cannam@128
|
1 /* deflate.c -- compress data using the deflation algorithm
|
cannam@128
|
2 * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
|
cannam@128
|
3 * For conditions of distribution and use, see copyright notice in zlib.h
|
cannam@128
|
4 */
|
cannam@128
|
5
|
cannam@128
|
6 /*
|
cannam@128
|
7 * ALGORITHM
|
cannam@128
|
8 *
|
cannam@128
|
9 * The "deflation" process depends on being able to identify portions
|
cannam@128
|
10 * of the input text which are identical to earlier input (within a
|
cannam@128
|
11 * sliding window trailing behind the input currently being processed).
|
cannam@128
|
12 *
|
cannam@128
|
13 * The most straightforward technique turns out to be the fastest for
|
cannam@128
|
14 * most input files: try all possible matches and select the longest.
|
cannam@128
|
15 * The key feature of this algorithm is that insertions into the string
|
cannam@128
|
16 * dictionary are very simple and thus fast, and deletions are avoided
|
cannam@128
|
17 * completely. Insertions are performed at each input character, whereas
|
cannam@128
|
18 * string matches are performed only when the previous match ends. So it
|
cannam@128
|
19 * is preferable to spend more time in matches to allow very fast string
|
cannam@128
|
20 * insertions and avoid deletions. The matching algorithm for small
|
cannam@128
|
21 * strings is inspired from that of Rabin & Karp. A brute force approach
|
cannam@128
|
22 * is used to find longer strings when a small match has been found.
|
cannam@128
|
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
|
cannam@128
|
24 * (by Leonid Broukhis).
|
cannam@128
|
25 * A previous version of this file used a more sophisticated algorithm
|
cannam@128
|
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
|
cannam@128
|
27 * time, but has a larger average cost, uses more memory and is patented.
|
cannam@128
|
28 * However the F&G algorithm may be faster for some highly redundant
|
cannam@128
|
29 * files if the parameter max_chain_length (described below) is too large.
|
cannam@128
|
30 *
|
cannam@128
|
31 * ACKNOWLEDGEMENTS
|
cannam@128
|
32 *
|
cannam@128
|
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
|
cannam@128
|
34 * I found it in 'freeze' written by Leonid Broukhis.
|
cannam@128
|
35 * Thanks to many people for bug reports and testing.
|
cannam@128
|
36 *
|
cannam@128
|
37 * REFERENCES
|
cannam@128
|
38 *
|
cannam@128
|
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
|
cannam@128
|
40 * Available in http://tools.ietf.org/html/rfc1951
|
cannam@128
|
41 *
|
cannam@128
|
42 * A description of the Rabin and Karp algorithm is given in the book
|
cannam@128
|
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
|
cannam@128
|
44 *
|
cannam@128
|
45 * Fiala,E.R., and Greene,D.H.
|
cannam@128
|
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
|
cannam@128
|
47 *
|
cannam@128
|
48 */
|
cannam@128
|
49
|
cannam@128
|
50 /* @(#) $Id$ */
|
cannam@128
|
51
|
cannam@128
|
52 #include "deflate.h"
|
cannam@128
|
53
|
cannam@128
|
54 const char deflate_copyright[] =
|
cannam@128
|
55 " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler ";
|
cannam@128
|
56 /*
|
cannam@128
|
57 If you use the zlib library in a product, an acknowledgment is welcome
|
cannam@128
|
58 in the documentation of your product. If for some reason you cannot
|
cannam@128
|
59 include such an acknowledgment, I would appreciate that you keep this
|
cannam@128
|
60 copyright string in the executable of your product.
|
cannam@128
|
61 */
|
cannam@128
|
62
|
cannam@128
|
63 /* ===========================================================================
|
cannam@128
|
64 * Function prototypes.
