annotate src/zlib-1.2.8/examples/zran.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 5b4145a0d408
children
rev   line source
cannam@128 1 /* zran.c -- example of zlib/gzip stream indexing and random access
cannam@128 2 * Copyright (C) 2005, 2012 Mark Adler
cannam@128 3 * For conditions of distribution and use, see copyright notice in zlib.h
cannam@128 4 Version 1.1 29 Sep 2012 Mark Adler */
cannam@128 5
cannam@128 6 /* Version History:
cannam@128 7 1.0 29 May 2005 First version
cannam@128 8 1.1 29 Sep 2012 Fix memory reallocation error
cannam@128 9 */
cannam@128 10
cannam@128 11 /* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
cannam@128 12 for random access of a compressed file. A file containing a zlib or gzip
cannam@128 13 stream is provided on the command line. The compressed stream is decoded in
cannam@128 14 its entirety, and an index built with access points about every SPAN bytes
cannam@128 15 in the uncompressed output. The compressed file is left open, and can then
cannam@128 16 be read randomly, having to decompress on the average SPAN/2 uncompressed
cannam@128 17 bytes before getting to the desired block of data.
cannam@128 18
cannam@128 19 An access point can be created at the start of any deflate block, by saving
cannam@128 20 the starting file offset and bit of that block, and the 32K bytes of
cannam@128 21 uncompressed data that precede that block. Also the uncompressed offset of
cannam@128 22 that block is saved to provide a referece for locating a desired starting
cannam@128 23 point in the uncompressed stream. build_index() works by decompressing the
cannam@128 24 input zlib or gzip stream a block at a time, and at the end of each block
cannam@128 25 deciding if enough uncompressed data has gone by to justify the creation of
cannam@128 26 a new access point. If so, that point is saved in a data structure that
cannam@128 27 grows as needed to accommodate the points.
cannam@128 28
cannam@128 29 To use the index, an offset in the uncompressed data is provided, for which
cannam@128 30 the latest accees point at or preceding that offset is located in the index.
cannam@128 31 The input file is positioned to the specified location in the index, and if
cannam@128 32 necessary the first few bits of the compressed data is read from the file.
cannam@128 33 inflate is initialized with those bits and the 32K of uncompressed data, and
cannam@128 34 the decompression then proceeds until the desired offset in the file is
cannam@128 35 reached. Then the decompression continues to read the desired uncompressed
cannam@128 36 data from the file.
cannam@128 37
cannam@128 38 Another approach would be to generate the index on demand. In that case,
cannam@128 39 requests for random access reads from the compressed data would try to use
cannam@128 40 the index, but if a read far enough past the end of the index is required,
cannam@128 41 then further index entries would be generated and added.
cannam@128 42
cannam@128 43 There is some fair bit of overhead to starting inflation for the random
cannam@128 44 access, mainly copying the 32K byte dictionary. So if small pieces of the
cannam@128 45 file are being accessed, it would make sense to implement a cache to hold
cannam@128 46 some lookahead and avoid many calls to extract() for small lengths.
cannam@128 47
cannam@128 48 Another way to build an index would be to use inflateCopy(). That would
cannam@128 49 not be constrained to have access points at block boundaries, but requires
cannam@128 50 more memory per access point, and also cannot be saved to file due to the
cannam@128 51 use of pointers in the state. The approach here allows for storage of the
cannam@128 52 index in a file.
