annotate src/zlib-1.2.8/doc/rfc1950.txt @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 5b4145a0d408
children
rev   line source
cannam@128 1
cannam@128 2
cannam@128 3
cannam@128 4
cannam@128 5
cannam@128 6
cannam@128 7 Network Working Group P. Deutsch
cannam@128 8 Request for Comments: 1950 Aladdin Enterprises
cannam@128 9 Category: Informational J-L. Gailly
cannam@128 10 Info-ZIP
cannam@128 11 May 1996
cannam@128 12
cannam@128 13
cannam@128 14 ZLIB Compressed Data Format Specification version 3.3
cannam@128 15
cannam@128 16 Status of This Memo
cannam@128 17
cannam@128 18 This memo provides information for the Internet community. This memo
cannam@128 19 does not specify an Internet standard of any kind. Distribution of
cannam@128 20 this memo is unlimited.
cannam@128 21
cannam@128 22 IESG Note:
cannam@128 23
cannam@128 24 The IESG takes no position on the validity of any Intellectual
cannam@128 25 Property Rights statements contained in this document.
cannam@128 26
cannam@128 27 Notices
cannam@128 28
cannam@128 29 Copyright (c) 1996 L. Peter Deutsch and Jean-Loup Gailly
cannam@128 30
cannam@128 31 Permission is granted to copy and distribute this document for any
cannam@128 32 purpose and without charge, including translations into other
cannam@128 33 languages and incorporation into compilations, provided that the
cannam@128 34 copyright notice and this notice are preserved, and that any
cannam@128 35 substantive changes or deletions from the original are clearly
cannam@128 36 marked.
cannam@128 37
cannam@128 38 A pointer to the latest version of this and related documentation in
cannam@128 39 HTML format can be found at the URL
cannam@128 40 <ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
cannam@128 41
cannam@128 42 Abstract
cannam@128 43
cannam@128 44 This specification defines a lossless compressed data format. The
cannam@128 45 data can be produced or consumed, even for an arbitrarily long
cannam@128 46 sequentially presented input data stream, using only an a priori
cannam@128 47 bounded amount of intermediate storage. The format presently uses
cannam@128 48 the DEFLATE compression method but can be easily extended to use
cannam@128 49 other compression methods. It can be implemented readily in a manner
cannam@128 50 not covered by patents. This specification also defines the ADLER-32
cannam@128 51 checksum (an extension and improvement of the Fletcher checksum),
cannam@128 52 used for detection of data corruption, and provides an algorithm for
cannam@128 53 computing it.
cannam@128 54
cannam@128 55
cannam@128 56
cannam@128 57
cannam@128 58 Deutsch & Gailly Informational [Page 1]
cannam@128 59
cannam@128 60 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 61
cannam@128 62
cannam@128 63 Table of Contents
cannam@128 64
cannam@128 65 1. Introduction ................................................... 2
cannam@128 66 1.1. Purpose ................................................... 2
cannam@128 67 1.2. Intended audience ......................................... 3
cannam@128 68 1.3. Scope ..................................................... 3
cannam@128 69 1.4. Compliance ................................................ 3
cannam@128 70 1.5. Definitions of terms and conventions used ................ 3
cannam@128 71 1.6. Changes from previous versions ............................ 3
cannam@128 72 2. Detailed specification ......................................... 3
cannam@128 73 2.1. Overall conventions ....................................... 3
cannam@128 74 2.2. Data format ............................................... 4
cannam@128 75 2.3. Compliance ................................................ 7
cannam@128 76 3. References ..................................................... 7
cannam@128 77 4. Source code .................................................... 8
cannam@128 78 5. Security Considerations ........................................ 8
cannam@128 79 6. Acknowledgements ............................................... 8
cannam@128 80 7. Authors' Addresses ............................................. 8
cannam@128 81 8. Appendix: Rationale ............................................ 9
cannam@128 82 9. Appendix: Sample code ..........................................10
cannam@128 83
cannam@128 84 1. Introduction
cannam@128 85
cannam@128 86 1.1. Purpose
cannam@128 87
cannam@128 88 The purpose of this specification is to define a lossless
cannam@128 89 compressed data format that:
cannam@128 90
cannam@128 91 * Is independent of CPU type, operating system, file system,
cannam@128 92 and character set, and hence can be used for interchange;
cannam@128 93
cannam@128 94 * Can be produced or consumed, even for an arbitrarily long
cannam@128 95 sequentially presented input data stream, using only an a
cannam@128 96 priori bounded amount of intermediate storage, and hence can
cannam@128 97 be used in data communications or similar structures such as
cannam@128 98 Unix filters;
cannam@128 99
cannam@128 100 * Can use a number of different compression methods;
cannam@128 101
cannam@128 102 * Can be implemented readily in a manner not covered by
cannam@128 103 patents, and hence can be practiced freely.
