cannam@128
|
1 /* zran.c -- example of zlib/gzip stream indexing and random access
|
cannam@128
|
2 * Copyright (C) 2005, 2012 Mark Adler
|
cannam@128
|
3 * For conditions of distribution and use, see copyright notice in zlib.h
|
cannam@128
|
4 Version 1.1 29 Sep 2012 Mark Adler */
|
cannam@128
|
5
|
cannam@128
|
6 /* Version History:
|
cannam@128
|
7 1.0 29 May 2005 First version
|
cannam@128
|
8 1.1 29 Sep 2012 Fix memory reallocation error
|
cannam@128
|
9 */
|
cannam@128
|
10
|
cannam@128
|
11 /* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
|
cannam@128
|
12 for random access of a compressed file. A file containing a zlib or gzip
|
cannam@128
|
13 stream is provided on the command line. The compressed stream is decoded in
|
cannam@128
|
14 its entirety, and an index built with access points about every SPAN bytes
|
cannam@128
|
15 in the uncompressed output. The compressed file is left open, and can then
|
cannam@128
|
16 be read randomly, having to decompress on the average SPAN/2 uncompressed
|
cannam@128
|
17 bytes before getting to the desired block of data.
|
cannam@128
|
18
|
cannam@128
|
19 An access point can be created at the start of any deflate block, by saving
|
cannam@128
|
20 the starting file offset and bit of that block, and the 32K bytes of
|
cannam@128
|
21 uncompressed data that precede that block. Also the uncompressed offset of
|
cannam@128
|
22 that block is saved to provide a referece for locating a desired starting
|
cannam@128
|
23 point in the uncompressed stream. build_index() works by decompressing the
|
cannam@128
|
24 input zlib or gzip stream a block at a time, and at the end of each block
|
cannam@128
|
25 deciding if enough uncompressed data has gone by to justify the creation of
|
cannam@128
|
26 a new access point. If so, that point is saved in a data structure that
|
cannam@128
|
27 grows as needed to accommodate the points.
|
cannam@128
|
28
|
cannam@128
|
29 To use the index, an offset in the uncompressed data is provided, for which
|
cannam@128
|
30 the latest accees point at or preceding that offset is located in the index.
|
cannam@128
|
31 The input file is positioned to the specified location in the index, and if
|
cannam@128
|
32 necessary the first few bits of the compressed data is read from the file.
|
cannam@128
|
33 inflate is initialized with those bits and the 32K of uncompressed data, and
|
cannam@128
|
34 the decompression then proceeds until the desired offset in the file is
|
cannam@128
|
35 reached. Then the decompression continues to read the desired uncompressed
|
cannam@128
|
36 data from the file.
|
cannam@128
|
37
|
cannam@128
|
38 Another approach would be to generate the index on demand. In that case,
|
cannam@128
|
39 requests for random access reads from the compressed data would try to use
|
cannam@128
|
40 the index, but if a read far enough past the end of the index is required,
|
cannam@128
|
41 then further index entries would be generated and added.
|
cannam@128
|
42
|
cannam@128
|
43 There is some fair bit of overhead to starting inflation for the random
|
cannam@128
|
44 access, mainly copying the 32K byte dictionary. So if small pieces of the
|
cannam@128
|
45 file are being accessed, it would make sense to implement a cache to hold
|
cannam@128
|
46 some lookahead and avoid many calls to extract() for small lengths.
|
cannam@128
|
47
|
cannam@128
|
48 Another way to build an index would be to use inflateCopy(). That would
|
cannam@128
|
49 not be constrained to have access points at block boundaries, but requires
|
cannam@128
|
50 more memory per access point, and also cannot be saved to file due to the
|
cannam@128
|
51 use of pointers in the state. The approach here allows for storage of the
|
cannam@128
|
52 index in a file.
