|
cannam@148
|
227 Own<T>* readMaybe(Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; }
|
cannam@148
|
228 template <typename T>
|
cannam@148
|
229 const Own<T>* readMaybe(const Maybe<Own<T>>& maybe) { return maybe.ptr ? &maybe.ptr : nullptr; }
|
cannam@148
|
230
|
cannam@148
|
231 } // namespace _ (private)
|
cannam@148
|
232
|
cannam@148
|
233 template <typename T>
|
cannam@148
|
234 class Maybe<Own<T>> {
|
cannam@148
|
235 public:
|
cannam@148
|
236 inline Maybe(): ptr(nullptr) {}
|
cannam@148
|
237 inline Maybe(Own<T>&& t) noexcept: ptr(kj::mv(t)) {}
|
cannam@148
|
238 inline Maybe(Maybe&& other) noexcept: ptr(kj::mv(other.ptr)) {}
|
cannam@148
|
239
|
cannam@148
|
240 template <typename U>
|
cannam@148
|
241 inline Maybe(Maybe<Own<U>>&& other): ptr(mv(other.ptr)) {}
|
cannam@148
|
242 template <typename U>
|
cannam@148
|
243 inline Maybe(Own<U>&& other): ptr(mv(other)) {}
|
cannam@148
|
244
|
cannam@148
|
245 inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
|
cannam@148
|
246
|
cannam@148
|
247 inline operator Maybe<T&>() { return ptr.get(); }
|
cannam@148
|
248 inline operator Maybe<const T&>() const { return ptr.get(); }
|
cannam@148
|
249
|
cannam@148
|
250 inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
|
cannam@148
|
251
|
cannam@148
|
252 inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
|
cannam@148
|
253 inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
|
cannam@148
|
254
|
cannam@148
|
255 Own<T>& orDefault(Own<T>& defaultValue) {
|
cannam@148
|
256 if (ptr == nullptr) {
|
cannam@148
|
257 return defaultValue;
|
cannam@148
|
258 } else {
|
cannam@148
|
259 return ptr;
|
cannam@148
|
260 }
|
cannam@148
|
261 }
|
cannam@148
|
262 const Own<T>& orDefault(const Own<T>& defaultValue) const {
|
cannam@148
|
263 if (ptr == nullptr) {
|
cannam@148
|
264 return defaultValue;
|
cannam@148
|
265 } else {
|
cannam@148
|
266 return ptr;
|
cannam@148
|
267 }
|
cannam@148
|
268 }
|
cannam@148
|
269
|
cannam@148
|
270 template <typename Func>
|
cannam@148
|
271 auto map(Func&& f) & -> Maybe<decltype(f(instance<Own<T>&>()))> {
|
cannam@148
|
272 if (ptr == nullptr) {
|
cannam@148
|
273 return nullptr;
|
cannam@148
|
274 } else {
|
cannam@148
|
275 return f(ptr);
|
cannam@148
|
276 }
|
cannam@148
|
277 }
|
cannam@148
|
278
|
cannam@148
|
279 template <typename Func>
|
cannam@148
|
280 auto map(Func&& f) const & -> Maybe<decltype(f(instance<const Own<T>&>()))> {
|
cannam@148
|
281 if (ptr == nullptr) {
|
cannam@148
|
282 return nullptr;
|
cannam@148
|
283 } else {
|
cannam@148
|
284 return f(ptr);
|
cannam@148
|
285 }
|
cannam@148
|
286 }
|
cannam@148
|
287
|
cannam@148
|
288 template <typename Func>
|
cannam@148
|
289 auto map(Func&& f) && -> Maybe<decltype(f(instance<Own<T>&&>()))> {
|
cannam@148
|
290 if (ptr == nullptr) {
|
cannam@148
|
291 return nullptr;
|
cannam@148
|
292 } else {
|
cannam@148
|
293 return f(kj::mv(ptr));
|
cannam@148
|
294 }
|
cannam@148
|
295 }
|
cannam@148
|
296
|
cannam@148
|
297 template <typename Func>
|
cannam@148
|
298 auto map(Func&& f) const && -> Maybe<decltype(f(instance<const Own<T>&&>()))> {
|
cannam@148
|
299 if (ptr == nullptr) {
|
cannam@148
|
300 return nullptr;
|
cannam@148
|
301 } else {
|
cannam@148
|
302 return f(kj::mv(ptr));
|
cannam@148
|
303 }
|
cannam@148
|
304 }
|
cannam@148
|
305
|
cannam@148
|
306 private:
|
cannam@148
|
307 Own<T> ptr;
|
cannam@148
|
308
|
cannam@148
|
309 template <typename U>
|
cannam@148
|
310 friend class Maybe;
|
cannam@148
|
311 template <typename U>
|
cannam@148
|
312 friend _::OwnOwn<U> _::readMaybe(Maybe<Own<U>>&& maybe);
|
cannam@148
|
313 template <typename U>
|
cannam@148
|
314 friend Own<U>* _::readMaybe(Maybe<Own<U>>& maybe);
|
cannam@148
|
315 template <typename U>
|
cannam@148
|
316 friend const Own<U>* _::readMaybe(const Maybe<Own<U>>& maybe);
|
cannam@148
|
317 };
|
cannam@148
|
318
|
cannam@148
|
319 namespace _ { // private
|
cannam@148
|
320
|
cannam@148
|
321 template <typename T>
|
cannam@148
|
322 class HeapDisposer final: public Disposer {
|
cannam@148
|
323 public:
|
cannam@148
|
324 virtual void disposeImpl(void* pointer) const override { delete reinterpret_cast<T*>(pointer); }
|
cannam@148
|
325
|
cannam@148
|
326 static const HeapDisposer instance;
|
cannam@148
|
327 };
|
cannam@148
|
328
|
cannam@148
|
329 template <typename T>
|
cannam@148
|
330 const HeapDisposer<T> HeapDisposer<T>::instance = HeapDisposer<T>();
|
cannam@148
|
331
|
cannam@148
|
332 } // namespace _ (private)
|
cannam@148
|
333
|
cannam@148
|
334 template <typename T, typename... Params>
|
cannam@148
|
335 Own<T> heap(Params&&... params) {
|
cannam@148
|
336 // heap<T>(...) allocates a T on the heap, forwarding the parameters to its constructor. The
|
cannam@148
|
337 // exact heap implementation is unspecified -- for now it is operator new, but you should not
|
cannam@148
|
338 // assume this. (Since we know the object size at delete time, we could actually implement an
|
cannam@148
|
339 // allocator that is more efficient than operator new.)