cannam@128 104
cannam@128 105 The data format defined by this specification does not attempt to
cannam@128 106 allow random access to compressed data.
cannam@128 107
cannam@128 108
cannam@128 109
cannam@128 110
cannam@128 111
cannam@128 112
cannam@128 113
cannam@128 114 Deutsch & Gailly Informational [Page 2]
cannam@128 115
cannam@128 116 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 117
cannam@128 118
cannam@128 119 1.2. Intended audience
cannam@128 120
cannam@128 121 This specification is intended for use by implementors of software
cannam@128 122 to compress data into zlib format and/or decompress data from zlib
cannam@128 123 format.
cannam@128 124
cannam@128 125 The text of the specification assumes a basic background in
cannam@128 126 programming at the level of bits and other primitive data
cannam@128 127 representations.
cannam@128 128
cannam@128 129 1.3. Scope
cannam@128 130
cannam@128 131 The specification specifies a compressed data format that can be
cannam@128 132 used for in-memory compression of a sequence of arbitrary bytes.
cannam@128 133
cannam@128 134 1.4. Compliance
cannam@128 135
cannam@128 136 Unless otherwise indicated below, a compliant decompressor must be
cannam@128 137 able to accept and decompress any data set that conforms to all
cannam@128 138 the specifications presented here; a compliant compressor must
cannam@128 139 produce data sets that conform to all the specifications presented
cannam@128 140 here.
cannam@128 141
cannam@128 142 1.5. Definitions of terms and conventions used
cannam@128 143
cannam@128 144 byte: 8 bits stored or transmitted as a unit (same as an octet).
cannam@128 145 (For this specification, a byte is exactly 8 bits, even on
cannam@128 146 machines which store a character on a number of bits different
cannam@128 147 from 8.) See below, for the numbering of bits within a byte.
cannam@128 148
cannam@128 149 1.6. Changes from previous versions
cannam@128 150
cannam@128 151 Version 3.1 was the first public release of this specification.
cannam@128 152 In version 3.2, some terminology was changed and the Adler-32
cannam@128 153 sample code was rewritten for clarity. In version 3.3, the
cannam@128 154 support for a preset dictionary was introduced, and the
cannam@128 155 specification was converted to RFC style.
cannam@128 156
cannam@128 157 2. Detailed specification
cannam@128 158
cannam@128 159 2.1. Overall conventions
cannam@128 160
cannam@128 161 In the diagrams below, a box like this:
cannam@128 162
cannam@128 163 +---+
cannam@128 164 | | <-- the vertical bars might be missing
cannam@128 165 +---+
cannam@128 166
cannam@128 167
cannam@128 168
cannam@128 169
cannam@128 170 Deutsch & Gailly Informational [Page 3]
cannam@128 171
cannam@128 172 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 173
cannam@128 174
cannam@128 175 represents one byte; a box like this:
cannam@128 176
cannam@128 177 +==============+
cannam@128 178 | |
cannam@128 179 +==============+
cannam@128 180
cannam@128 181 represents a variable number of bytes.