|
cannam@128
|
53 */
|
cannam@128
|
54
|
cannam@128
|
55 #include <stdio.h>
|
cannam@128
|
56 #include <stdlib.h>
|
cannam@128
|
57 #include <string.h>
|
cannam@128
|
58 #include "zlib.h"
|
cannam@128
|
59
|
cannam@128
|
60 #define local static
|
cannam@128
|
61
|
cannam@128
|
62 #define SPAN 1048576L /* desired distance between access points */
|
cannam@128
|
63 #define WINSIZE 32768U /* sliding window size */
|
cannam@128
|
64 #define CHUNK 16384 /* file input buffer size */
|
cannam@128
|
65
|
cannam@128
|
66 /* access point entry */
|
cannam@128
|
67 struct point {
|
cannam@128
|
68 off_t out; /* corresponding offset in uncompressed data */
|
cannam@128
|
69 off_t in; /* offset in input file of first full byte */
|
cannam@128
|
70 int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
|
cannam@128
|
71 unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
|
cannam@128
|
72 };
|
cannam@128
|
73
|
cannam@128
|
74 /* access point list */
|
cannam@128
|
75 struct access {
|
cannam@128
|
76 int have; /* number of list entries filled in */
|
cannam@128
|
77 int size; /* number of list entries allocated */
|
cannam@128
|
78 struct point *list; /* allocated list */
|
cannam@128
|
79 };
|
cannam@128
|
80
|
cannam@128
|
81 /* Deallocate an index built by build_index() */
|
cannam@128
|
82 local void free_index(struct access *index)
|
cannam@128
|
83 {
|
cannam@128
|
84 if (index != NULL) {
|
cannam@128
|
85 free(index->list);
|
cannam@128
|
86 free(index);
|
cannam@128
|
87 }
|
cannam@128
|
88 }
|
cannam@128
|
89
|
cannam@128
|
90 /* Add an entry to the access point list. If out of memory, deallocate the
|
cannam@128
|
91 existing list and return NULL. */
|
cannam@128
|
92 local struct access *addpoint(struct access *index, int bits,
|
cannam@128
|
93 off_t in, off_t out, unsigned left, unsigned char *window)
|
cannam@128
|
94 {
|
cannam@128
|
95 struct point *next;
|
cannam@128
|
96
|
cannam@128
|
97 /* if list is empty, create it (start with eight points) */
|
cannam@128
|
98 if (index == NULL) {
|
cannam@128
|
99 index = malloc(sizeof(struct access));
|
cannam@128
|
100 if (index == NULL) return NULL;
|
cannam@128
|
101 index->list = malloc(sizeof(struct point) << 3);
|
cannam@128
|
102 if (index->list == NULL) {
|
cannam@128
|
103 free(index);
|
cannam@128
|
104 return NULL;
|
cannam@128
|
105 }
|
cannam@128
|
106 index->size = 8;
|
cannam@128
|
107 index->have = 0;
|
cannam@128
|
108 }
|
cannam@128
|
109
|
cannam@128
|
110 /* if list is full, make it bigger */
|
cannam@128
|
111 else if (index->have == index->size) {
|
cannam@128
|
112 index->size <<= 1;
|
cannam@128
|
113 next = realloc(index->list, sizeof(struct point) * index->size);
|
cannam@128
|
114 if (next == NULL) {
|
cannam@128
|
115 free_index(index);
|
cannam@128
|
116 return NULL;
|
cannam@128
|
117 }
|
cannam@128
|
118 index->list = next;
|
cannam@128
|
119 }
|
cannam@128
|
120
|
cannam@128
|
121 /* fill in entry and increment how many we have */
|
cannam@128
|
122 next = index->list + index->have;
|
cannam@128
|
123 next->bits = bits;
|
cannam@128
|
124 next->in = in;
|
cannam@128
|
125 next->out = out;
|
cannam@128
|
126 if (left)
|
cannam@128
|
127 memcpy(next->window, window + WINSIZE - left, left);
|
cannam@128
|
128 if (left < WINSIZE)
|
cannam@128
|