|
cannam@128
|
65 */
|
cannam@128
|
66 typedef enum {
|
cannam@128
|
67 need_more, /* block not completed, need more input or more output */
|
cannam@128
|
68 block_done, /* block flush performed */
|
cannam@128
|
69 finish_started, /* finish started, need only more output at next deflate */
|
cannam@128
|
70 finish_done /* finish done, accept no more input or output */
|
cannam@128
|
71 } block_state;
|
cannam@128
|
72
|
cannam@128
|
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
|
cannam@128
|
74 /* Compression function. Returns the block state after the call. */
|
cannam@128
|
75
|
cannam@128
|
76 local void fill_window OF((deflate_state *s));
|
cannam@128
|
77 local block_state deflate_stored OF((deflate_state *s, int flush));
|
cannam@128
|
78 local block_state deflate_fast OF((deflate_state *s, int flush));
|
cannam@128
|
79 #ifndef FASTEST
|
cannam@128
|
80 local block_state deflate_slow OF((deflate_state *s, int flush));
|
cannam@128
|
81 #endif
|
cannam@128
|
82 local block_state deflate_rle OF((deflate_state *s, int flush));
|
cannam@128
|
83 local block_state deflate_huff OF((deflate_state *s, int flush));
|
cannam@128
|
84 local void lm_init OF((deflate_state *s));
|
cannam@128
|
85 local void putShortMSB OF((deflate_state *s, uInt b));
|
cannam@128
|
86 local void flush_pending OF((z_streamp strm));
|
cannam@128
|
87 local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
|
cannam@128
|
88 #ifdef ASMV
|
cannam@128
|
89 void match_init OF((void)); /* asm code initialization */
|
cannam@128
|
90 uInt longest_match OF((deflate_state *s, IPos cur_match));
|
cannam@128
|
91 #else
|
cannam@128
|
92 local uInt longest_match OF((deflate_state *s, IPos cur_match));
|
cannam@128
|
93 #endif
|
cannam@128
|
94
|
cannam@128
|
95 #ifdef DEBUG
|
cannam@128
|
96 local void check_match OF((deflate_state *s, IPos start, IPos match,
|
cannam@128
|
97 int length));
|
cannam@128
|
98 #endif
|
cannam@128
|
99
|
cannam@128
|
100 /* ===========================================================================
|
cannam@128
|
101 * Local data
|
cannam@128
|
102 */
|
cannam@128
|
103
|
cannam@128
|
104 #define NIL 0
|
cannam@128
|
105 /* Tail of hash chains */
|
cannam@128
|
106
|
cannam@128
|
107 #ifndef TOO_FAR
|
cannam@128
|
108 # define TOO_FAR 4096
|
cannam@128
|
109 #endif
|
cannam@128
|
110 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
|
cannam@128
|
111
|
cannam@128
|
112 /* Values for max_lazy_match, good_match and max_chain_length, depending on
|
cannam@128
|
113 * the desired pack level (0..9). The values given below have been tuned to
|
cannam@128
|
114 * exclude worst case performance for pathological files. Better values may be
|
cannam@128
|
115 * found for specific files.
|
cannam@128
|
116 */
|
cannam@128
|
117 typedef struct config_s {
|
cannam@128
|
118 ush good_length; /* reduce lazy search above this match length */
|
cannam@128
|
119 ush max_lazy; /* do not perform lazy search above this match length */
|
cannam@128
|
120 ush nice_length; /* quit search above this match length */
|
cannam@128
|
121 ush max_chain;
|
cannam@128
|
122 compress_func func;
|
cannam@128
|
123 } config;
|
cannam@128
|
124
|
cannam@128
|
125 #ifdef FASTEST
|
cannam@128
|
126 local const config configuration_table[2] = {
|
cannam@128
|
127 /* good lazy nice chain */
|
cannam@128
|
128 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
|
cannam@128
|
129 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
|
cannam@128
|
130 #else
|
cannam@128
|
131 local const config configuration_table[10] = {
|
cannam@128
|
132 /* good lazy nice chain */
|
cannam@128
|
133 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
|
cannam@128
|
134 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
|
cannam@128
|
135 /* 2 */ {4, 5, 16, 8, deflate_fast},
|
cannam@128
|
136 /* 3 */ {4, 6, 32, 32, deflate_fast},
|
cannam@128
|
137
|
cannam@128
|
138 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
|
cannam@128
|
139 /* 5 */ {8, 16, 32, 32, deflate_slow},
|
cannam@128
|
140 /* 6 */ {8, 16, 128, 128, deflate_slow},
|
cannam@128
|
141 /* 7 */ {8, 32, 128, 256, deflate_slow},
|
cannam@128
|
142 /* 8 */ {32, 128, 258, 1024, deflate_slow},
|
cannam@128
|
143 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
|
cannam@128
|
144 #endif
|
cannam@128
|
145
|
cannam@128
|
146 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
|
cannam@128
|
147 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
|
cannam@128
|
148 * meaning.
|
cannam@128
|
149 */
|
cannam@128
|
150
|
cannam@128
|
151 #define EQUAL 0
|
cannam@128
|
152 /* result of memcmp for equal strings */
|
cannam@128
|
153
|
cannam@128
|
154 #ifndef NO_DUMMY_DECL
|
cannam@128
|
155 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
|
cannam@128
|
156 #endif
|
cannam@128
|
157
|
cannam@128
|
158 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
|
cannam@128
|
159 #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0))
|
cannam@128
|
160
|
cannam@128
|
161 /* ===========================================================================
|
cannam@128
|
162 * Update a hash value with the given input byte
|
cannam@128
|
163 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
|
cannam@128
|
164 * input characters, so that a running hash key can be computed from the
|
cannam@128
|
165 * previous key instead of complete recalculation each time.