cannam@128 182
cannam@128 183 Bytes stored within a computer do not have a "bit order", since
cannam@128 184 they are always treated as a unit. However, a byte considered as
cannam@128 185 an integer between 0 and 255 does have a most- and least-
cannam@128 186 significant bit, and since we write numbers with the most-
cannam@128 187 significant digit on the left, we also write bytes with the most-
cannam@128 188 significant bit on the left. In the diagrams below, we number the
cannam@128 189 bits of a byte so that bit 0 is the least-significant bit, i.e.,
cannam@128 190 the bits are numbered:
cannam@128 191
cannam@128 192 +--------+
cannam@128 193 |76543210|
cannam@128 194 +--------+
cannam@128 195
cannam@128 196 Within a computer, a number may occupy multiple bytes. All
cannam@128 197 multi-byte numbers in the format described here are stored with
cannam@128 198 the MOST-significant byte first (at the lower memory address).
cannam@128 199 For example, the decimal number 520 is stored as:
cannam@128 200
cannam@128 201 0 1
cannam@128 202 +--------+--------+
cannam@128 203 |00000010|00001000|
cannam@128 204 +--------+--------+
cannam@128 205 ^ ^
cannam@128 206 | |
cannam@128 207 | + less significant byte = 8
cannam@128 208 + more significant byte = 2 x 256
cannam@128 209
cannam@128 210 2.2. Data format
cannam@128 211
cannam@128 212 A zlib stream has the following structure:
cannam@128 213
cannam@128 214 0 1
cannam@128 215 +---+---+
cannam@128 216 |CMF|FLG| (more-->)
cannam@128 217 +---+---+
cannam@128 218
cannam@128 219
cannam@128 220
cannam@128 221
cannam@128 222
cannam@128 223
cannam@128 224
cannam@128 225
cannam@128 226 Deutsch & Gailly Informational [Page 4]
cannam@128 227
cannam@128 228 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 229
cannam@128 230
cannam@128 231 (if FLG.FDICT set)
cannam@128 232
cannam@128 233 0 1 2 3
cannam@128 234 +---+---+---+---+
cannam@128 235 | DICTID | (more-->)
cannam@128 236 +---+---+---+---+
cannam@128 237
cannam@128 238 +=====================+---+---+---+---+
cannam@128 239 |...compressed data...| ADLER32 |
cannam@128 240 +=====================+---+---+---+---+
cannam@128 241
cannam@128 242 Any data which may appear after ADLER32 are not part of the zlib
cannam@128 243 stream.
cannam@128 244
cannam@128 245 CMF (Compression Method and flags)
cannam@128 246 This byte is divided into a 4-bit compression method and a 4-
cannam@128 247 bit information field depending on the compression method.
cannam@128 248
cannam@128 249 bits 0 to 3 CM Compression method
cannam@128 250 bits 4 to 7 CINFO Compression info
cannam@128 251
cannam@128 252 CM (Compression method)
cannam@128 253 This identifies the compression method used in the file. CM = 8
cannam@128 254 denotes the "deflate" compression method with a window size up
cannam@128 255 to 32K. This is the method used by gzip and PNG (see
cannam@128 256 references [1] and [2] in Chapter 3, below, for the reference
cannam@128 257 documents). CM = 15 is reserved. It might be used in a future
cannam@128 258 version of this specification to indicate the presence of an
cannam@128 259 extra field before the compressed data.
cannam@128 260
cannam@128 261 CINFO (Compression info)
cannam@128 262 For CM = 8, CINFO is the base-2 logarithm of the LZ77 window
cannam@128 263 size, minus eight (CINFO=7 indicates a 32K window size). Values
cannam@128 264 of CINFO above 7 are not allowed in this version of the
cannam@128 265 specification. CINFO is not defined in this specification for
cannam@128 266 CM not equal to 8.