129 memcpy(next->window + left, window, WINSIZE - left);
|
cannam@128
|
130 index->have++;
|
cannam@128
|
131
|
cannam@128
|
132 /* return list, possibly reallocated */
|
cannam@128
|
133 return index;
|
cannam@128
|
134 }
|
cannam@128
|
135
|
cannam@128
|
136 /* Make one entire pass through the compressed stream and build an index, with
|
cannam@128
|
137 access points about every span bytes of uncompressed output -- span is
|
cannam@128
|
138 chosen to balance the speed of random access against the memory requirements
|
cannam@128
|
139 of the list, about 32K bytes per access point. Note that data after the end
|
cannam@128
|
140 of the first zlib or gzip stream in the file is ignored. build_index()
|
cannam@128
|
141 returns the number of access points on success (>= 1), Z_MEM_ERROR for out
|
cannam@128
|
142 of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
|
cannam@128
|
143 file read error. On success, *built points to the resulting index. */
|
cannam@128
|
144 local int build_index(FILE *in, off_t span, struct access **built)
|
cannam@128
|
145 {
|
cannam@128
|
146 int ret;
|
cannam@128
|
147 off_t totin, totout; /* our own total counters to avoid 4GB limit */
|
cannam@128
|
148 off_t last; /* totout value of last access point */
|
cannam@128
|
149 struct access *index; /* access points being generated */
|
cannam@128
|
150 z_stream strm;
|
cannam@128
|
151 unsigned char input[CHUNK];
|
cannam@128
|
152 unsigned char window[WINSIZE];
|
cannam@128
|
153
|
cannam@128
|
154 /* initialize inflate */
|
cannam@128
|
155 strm.zalloc = Z_NULL;
|
cannam@128
|
156 strm.zfree = Z_NULL;
|
cannam@128
|
157 strm.opaque = Z_NULL;
|
cannam@128
|
158 strm.avail_in = 0;
|
cannam@128
|
159 strm.next_in = Z_NULL;
|
cannam@128
|
160 ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
|
cannam@128
|
161 if (ret != Z_OK)
|
cannam@128
|
162 return ret;
|
cannam@128
|
163
|
cannam@128
|
164 /* inflate the input, maintain a sliding window, and build an index -- this
|
cannam@128
|
165 also validates the integrity of the compressed data using the check
|
cannam@128
|
166 information at the end of the gzip or zlib stream */
|
cannam@128
|
167 totin = totout = last = 0;
|
cannam@128
|
168 index = NULL; /* will be allocated by first addpoint() */
|
cannam@128
|
169 strm.avail_out = 0;
|
cannam@128
|
170 do {
|
cannam@128
|
171 /* get some compressed data from input file */
|
cannam@128
|
172 strm.avail_in = fread(input, 1, CHUNK, in);
|
cannam@128
|
173 if (ferror(in)) {
|
cannam@128
|
174 ret = Z_ERRNO;
|
cannam@128
|
175 goto build_index_error;
|
cannam@128
|
176 }
|
cannam@128
|
177 if (strm.avail_in == 0) {
|
cannam@128
|
178 ret = Z_DATA_ERROR;
|
cannam@128
|
179 goto build_index_error;
|
cannam@128
|
180 }
|
cannam@128
|
181 strm.next_in = input;
|
cannam@128
|
182
|
cannam@128
|
183 /* process all of that, or until end of stream */
|
cannam@128
|
184 do {
|
cannam@128
|
185 /* reset sliding window if necessary */
|
cannam@128
|
186 if (strm.avail_out == 0) {
|
cannam@128
|
187 strm.avail_out = WINSIZE;
|
cannam@128
|
188 strm.next_out = window;
|
cannam@128
|
189 }
|
cannam@128
|
190
|
cannam@128
|
191 /* inflate until out of input, output, or at end of block --
|
cannam@128
|
192 update the total input and output counters */
|
cannam@128
|
193 totin += strm.avail_in;
|
cannam@128