|
cannam@128
|
166 */
|
cannam@128
|
167 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
|
cannam@128
|
168
|
cannam@128
|
169
|
cannam@128
|
170 /* ===========================================================================
|
cannam@128
|
171 * Insert string str in the dictionary and set match_head to the previous head
|
cannam@128
|
172 * of the hash chain (the most recent string with same hash key). Return
|
cannam@128
|
173 * the previous length of the hash chain.
|
cannam@128
|
174 * If this file is compiled with -DFASTEST, the compression level is forced
|
cannam@128
|
175 * to 1, and no hash chains are maintained.
|
cannam@128
|
176 * IN assertion: all calls to to INSERT_STRING are made with consecutive
|
cannam@128
|
177 * input characters and the first MIN_MATCH bytes of str are valid
|
cannam@128
|
178 * (except for the last MIN_MATCH-1 bytes of the input file).
|
cannam@128
|
179 */
|
cannam@128
|
180 #ifdef FASTEST
|
cannam@128
|
181 #define INSERT_STRING(s, str, match_head) \
|
cannam@128
|
182 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
|
cannam@128
|
183 match_head = s->head[s->ins_h], \
|
cannam@128
|
184 s->head[s->ins_h] = (Pos)(str))
|
cannam@128
|
185 #else
|
cannam@128
|
186 #define INSERT_STRING(s, str, match_head) \
|
cannam@128
|
187 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
|
cannam@128
|
188 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
|
cannam@128
|
189 s->head[s->ins_h] = (Pos)(str))
|
cannam@128
|
190 #endif
|
cannam@128
|
191
|
cannam@128
|
192 /* ===========================================================================
|
cannam@128
|
193 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
|
cannam@128
|
194 * prev[] will be initialized on the fly.
|
cannam@128
|
195 */
|
cannam@128
|
196 #define CLEAR_HASH(s) \
|
cannam@128
|
197 s->head[s->hash_size-1] = NIL; \
|
cannam@128
|
198 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
|
cannam@128
|
199
|
cannam@128
|
200 /* ========================================================================= */
|
cannam@128
|
201 int ZEXPORT deflateInit_(strm, level, version, stream_size)
|
cannam@128
|
202 z_streamp strm;
|
cannam@128
|
203 int level;
|
cannam@128
|
204 const char *version;
|
cannam@128
|
205 int stream_size;
|
cannam@128
|
206 {
|
cannam@128
|
207 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
|
cannam@128
|
208 Z_DEFAULT_STRATEGY, version, stream_size);
|
cannam@128
|
209 /* To do: ignore strm->next_in if we use it as window */
|
cannam@128
|
210 }
|
cannam@128
|
211
|
cannam@128
|
212 /* ========================================================================= */
|
cannam@128
|
213 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
|
cannam@128
|
214 version, stream_size)
|
cannam@128
|
215 z_streamp strm;
|
cannam@128
|
216 int level;
|
cannam@128
|
217 int method;
|
cannam@128
|
218 int windowBits;
|
cannam@128
|
219 int memLevel;
|
cannam@128
|
220 int strategy;
|
cannam@128
|
221 const char *version;
|
cannam@128
|
222 int stream_size;
|
cannam@128
|
223 {
|
cannam@128
|
224 deflate_state *s;
|
cannam@128
|
225 int wrap = 1;
|
cannam@128
|
226 static const char my_version[] = ZLIB_VERSION;
|
cannam@128
|
227
|
cannam@128
|
228 ushf *overlay;
|
cannam@128
|
229 /* We overlay pending_buf and d_buf+l_buf. This works since the average
|
cannam@128
|
230 * output size for (length,distance) codes is <= 24 bits.