cannam@128 53 */
cannam@128 54
cannam@128 55 #include <stdio.h>
cannam@128 56 #include <stdlib.h>
cannam@128 57 #include <string.h>
cannam@128 58 #include "zlib.h"
cannam@128 59
cannam@128 60 #define local static
cannam@128 61
cannam@128 62 #define SPAN 1048576L /* desired distance between access points */
cannam@128 63 #define WINSIZE 32768U /* sliding window size */
cannam@128 64 #define CHUNK 16384 /* file input buffer size */
cannam@128 65
cannam@128 66 /* access point entry */
cannam@128 67 struct point {
cannam@128 68 off_t out; /* corresponding offset in uncompressed data */
cannam@128 69 off_t in; /* offset in input file of first full byte */
cannam@128 70 int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
cannam@128 71 unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
cannam@128 72 };
cannam@128 73
cannam@128 74 /* access point list */
cannam@128 75 struct access {
cannam@128 76 int have; /* number of list entries filled in */
cannam@128 77 int size; /* number of list entries allocated */
cannam@128 78 struct point *list; /* allocated list */
cannam@128 79 };
cannam@128 80
cannam@128 81 /* Deallocate an index built by build_index() */
cannam@128 82 local void free_index(struct access *index)
cannam@128 83 {
cannam@128 84 if (index != NULL) {
cannam@128 85 free(index->list);
cannam@128 86 free(index);
cannam@128 87 }
cannam@128 88 }
cannam@128 89
cannam@128 90 /* Add an entry to the access point list. If out of memory, deallocate the
cannam@128 91 existing list and return NULL. */
cannam@128 92 local struct access *addpoint(struct access *index, int bits,
cannam@128 93 off_t in, off_t out, unsigned left, unsigned char *window)
cannam@128 94 {
cannam@128 95 struct point *next;
cannam@128 96
cannam@128 97 /* if list is empty, create it (start with eight points) */
cannam@128 98 if (index == NULL) {
cannam@128 99 index = malloc(sizeof(struct access));
cannam@128 100 if (index == NULL) return NULL;
cannam@128 101 index->list = malloc(sizeof(struct point) << 3);
cannam@128 102 if (index->list == NULL) {
cannam@128 103 free(index);
cannam@128 104 return NULL;
cannam@128 105 }
cannam@128 106 index->size = 8;
cannam@128 107 index->have = 0;
cannam@128 108 }
cannam@128 109
cannam@128 110 /* if list is full, make it bigger */
cannam@128 111 else if (index->have == index->size) {
cannam@128 112 index->size <<= 1;
cannam@128 113 next = realloc(index->list, sizeof(struct point) * index->size);
cannam@128 114 if (next == NULL) {
cannam@128 115 free_index(index);
cannam@128 116 return NULL;
cannam@128 117 }
cannam@128 118 index->list = next;
cannam@128 119 }
cannam@128 120
cannam@128 121 /* fill in entry and increment how many we have */
cannam@128 122 next = index->list + index->have;
cannam@128 123 next->bits = bits;
cannam@128 124 next->in = in;
cannam@128 125 next->out = out;
cannam@128 126 if (left)
cannam@128 127 memcpy(next->window, window + WINSIZE - left, left);
cannam@128 128 if (left < WINSIZE)
cannam@128 129 memcpy(next->window + left, window, WINSIZE - left);
cannam@128 130 index->have++;
cannam@128 131
cannam@128 132 /* return list, possibly reallocated */
cannam@128 133 return index;
cannam@128 134 }
cannam@128 135
cannam@128 136 /* Make one entire pass through the compressed stream and build an index, with
cannam@128 137 access points about every span bytes of uncompressed output -- span is
cannam@128 138 chosen to balance the speed of random access against the memory requirements
cannam@128 139 of the list, about 32K bytes per access point. Note that data after the end
cannam@128 140 of the first zlib or gzip stream in the file is ignored. build_index()
cannam@128 141 returns the number of access points on success (>= 1), Z_MEM_ERROR for out
cannam@128 142 of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