cannam@128 267
cannam@128 268 FLG (FLaGs)
cannam@128 269 This flag byte is divided as follows:
cannam@128 270
cannam@128 271 bits 0 to 4 FCHECK (check bits for CMF and FLG)
cannam@128 272 bit 5 FDICT (preset dictionary)
cannam@128 273 bits 6 to 7 FLEVEL (compression level)
cannam@128 274
cannam@128 275 The FCHECK value must be such that CMF and FLG, when viewed as
cannam@128 276 a 16-bit unsigned integer stored in MSB order (CMF*256 + FLG),
cannam@128 277 is a multiple of 31.
cannam@128 278
cannam@128 279
cannam@128 280
cannam@128 281
cannam@128 282 Deutsch & Gailly Informational [Page 5]
cannam@128 283
cannam@128 284 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 285
cannam@128 286
cannam@128 287 FDICT (Preset dictionary)
cannam@128 288 If FDICT is set, a DICT dictionary identifier is present
cannam@128 289 immediately after the FLG byte. The dictionary is a sequence of
cannam@128 290 bytes which are initially fed to the compressor without
cannam@128 291 producing any compressed output. DICT is the Adler-32 checksum
cannam@128 292 of this sequence of bytes (see the definition of ADLER32
cannam@128 293 below). The decompressor can use this identifier to determine
cannam@128 294 which dictionary has been used by the compressor.
cannam@128 295
cannam@128 296 FLEVEL (Compression level)
cannam@128 297 These flags are available for use by specific compression
cannam@128 298 methods. The "deflate" method (CM = 8) sets these flags as
cannam@128 299 follows:
cannam@128 300
cannam@128 301 0 - compressor used fastest algorithm
cannam@128 302 1 - compressor used fast algorithm
cannam@128 303 2 - compressor used default algorithm
cannam@128 304 3 - compressor used maximum compression, slowest algorithm
cannam@128 305
cannam@128 306 The information in FLEVEL is not needed for decompression; it
cannam@128 307 is there to indicate if recompression might be worthwhile.
cannam@128 308
cannam@128 309 compressed data
cannam@128 310 For compression method 8, the compressed data is stored in the
cannam@128 311 deflate compressed data format as described in the document
cannam@128 312 "DEFLATE Compressed Data Format Specification" by L. Peter
cannam@128 313 Deutsch. (See reference [3] in Chapter 3, below)
cannam@128 314
cannam@128 315 Other compressed data formats are not specified in this version
cannam@128 316 of the zlib specification.
cannam@128 317
cannam@128 318 ADLER32 (Adler-32 checksum)
cannam@128 319 This contains a checksum value of the uncompressed data
cannam@128 320 (excluding any dictionary data) computed according to Adler-32
cannam@128 321 algorithm. This algorithm is a 32-bit extension and improvement
cannam@128 322 of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
cannam@128 323 standard. See references [4] and [5] in Chapter 3, below)
cannam@128 324
cannam@128 325 Adler-32 is composed of two sums accumulated per byte: s1 is
cannam@128 326 the sum of all bytes, s2 is the sum of all s1 values. Both sums
cannam@128 327 are done modulo 65521. s1 is initialized to 1, s2 to zero. The
cannam@128 328 Adler-32 checksum is stored as s2*65536 + s1 in most-
cannam@128 329 significant-byte first (network) order.
cannam@128 330
cannam@128 331
cannam@128 332
cannam@128 333
cannam@128 334
cannam@128 335
cannam@128 336
cannam@128 337
cannam@128 338 Deutsch & Gailly Informational [Page 6]
cannam@128 339
cannam@128 340 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 341
cannam@128 342
cannam@128 343 2.3. Compliance
cannam@128 344
cannam@128 345 A compliant compressor must produce streams with correct CMF, FLG
cannam@128 346 and ADLER32, but need not support preset dictionaries. When the
cannam@128 347 zlib data format is used as part of another standard data format,
cannam@128 348 the compressor may use only preset dictionaries that are specified
cannam@128 349 by this other data format. If this other format does not use the
cannam@128 350 preset dictionary feature, the compressor must not set the FDICT
cannam@128 351 flag.