|
194 totout += strm.avail_out;
|
cannam@128
|
195 ret = inflate(&strm, Z_BLOCK); /* return at end of block */
|
cannam@128
|
196 totin -= strm.avail_in;
|
cannam@128
|
197 totout -= strm.avail_out;
|
cannam@128
|
198 if (ret == Z_NEED_DICT)
|
cannam@128
|
199 ret = Z_DATA_ERROR;
|
cannam@128
|
200 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
cannam@128
|
201 goto build_index_error;
|
cannam@128
|
202 if (ret == Z_STREAM_END)
|
cannam@128
|
203 break;
|
cannam@128
|
204
|
cannam@128
|
205 /* if at end of block, consider adding an index entry (note that if
|
cannam@128
|
206 data_type indicates an end-of-block, then all of the
|
cannam@128
|
207 uncompressed data from that block has been delivered, and none
|
cannam@128
|
208 of the compressed data after that block has been consumed,
|
cannam@128
|
209 except for up to seven bits) -- the totout == 0 provides an
|
cannam@128
|
210 entry point after the zlib or gzip header, and assures that the
|
cannam@128
|
211 index always has at least one access point; we avoid creating an
|
cannam@128
|
212 access point after the last block by checking bit 6 of data_type
|
cannam@128
|
213 */
|
cannam@128
|
214 if ((strm.data_type & 128) && !(strm.data_type & 64) &&
|
cannam@128
|
215 (totout == 0 || totout - last > span)) {
|
cannam@128
|
216 index = addpoint(index, strm.data_type & 7, totin,
|
cannam@128
|
217 totout, strm.avail_out, window);
|
cannam@128
|
218 if (index == NULL) {
|
cannam@128
|
219 ret = Z_MEM_ERROR;
|
cannam@128
|
220 goto build_index_error;
|
cannam@128
|
221 }
|
cannam@128
|
222 last = totout;
|
cannam@128
|
223 }
|
cannam@128
|
224 } while (strm.avail_in != 0);
|
cannam@128
|
225 } while (ret != Z_STREAM_END);
|
cannam@128
|
226
|
cannam@128
|
227 /* clean up and return index (release unused entries in list) */
|
cannam@128
|
228 (void)inflateEnd(&strm);
|
cannam@128
|
229 index->list = realloc(index->list, sizeof(struct point) * index->have);
|
cannam@128
|
230 index->size = index->have;
|
cannam@128
|
231 *built = index;
|
cannam@128
|
232 return index->size;
|
cannam@128
|
233
|
cannam@128
|
234 /* return error */
|
cannam@128
|
235 build_index_error:
|
cannam@128
|
236 (void)inflateEnd(&strm);
|
cannam@128
|
237 if (index != NULL)
|
cannam@128
|
238 free_index(index);
|
cannam@128
|
239 return ret;
|
cannam@128
|
240 }
|
cannam@128
|
241
|
cannam@128
|
242 /* Use the index to read len bytes from offset into buf, return bytes read or
|
cannam@128
|
243 negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
|
cannam@128
|
244 the end of the uncompressed data, then extract() will return a value less
|
cannam@128
|
245 than len, indicating how much as actually read into buf. This function
|
cannam@128
|
246 should not return a data error unless the file was modified since the index
|
cannam@128
|
247 was generated. extract() may also return Z_ERRNO if there is an error on
|
cannam@128
|
248 reading or seeking the input file. */
|
cannam@128
|
249 local int extract(FILE *in, struct access *index, off_t offset,
|
cannam@128
|
250 unsigned char *buf, int len)
|
cannam@128
|
251 {
|
cannam@128
|
252 int ret, skip;
|
cannam@128
|
253 z_stream strm;
|
cannam@128
|
254 struct point *here;
|
cannam@128
|
255 unsigned char input[CHUNK];
|
cannam@128
|
256 unsigned char discard[WINSIZE];