cannam@128 143 file read error. On success, *built points to the resulting index. */
cannam@128 144 local int build_index(FILE *in, off_t span, struct access **built)
cannam@128 145 {
cannam@128 146 int ret;
cannam@128 147 off_t totin, totout; /* our own total counters to avoid 4GB limit */
cannam@128 148 off_t last; /* totout value of last access point */
cannam@128 149 struct access *index; /* access points being generated */
cannam@128 150 z_stream strm;
cannam@128 151 unsigned char input[CHUNK];
cannam@128 152 unsigned char window[WINSIZE];
cannam@128 153
cannam@128 154 /* initialize inflate */
cannam@128 155 strm.zalloc = Z_NULL;
cannam@128 156 strm.zfree = Z_NULL;
cannam@128 157 strm.opaque = Z_NULL;
cannam@128 158 strm.avail_in = 0;
cannam@128 159 strm.next_in = Z_NULL;
cannam@128 160 ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
cannam@128 161 if (ret != Z_OK)
cannam@128 162 return ret;
cannam@128 163
cannam@128 164 /* inflate the input, maintain a sliding window, and build an index -- this
cannam@128 165 also validates the integrity of the compressed data using the check
cannam@128 166 information at the end of the gzip or zlib stream */
cannam@128 167 totin = totout = last = 0;
cannam@128 168 index = NULL; /* will be allocated by first addpoint() */
cannam@128 169 strm.avail_out = 0;
cannam@128 170 do {
cannam@128 171 /* get some compressed data from input file */
cannam@128 172 strm.avail_in = fread(input, 1, CHUNK, in);
cannam@128 173 if (ferror(in)) {
cannam@128 174 ret = Z_ERRNO;
cannam@128 175 goto build_index_error;
cannam@128 176 }
cannam@128 177 if (strm.avail_in == 0) {
cannam@128 178 ret = Z_DATA_ERROR;
cannam@128 179 goto build_index_error;
cannam@128 180 }
cannam@128 181 strm.next_in = input;
cannam@128 182
cannam@128 183 /* process all of that, or until end of stream */
cannam@128 184 do {
cannam@128 185 /* reset sliding window if necessary */
cannam@128 186 if (strm.avail_out == 0) {
cannam@128 187 strm.avail_out = WINSIZE;
cannam@128 188 strm.next_out = window;
cannam@128 189 }
cannam@128 190
cannam@128 191 /* inflate until out of input, output, or at end of block --
cannam@128 192 update the total input and output counters */
cannam@128 193 totin += strm.avail_in;
cannam@128 194 totout += strm.avail_out;
cannam@128 195 ret = inflate(&strm, Z_BLOCK); /* return at end of block */
cannam@128 196 totin -= strm.avail_in;
cannam@128 197 totout -= strm.avail_out;
cannam@128 198 if (ret == Z_NEED_DICT)
cannam@128 199 ret = Z_DATA_ERROR;
cannam@128 200 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
cannam@128 201 goto build_index_error;
cannam@128 202 if (ret == Z_STREAM_END)
cannam@128 203 break;
cannam@128 204
cannam@128 205 /* if at end of block, consider adding an index entry (note that if
cannam@128 206 data_type indicates an end-of-block, then all of the
cannam@128 207 uncompressed data from that block has been delivered, and none
cannam@128 208 of the compressed data after that block has been consumed,
cannam@128 209 except for up to seven bits) -- the totout == 0 provides an
cannam@128 210 entry point after the zlib or gzip header, and assures that the
cannam@128 211 index always has at least one access point; we avoid creating an
cannam@128 212 access point after the last block by checking bit 6 of data_type
cannam@128 213 */
cannam@128 214 if ((strm.data_type & 128) && !(strm.data_type & 64) &&
cannam@128 215 (totout == 0 || totout - last > span)) {
cannam@128 216 index = addpoint(index, strm.data_type & 7, totin,
cannam@128 217 totout, strm.avail_out, window);
cannam@128 218 if (index == NULL) {
cannam@128 219 ret = Z_MEM_ERROR;
cannam@128 220 goto build_index_error;
cannam@128 221 }
cannam@128 222 last = totout;
cannam@128 223 }