cannam@128 352
cannam@128 353 A compliant decompressor must check CMF, FLG, and ADLER32, and
cannam@128 354 provide an error indication if any of these have incorrect values.
cannam@128 355 A compliant decompressor must give an error indication if CM is
cannam@128 356 not one of the values defined in this specification (only the
cannam@128 357 value 8 is permitted in this version), since another value could
cannam@128 358 indicate the presence of new features that would cause subsequent
cannam@128 359 data to be interpreted incorrectly. A compliant decompressor must
cannam@128 360 give an error indication if FDICT is set and DICTID is not the
cannam@128 361 identifier of a known preset dictionary. A decompressor may
cannam@128 362 ignore FLEVEL and still be compliant. When the zlib data format
cannam@128 363 is being used as a part of another standard format, a compliant
cannam@128 364 decompressor must support all the preset dictionaries specified by
cannam@128 365 the other format. When the other format does not use the preset
cannam@128 366 dictionary feature, a compliant decompressor must reject any
cannam@128 367 stream in which the FDICT flag is set.
cannam@128 368
cannam@128 369 3. References
cannam@128 370
cannam@128 371 [1] Deutsch, L.P.,"GZIP Compressed Data Format Specification",
cannam@128 372 available in ftp://ftp.uu.net/pub/archiving/zip/doc/
cannam@128 373
cannam@128 374 [2] Thomas Boutell, "PNG (Portable Network Graphics) specification",
cannam@128 375 available in ftp://ftp.uu.net/graphics/png/documents/
cannam@128 376
cannam@128 377 [3] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
cannam@128 378 available in ftp://ftp.uu.net/pub/archiving/zip/doc/
cannam@128 379
cannam@128 380 [4] Fletcher, J. G., "An Arithmetic Checksum for Serial
cannam@128 381 Transmissions," IEEE Transactions on Communications, Vol. COM-30,
cannam@128 382 No. 1, January 1982, pp. 247-252.
cannam@128 383
cannam@128 384 [5] ITU-T Recommendation X.224, Annex D, "Checksum Algorithms,"
cannam@128 385 November, 1993, pp. 144, 145. (Available from
cannam@128 386 gopher://info.itu.ch). ITU-T X.244 is also the same as ISO 8073.
cannam@128 387
cannam@128 388
cannam@128 389
cannam@128 390
cannam@128 391
cannam@128 392
cannam@128 393
cannam@128 394 Deutsch & Gailly Informational [Page 7]
cannam@128 395
cannam@128 396 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 397
cannam@128 398
cannam@128 399 4. Source code
cannam@128 400
cannam@128 401 Source code for a C language implementation of a "zlib" compliant
cannam@128 402 library is available at ftp://ftp.uu.net/pub/archiving/zip/zlib/.
cannam@128 403
cannam@128 404 5. Security Considerations
cannam@128 405
cannam@128 406 A decoder that fails to check the ADLER32 checksum value may be
cannam@128 407 subject to undetected data corruption.
cannam@128 408
cannam@128 409 6. Acknowledgements
cannam@128 410
cannam@128 411 Trademarks cited in this document are the property of their
cannam@128 412 respective owners.
cannam@128 413
cannam@128 414 Jean-Loup Gailly and Mark Adler designed the zlib format and wrote
cannam@128 415 the related software described in this specification. Glenn
cannam@128 416 Randers-Pehrson converted this document to RFC and HTML format.
cannam@128 417
cannam@128 418 7. Authors' Addresses
cannam@128 419
cannam@128 420 L. Peter Deutsch
cannam@128 421 Aladdin Enterprises
cannam@128 422 203 Santa Margarita Ave.