|
cannam@128
|
257
|
cannam@128
|
258 /* proceed only if something reasonable to do */
|
cannam@128
|
259 if (len < 0)
|
cannam@128
|
260 return 0;
|
cannam@128
|
261
|
cannam@128
|
262 /* find where in stream to start */
|
cannam@128
|
263 here = index->list;
|
cannam@128
|
264 ret = index->have;
|
cannam@128
|
265 while (--ret && here[1].out <= offset)
|
cannam@128
|
266 here++;
|
cannam@128
|
267
|
cannam@128
|
268 /* initialize file and inflate state to start there */
|
cannam@128
|
269 strm.zalloc = Z_NULL;
|
cannam@128
|
270 strm.zfree = Z_NULL;
|
cannam@128
|
271 strm.opaque = Z_NULL;
|
cannam@128
|
272 strm.avail_in = 0;
|
cannam@128
|
273 strm.next_in = Z_NULL;
|
cannam@128
|
274 ret = inflateInit2(&strm, -15); /* raw inflate */
|
cannam@128
|
275 if (ret != Z_OK)
|
cannam@128
|
276 return ret;
|
cannam@128
|
277 ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
|
cannam@128
|
278 if (ret == -1)
|
cannam@128
|
279 goto extract_ret;
|
cannam@128
|
280 if (here->bits) {
|
cannam@128
|
281 ret = getc(in);
|
cannam@128
|
282 if (ret == -1) {
|
cannam@128
|
283 ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
|
cannam@128
|
284 goto extract_ret;
|
cannam@128
|
285 }
|
cannam@128
|
286 (void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
|
cannam@128
|
287 }
|
cannam@128
|
288 (void)inflateSetDictionary(&strm, here->window, WINSIZE);
|
cannam@128
|
289
|
cannam@128
|
290 /* skip uncompressed bytes until offset reached, then satisfy request */
|
cannam@128
|
291 offset -= here->out;
|
cannam@128
|
292 strm.avail_in = 0;
|
cannam@128
|
293 skip = 1; /* while skipping to offset */
|
cannam@128
|
294 do {
|
cannam@128
|
295 /* define where to put uncompressed data, and how much */
|
cannam@128
|
296 if (offset == 0 && skip) { /* at offset now */
|
cannam@128
|
297 strm.avail_out = len;
|
cannam@128
|
298 strm.next_out = buf;
|
cannam@128
|
299 skip = 0; /* only do this once */
|
cannam@128
|
300 }
|
cannam@128
|
301 if (offset > WINSIZE) { /* skip WINSIZE bytes */
|
cannam@128
|
302 strm.avail_out = WINSIZE;
|
cannam@128
|
303 strm.next_out = discard;
|
cannam@128
|
304 offset -= WINSIZE;
|
cannam@128
|
305 }
|
cannam@128
|
306 else if (offset != 0) { /* last skip */
|
cannam@128
|
307 strm.avail_out = (unsigned)offset;
|
cannam@128
|
308 strm.next_out = discard;
|
cannam@128
|
309 offset = 0;
|
cannam@128
|
310 }
|
cannam@128
|
311
|
cannam@128
|
312 /* uncompress until avail_out filled, or end of stream */
|
cannam@128
|
313 do {
|
cannam@128
|
314 if (strm.avail_in == 0) {
|
cannam@128
|
315 strm.avail_in = fread(input, 1, CHUNK, in);
|
cannam@128
|
316 if (ferror(in)) {
|
cannam@128
|
317 ret = Z_ERRNO;
|
cannam@128
|
318 goto extract_ret;
|
cannam@128
|
319 }
|
cannam@128
|
320 if (strm.avail_in == 0) {
|
cannam@128
|
321 ret = Z_DATA_ERROR;
|
cannam@128
|
322 goto extract_ret;
|
cannam@128
|
323 }
|
cannam@128
|
324 strm.next_in = input;
|
cannam@128
|
325 }
|
cannam@128
|
326 ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
|
cannam@128
|
327 if (ret == Z_NEED_DICT)
|
cannam@128
|
328 ret = Z_DATA_ERROR;
|
cannam@128
|
329 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
cannam@128
|
330 goto extract_ret;
|
cannam@128
|
331 if (ret == Z_STREAM_END)
|
cannam@128
|
332 break;
|
cannam@128
|
333 } while (strm.avail_out != 0);