|
cannam@148
|
340
|
cannam@148
|
341 return Own<T>(new T(kj::fwd<Params>(params)...), _::HeapDisposer<T>::instance);
|
cannam@148
|
342 }
|
cannam@148
|
343
|
cannam@148
|
344 template <typename T>
|
cannam@148
|
345 Own<Decay<T>> heap(T&& orig) {
|
cannam@148
|
346 // Allocate a copy (or move) of the argument on the heap.
|
cannam@148
|
347 //
|
cannam@148
|
348 // The purpose of this overload is to allow you to omit the template parameter as there is only
|
cannam@148
|
349 // one argument and the purpose is to copy it.
|
cannam@148
|
350
|
cannam@148
|
351 typedef Decay<T> T2;
|
cannam@148
|
352 return Own<T2>(new T2(kj::fwd<T>(orig)), _::HeapDisposer<T2>::instance);
|
cannam@148
|
353 }
|
cannam@148
|
354
|
cannam@148
|
355 // =======================================================================================
|
cannam@148
|
356 // SpaceFor<T> -- assists in manual allocation
|
cannam@148
|
357
|
cannam@148
|
358 template <typename T>
|
cannam@148
|
359 class SpaceFor {
|
cannam@148
|
360 // A class which has the same size and alignment as T but does not call its constructor or
|
cannam@148
|
361 // destructor automatically. Instead, call construct() to construct a T in the space, which
|
cannam@148
|
362 // returns an Own<T> which will take care of calling T's destructor later.
|
cannam@148
|
363
|
cannam@148
|
364 public:
|
cannam@148
|
365 inline SpaceFor() {}
|
cannam@148
|
366 inline ~SpaceFor() {}
|
cannam@148
|
367
|
cannam@148
|
368 template <typename... Params>
|
cannam@148
|
369 Own<T> construct(Params&&... params) {
|
cannam@148
|
370 ctor(value, kj::fwd<Params>(params)...);
|
cannam@148
|
371 return Own<T>(&value, DestructorOnlyDisposer<T>::instance);
|
cannam@148
|
372 }
|
cannam@148
|
373
|
cannam@148
|
374 private:
|
cannam@148
|
375 union {
|
cannam@148
|
376 T value;
|
cannam@148
|
377 };
|
cannam@148
|
378 };
|
cannam@148
|
379
|
cannam@148
|
380 // =======================================================================================
|
cannam@148
|
381 // Inline implementation details
|
cannam@148
|
382
|
cannam@148
|
383 template <typename T>
|
cannam@148
|
384 struct Disposer::Dispose_<T, true> {
|
cannam@148
|
385 static void dispose(T* object, const Disposer& disposer) {
|
cannam@148
|
386 // Note that dynamic_cast<void*> does not require RTTI to be enabled, because the offset to
|
cannam@148
|
387 // the top of the object is in the vtable -- as it obviously needs to be to correctly implement
|
cannam@148
|
388 // operator delete.
|
cannam@148
|
389 disposer.disposeImpl(dynamic_cast<void*>(object));
|
cannam@148
|
390 }
|
cannam@148
|
391 };
|
cannam@148
|
392 template <typename T>
|
cannam@148
|
393 struct Disposer::Dispose_<T, false> {
|
cannam@148
|
394 static void dispose(T* object, const Disposer& disposer) {
|
cannam@148
|
395 disposer.disposeImpl(static_cast<void*>(object));
|
cannam@148
|
396 }
|
cannam@148
|
397 };
|
cannam@148
|
398
|
cannam@148
|
399 template <typename T>
|
cannam@148
|
400 void Disposer::dispose(T* object) const {
|
cannam@148
|
401 Dispose_<T>::dispose(object, *this);
|
cannam@148
|
402 }
|
cannam@148
|
403
|
cannam@148
|
404 } // namespace kj
|
cannam@148
|
405
|
cannam@148
|
406 #endif // KJ_MEMORY_H_
|