cannam@128 423 Menlo Park, CA 94025
cannam@128 424
cannam@128 425 Phone: (415) 322-0103 (AM only)
cannam@128 426 FAX: (415) 322-1734
cannam@128 427 EMail: <ghost@aladdin.com>
cannam@128 428
cannam@128 429
cannam@128 430 Jean-Loup Gailly
cannam@128 431
cannam@128 432 EMail: <gzip@prep.ai.mit.edu>
cannam@128 433
cannam@128 434 Questions about the technical content of this specification can be
cannam@128 435 sent by email to
cannam@128 436
cannam@128 437 Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
cannam@128 438 Mark Adler <madler@alumni.caltech.edu>
cannam@128 439
cannam@128 440 Editorial comments on this specification can be sent by email to
cannam@128 441
cannam@128 442 L. Peter Deutsch <ghost@aladdin.com> and
cannam@128 443 Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
cannam@128 444
cannam@128 445
cannam@128 446
cannam@128 447
cannam@128 448
cannam@128 449
cannam@128 450 Deutsch & Gailly Informational [Page 8]
cannam@128 451
cannam@128 452 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 453
cannam@128 454
cannam@128 455 8. Appendix: Rationale
cannam@128 456
cannam@128 457 8.1. Preset dictionaries
cannam@128 458
cannam@128 459 A preset dictionary is specially useful to compress short input
cannam@128 460 sequences. The compressor can take advantage of the dictionary
cannam@128 461 context to encode the input in a more compact manner. The
cannam@128 462 decompressor can be initialized with the appropriate context by
cannam@128 463 virtually decompressing a compressed version of the dictionary
cannam@128 464 without producing any output. However for certain compression
cannam@128 465 algorithms such as the deflate algorithm this operation can be
cannam@128 466 achieved without actually performing any decompression.
cannam@128 467
cannam@128 468 The compressor and the decompressor must use exactly the same
cannam@128 469 dictionary. The dictionary may be fixed or may be chosen among a
cannam@128 470 certain number of predefined dictionaries, according to the kind
cannam@128 471 of input data. The decompressor can determine which dictionary has
cannam@128 472 been chosen by the compressor by checking the dictionary
cannam@128 473 identifier. This document does not specify the contents of
cannam@128 474 predefined dictionaries, since the optimal dictionaries are
cannam@128 475 application specific. Standard data formats using this feature of
cannam@128 476 the zlib specification must precisely define the allowed
cannam@128 477 dictionaries.
cannam@128 478
cannam@128 479 8.2. The Adler-32 algorithm
cannam@128 480
cannam@128 481 The Adler-32 algorithm is much faster than the CRC32 algorithm yet
cannam@128 482 still provides an extremely low probability of undetected errors.
cannam@128 483
cannam@128 484 The modulo on unsigned long accumulators can be delayed for 5552
cannam@128 485 bytes, so the modulo operation time is negligible. If the bytes
cannam@128 486 are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
cannam@128 487 and order sensitive, unlike the first sum, which is just a
cannam@128 488 checksum. That 65521 is prime is important to avoid a possible
cannam@128 489 large class of two-byte errors that leave the check unchanged.
cannam@128 490 (The Fletcher checksum uses 255, which is not prime and which also
cannam@128 491 makes the Fletcher check insensitive to single byte changes 0 <->
cannam@128 492 255.)
cannam@128 493
cannam@128 494 The sum s1 is initialized to 1 instead of zero to make the length
cannam@128 495 of the sequence part of s2, so that the length does not have to be
cannam@128 496 checked separately. (Any sequence of zeroes has a Fletcher
cannam@128 497 checksum of zero.)
cannam@128 498
cannam@128 499
cannam@128 500
cannam@128 501
cannam@128 502
cannam@128 503
cannam@128 504
cannam@128 505
cannam@128 506 Deutsch & Gailly Informational [Page 9]
cannam@128 507
cannam@128 508 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 509
cannam@128 510
cannam@128 511 9. Appendix: Sample code
cannam@128 512
cannam@128 513 The following C code computes the Adler-32 checksum of a data buffer.