cannam@128 224 } while (strm.avail_in != 0);
cannam@128 225 } while (ret != Z_STREAM_END);
cannam@128 226
cannam@128 227 /* clean up and return index (release unused entries in list) */
cannam@128 228 (void)inflateEnd(&strm);
cannam@128 229 index->list = realloc(index->list, sizeof(struct point) * index->have);
cannam@128 230 index->size = index->have;
cannam@128 231 *built = index;
cannam@128 232 return index->size;
cannam@128 233
cannam@128 234 /* return error */
cannam@128 235 build_index_error:
cannam@128 236 (void)inflateEnd(&strm);
cannam@128 237 if (index != NULL)
cannam@128 238 free_index(index);
cannam@128 239 return ret;
cannam@128 240 }
cannam@128 241
cannam@128 242 /* Use the index to read len bytes from offset into buf, return bytes read or
cannam@128 243 negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
cannam@128 244 the end of the uncompressed data, then extract() will return a value less
cannam@128 245 than len, indicating how much as actually read into buf. This function
cannam@128 246 should not return a data error unless the file was modified since the index
cannam@128 247 was generated. extract() may also return Z_ERRNO if there is an error on
cannam@128 248 reading or seeking the input file. */
cannam@128 249 local int extract(FILE *in, struct access *index, off_t offset,
cannam@128 250 unsigned char *buf, int len)
cannam@128 251 {
cannam@128 252 int ret, skip;
cannam@128 253 z_stream strm;
cannam@128 254 struct point *here;
cannam@128 255 unsigned char input[CHUNK];
cannam@128 256 unsigned char discard[WINSIZE];
cannam@128 257
cannam@128 258 /* proceed only if something reasonable to do */
cannam@128 259 if (len < 0)
cannam@128 260 return 0;
cannam@128 261
cannam@128 262 /* find where in stream to start */
cannam@128 263 here = index->list;
cannam@128 264 ret = index->have;
cannam@128 265 while (--ret && here[1].out <= offset)
cannam@128 266 here++;
cannam@128 267
cannam@128 268 /* initialize file and inflate state to start there */
cannam@128 269 strm.zalloc = Z_NULL;
cannam@128 270 strm.zfree = Z_NULL;
cannam@128 271 strm.opaque = Z_NULL;
cannam@128 272 strm.avail_in = 0;
cannam@128 273 strm.next_in = Z_NULL;
cannam@128 274 ret = inflateInit2(&strm, -15); /* raw inflate */
cannam@128 275 if (ret != Z_OK)
cannam@128 276 return ret;
cannam@128 277 ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
cannam@128 278 if (ret == -1)
cannam@128 279 goto extract_ret;
cannam@128 280 if (here->bits) {
cannam@128 281 ret = getc(in);
cannam@128 282 if (ret == -1) {
cannam@128 283 ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
cannam@128 284 goto extract_ret;
cannam@128 285 }
cannam@128 286 (void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
cannam@128 287 }
cannam@128 288 (void)inflateSetDictionary(&strm, here->window, WINSIZE);
cannam@128 289
cannam@128 290 /* skip uncompressed bytes until offset reached, then satisfy request */
cannam@128 291 offset -= here->out;
cannam@128 292 strm.avail_in = 0;
cannam@128 293 skip = 1; /* while skipping to offset */
cannam@128 294 do {
cannam@128 295 /* define where to put uncompressed data, and how much */
cannam@128 296 if (offset == 0 && skip) { /* at offset now */
cannam@128 297 strm.avail_out = len;
cannam@128 298 strm.next_out = buf;
cannam@128 299 skip = 0; /* only do this once */
cannam@128 300 }
cannam@128 301 if (offset > WINSIZE) { /* skip WINSIZE bytes */
cannam@128 302 strm.avail_out = WINSIZE;
cannam@128 303 strm.next_out = discard;
cannam@128 304 offset -= WINSIZE;
cannam@128 305 }
cannam@128 306 else if (offset != 0) { /* last skip */
cannam@128 307 strm.avail_out = (unsigned)offset;
cannam@128 308 strm.next_out = discard;
cannam@128 309 offset = 0;
cannam@128 310 }
cannam@128 311
cannam@128 312 /* uncompress until avail_out filled, or end of stream */