|
cannam@128
|
334
|
cannam@128
|
335 /* if reach end of stream, then don't keep trying to get more */
|
cannam@128
|
336 if (ret == Z_STREAM_END)
|
cannam@128
|
337 break;
|
cannam@128
|
338
|
cannam@128
|
339 /* do until offset reached and requested data read, or stream ends */
|
cannam@128
|
340 } while (skip);
|
cannam@128
|
341
|
cannam@128
|
342 /* compute number of uncompressed bytes read after offset */
|
cannam@128
|
343 ret = skip ? 0 : len - strm.avail_out;
|
cannam@128
|
344
|
cannam@128
|
345 /* clean up and return bytes read or error */
|
cannam@128
|
346 extract_ret:
|
cannam@128
|
347 (void)inflateEnd(&strm);
|
cannam@128
|
348 return ret;
|
cannam@128
|
349 }
|
cannam@128
|
350
|
cannam@128
|
351 /* Demonstrate the use of build_index() and extract() by processing the file
|
cannam@128
|
352 provided on the command line, and the extracting 16K from about 2/3rds of
|
cannam@128
|
353 the way through the uncompressed output, and writing that to stdout. */
|
cannam@128
|
354 int main(int argc, char **argv)
|
cannam@128
|
355 {
|
cannam@128
|
356 int len;
|
cannam@128
|
357 off_t offset;
|
cannam@128
|
358 FILE *in;
|
cannam@128
|
359 struct access *index = NULL;
|
cannam@128
|
360 unsigned char buf[CHUNK];
|
cannam@128
|
361
|
cannam@128
|
362 /* open input file */
|
cannam@128
|
363 if (argc != 2) {
|
cannam@128
|
364 fprintf(stderr, "usage: zran file.gz\n");
|
cannam@128
|
365 return 1;
|
cannam@128
|
366 }
|
cannam@128
|
367 in = fopen(argv[1], "rb");
|
cannam@128
|
368 if (in == NULL) {
|
cannam@128
|
369 fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
|
cannam@128
|
370 return 1;
|
cannam@128
|
371 }
|
cannam@128
|
372
|
cannam@128
|
373 /* build index */
|
cannam@128
|
374 len = build_index(in, SPAN, &index);
|
cannam@128
|
375 if (len < 0) {
|
cannam@128
|
376 fclose(in);
|
cannam@128
|
377 switch (len) {
|
cannam@128
|
378 case Z_MEM_ERROR:
|
cannam@128
|
379 fprintf(stderr, "zran: out of memory\n");
|
cannam@128
|
380 break;
|
cannam@128
|
381 case Z_DATA_ERROR:
|
cannam@128
|
382 fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
|
cannam@128
|
383 break;
|
cannam@128
|
384 case Z_ERRNO:
|
cannam@128
|
385 fprintf(stderr, "zran: read error on %s\n", argv[1]);
|
cannam@128
|
386 break;
|
cannam@128
|
387 default:
|
cannam@128
|
388 fprintf(stderr, "zran: error %d while building index\n", len);
|
cannam@128
|
389 }
|
cannam@128
|
390 return 1;
|
cannam@128
|
391 }
|
cannam@128
|
392 fprintf(stderr, "zran: built index with %d access points\n", len);
|
cannam@128
|
393
|
cannam@128
|
394 /* use index by reading some bytes from an arbitrary offset */
|
cannam@128
|
395 offset = (index->list[index->have - 1].out << 1) / 3;
|
cannam@128
|
396 len = extract(in, index, offset, buf, CHUNK);
|
cannam@128
|
397 if (len < 0)
|
cannam@128
|
398 fprintf(stderr, "zran: extraction failed: %s error\n",
|
cannam@128
|
399 len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
|
cannam@128
|
400 else {
|
cannam@128
|
401 fwrite(buf, 1, len, stdout);
|
cannam@128
|
402 fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
|
cannam@128
|
403 }
|
cannam@128
|
404
|
cannam@128
|
405 /* clean up and exit */
|
cannam@128
|
406 free_index(index);
|
cannam@128
|
407 fclose(in);
|
cannam@128
|
408 return 0;
|
cannam@128
|
409 }
|