cannam@128 514 It is written for clarity, not for speed. The sample code is in the
cannam@128 515 ANSI C programming language. Non C users may find it easier to read
cannam@128 516 with these hints:
cannam@128 517
cannam@128 518 & Bitwise AND operator.
cannam@128 519 >> Bitwise right shift operator. When applied to an
cannam@128 520 unsigned quantity, as here, right shift inserts zero bit(s)
cannam@128 521 at the left.
cannam@128 522 << Bitwise left shift operator. Left shift inserts zero
cannam@128 523 bit(s) at the right.
cannam@128 524 ++ "n++" increments the variable n.
cannam@128 525 % modulo operator: a % b is the remainder of a divided by b.
cannam@128 526
cannam@128 527 #define BASE 65521 /* largest prime smaller than 65536 */
cannam@128 528
cannam@128 529 /*
cannam@128 530 Update a running Adler-32 checksum with the bytes buf[0..len-1]
cannam@128 531 and return the updated checksum. The Adler-32 checksum should be
cannam@128 532 initialized to 1.
cannam@128 533
cannam@128 534 Usage example:
cannam@128 535
cannam@128 536 unsigned long adler = 1L;
cannam@128 537
cannam@128 538 while (read_buffer(buffer, length) != EOF) {
cannam@128 539 adler = update_adler32(adler, buffer, length);
cannam@128 540 }
cannam@128 541 if (adler != original_adler) error();
cannam@128 542 */
cannam@128 543 unsigned long update_adler32(unsigned long adler,
cannam@128 544 unsigned char *buf, int len)
cannam@128 545 {
cannam@128 546 unsigned long s1 = adler & 0xffff;
cannam@128 547 unsigned long s2 = (adler >> 16) & 0xffff;
cannam@128 548 int n;
cannam@128 549
cannam@128 550 for (n = 0; n < len; n++) {
cannam@128 551 s1 = (s1 + buf[n]) % BASE;
cannam@128 552 s2 = (s2 + s1) % BASE;
cannam@128 553 }
cannam@128 554 return (s2 << 16) + s1;
cannam@128 555 }
cannam@128 556
cannam@128 557 /* Return the adler32 of the bytes buf[0..len-1] */
cannam@128 558
cannam@128 559
cannam@128 560
cannam@128 561
cannam@128 562 Deutsch & Gailly Informational [Page 10]
cannam@128 563
cannam@128 564 RFC 1950 ZLIB Compressed Data Format Specification May 1996
cannam@128 565
cannam@128 566
cannam@128 567 unsigned long adler32(unsigned char *buf, int len)
cannam@128 568 {
cannam@128 569 return update_adler32(1L, buf, len);
cannam@128 570 }
cannam@128 571
cannam@128 572
cannam@128 573
cannam@128 574
cannam@128 575
cannam@128 576
cannam@128 577
cannam@128 578
cannam@128 579
cannam@128 580
cannam@128 581
cannam@128 582
cannam@128 583
cannam@128 584
cannam@128 585
cannam@128 586
cannam@128 587
cannam@128 588
cannam@128 589
cannam@128 590
cannam@128 591
cannam@128 592
cannam@128 593
cannam@128 594
cannam@128 595
cannam@128 596
cannam@128 597
cannam@128 598
cannam@128 599
cannam@128 600
cannam@128 601
cannam@128 602
cannam@128 603
cannam@128 604
cannam@128 605
cannam@128 606
cannam@128 607
cannam@128 608
cannam@128 609
cannam@128 610
cannam@128 611
cannam@128 612
cannam@128 613
cannam@128 614
cannam@128 615
cannam@128 616
cannam@128 617
cannam@128 618 Deutsch & Gailly Informational [Page 11]
cannam@128 619