cannam@128 313 do {
cannam@128 314 if (strm.avail_in == 0) {
cannam@128 315 strm.avail_in = fread(input, 1, CHUNK, in);
cannam@128 316 if (ferror(in)) {
cannam@128 317 ret = Z_ERRNO;
cannam@128 318 goto extract_ret;
cannam@128 319 }
cannam@128 320 if (strm.avail_in == 0) {
cannam@128 321 ret = Z_DATA_ERROR;
cannam@128 322 goto extract_ret;
cannam@128 323 }
cannam@128 324 strm.next_in = input;
cannam@128 325 }
cannam@128 326 ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
cannam@128 327 if (ret == Z_NEED_DICT)
cannam@128 328 ret = Z_DATA_ERROR;
cannam@128 329 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
cannam@128 330 goto extract_ret;
cannam@128 331 if (ret == Z_STREAM_END)
cannam@128 332 break;
cannam@128 333 } while (strm.avail_out != 0);
cannam@128 334
cannam@128 335 /* if reach end of stream, then don't keep trying to get more */
cannam@128 336 if (ret == Z_STREAM_END)
cannam@128 337 break;
cannam@128 338
cannam@128 339 /* do until offset reached and requested data read, or stream ends */
cannam@128 340 } while (skip);
cannam@128 341
cannam@128 342 /* compute number of uncompressed bytes read after offset */
cannam@128 343 ret = skip ? 0 : len - strm.avail_out;
cannam@128 344
cannam@128 345 /* clean up and return bytes read or error */
cannam@128 346 extract_ret:
cannam@128 347 (void)inflateEnd(&strm);
cannam@128 348 return ret;
cannam@128 349 }
cannam@128 350
cannam@128 351 /* Demonstrate the use of build_index() and extract() by processing the file
cannam@128 352 provided on the command line, and the extracting 16K from about 2/3rds of
cannam@128 353 the way through the uncompressed output, and writing that to stdout. */
cannam@128 354 int main(int argc, char **argv)
cannam@128 355 {
cannam@128 356 int len;
cannam@128 357 off_t offset;
cannam@128 358 FILE *in;
cannam@128 359 struct access *index = NULL;
cannam@128 360 unsigned char buf[CHUNK];
cannam@128 361
cannam@128 362 /* open input file */
cannam@128 363 if (argc != 2) {
cannam@128 364 fprintf(stderr, "usage: zran file.gz\n");
cannam@128 365 return 1;
cannam@128 366 }
cannam@128 367 in = fopen(argv[1], "rb");
cannam@128 368 if (in == NULL) {
cannam@128 369 fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
cannam@128 370 return 1;
cannam@128 371 }
cannam@128 372
cannam@128 373 /* build index */
cannam@128 374 len = build_index(in, SPAN, &index);
cannam@128 375 if (len < 0) {
cannam@128 376 fclose(in);
cannam@128 377 switch (len) {
cannam@128 378 case Z_MEM_ERROR:
cannam@128 379 fprintf(stderr, "zran: out of memory\n");
cannam@128 380 break;
cannam@128 381 case Z_DATA_ERROR:
cannam@128 382 fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
cannam@128 383 break;
cannam@128 384 case Z_ERRNO:
cannam@128 385 fprintf(stderr, "zran: read error on %s\n", argv[1]);
cannam@128 386 break;
cannam@128 387 default:
cannam@128 388 fprintf(stderr, "zran: error %d while building index\n", len);
cannam@128 389 }
cannam@128 390 return 1;
cannam@128 391 }
cannam@128 392 fprintf(stderr, "zran: built index with %d access points\n", len);
cannam@128 393
cannam@128 394 /* use index by reading some bytes from an arbitrary offset */
cannam@128 395 offset = (index->list[index->have - 1].out << 1) / 3;
cannam@128 396 len = extract(in, index, offset, buf, CHUNK);
cannam@128 397 if (len < 0)
cannam@128 398 fprintf(stderr, "zran: extraction failed: %s error\n",
cannam@128 399 len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
cannam@128 400 else {
cannam@128 401 fwrite(buf, 1, len, stdout);
cannam@128 402 fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
cannam@128 403 }
cannam@128 404
cannam@128 405 /* clean up and exit */
cannam@128 406 free_index(index);
cannam@128 407 fclose(in);
cannam@128 408 return 0;
cannam@128 409 }