|
cannam@128
|
231 */
|
cannam@128
|
232
|
cannam@128
|
233 if (version == Z_NULL || version[0] != my_version[0] ||
|
cannam@128
|
234 stream_size != sizeof(z_stream)) {
|
cannam@128
|
235 return Z_VERSION_ERROR;
|
cannam@128
|
236 }
|
cannam@128
|
237 if (strm == Z_NULL) return Z_STREAM_ERROR;
|
cannam@128
|
238
|
cannam@128
|
239 strm->msg = Z_NULL;
|
cannam@128
|
240 if (strm->zalloc == (alloc_func)0) {
|
cannam@128
|
241 #ifdef Z_SOLO
|
cannam@128
|
242 return Z_STREAM_ERROR;
|
cannam@128
|
243 #else
|
cannam@128
|
244 strm->zalloc = zcalloc;
|
cannam@128
|
245 strm->opaque = (voidpf)0;
|
cannam@128
|
246 #endif
|
cannam@128
|
247 }
|
cannam@128
|
248 if (strm->zfree == (free_func)0)
|
cannam@128
|
249 #ifdef Z_SOLO
|
cannam@128
|
250 return Z_STREAM_ERROR;
|
cannam@128
|
251 #else
|
cannam@128
|
252 strm->zfree = zcfree;
|
cannam@128
|
253 #endif
|
cannam@128
|
254
|
cannam@128
|
255 #ifdef FASTEST
|
cannam@128
|
256 if (level != 0) level = 1;
|
cannam@128
|
257 #else
|
cannam@128
|
258 if (level == Z_DEFAULT_COMPRESSION) level = 6;
|
cannam@128
|
259 #endif
|
cannam@128
|
260
|
cannam@128
|
261 if (windowBits < 0) { /* suppress zlib wrapper */
|
cannam@128
|
262 wrap = 0;
|
cannam@128
|
263 windowBits = -windowBits;
|
cannam@128
|
264 }
|
cannam@128
|
265 #ifdef GZIP
|
cannam@128
|
266 else if (windowBits > 15) {
|
cannam@128
|
267 wrap = 2; /* write gzip wrapper instead */
|
cannam@128
|
268 windowBits -= 16;
|
cannam@128
|
269 }
|
cannam@128
|
270 #endif
|
cannam@128
|
271 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
|
cannam@128
|
272 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
|
cannam@128
|
273 strategy < 0 || strategy > Z_FIXED) {
|
cannam@128
|
274 return Z_STREAM_ERROR;
|
cannam@128
|
275 }
|
cannam@128
|
276 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
|
cannam@128
|
277 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
|
cannam@128
|
278 if (s == Z_NULL) return Z_MEM_ERROR;
|
cannam@128
|
279 strm->state = (struct internal_state FAR *)s;
|
cannam@128
|
280 s->strm = strm;
|
cannam@128
|
281
|
cannam@128
|
282 s->wrap = wrap;
|
cannam@128
|
283 s->gzhead = Z_NULL;
|
cannam@128
|
284 s->w_bits = windowBits;
|
cannam@128
|
285 s->w_size = 1 << s->w_bits;
|
cannam@128
|
286 s->w_mask = s->w_size - 1;
|
cannam@128
|
287
|
cannam@128
|
288 s->hash_bits = memLevel + 7;
|
cannam@128
|
289 s->hash_size = 1 << s->hash_bits;
|
cannam@128
|
290 s->hash_mask = s->hash_size - 1;
|
cannam@128
|
291 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
|
cannam@128
|
292
|
cannam@128
|
293 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
|
cannam@128
|
294 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
|
cannam@128
|
295 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
|
cannam@128
|
296
|
cannam@128
|
297 s->high_water = 0; /* nothing written to s->window yet */
|
cannam@128
|
298
|
cannam@128
|
299 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
|
cannam@128
|
300
|
cannam@128
|
301 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
|
cannam@128
|
302 s->pending_buf = (uchf *) overlay;
|
cannam@128
|
303 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
|
cannam@128
|
304
|
cannam@128
|
305 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
|
cannam@128
|
306 s->pending_buf == Z_NULL) {
|
cannam@128
|
307 s->status = FINISH_STATE;
|
cannam@128
|
308 strm->msg = ERR_MSG(Z_MEM_ERROR);
|
cannam@128
|
309 deflateEnd (strm);
|
cannam@128
|
310 return Z_MEM_ERROR;
|
cannam@128
|
311 }
|
cannam@128
|
312 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
|
cannam@128
|
313 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
|
cannam@128
|
314
|
cannam@128
|
315 s->level = level;
|
cannam@128
|
316 s->strategy = strategy;
|
cannam@128
|
317 s->method = (Byte)method;
|
cannam@128
|
318
|
cannam@128
|
319 return deflateReset(strm);
|
cannam@128
|
320 }
|
cannam@128
|
321
|
cannam@128
|
322 /* ========================================================================= */
|
cannam@128
|
323 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
|
cannam@128
|
324 z_streamp strm;
|
cannam@128
|
325 const Bytef *dictionary;
|
cannam@128
|
326 uInt dictLength;
|
cannam@128
|
327 {
|
cannam@128
|
328 deflate_state *s;
|
cannam@128
|
329 uInt str, n;
|
cannam@128
|
330 int wrap;
|
cannam@128
|
331 unsigned avail;
|
cannam@128
|
332 z_const unsigned char *next;
|
cannam@128
|
333
|
cannam@128
|
334 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
|
cannam@128
|
335 return Z_STREAM_ERROR;
|
cannam@128
|
336 s = strm->state;
|
cannam@128
|
337 wrap = s->wrap;
|
cannam@128
|
338 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
|
cannam@128
|
339 return Z_STREAM_ERROR;
|
cannam@128
|
340
|
cannam@128
|
341 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
|
cannam@128
|
342 if (wrap == 1)
|
cannam@128
|
343 strm->adler = adler32(strm->adler, dictionary, dictLength);
|
cannam@128
|
344 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
|
cannam@128
|
345
|
cannam@128
|
346 /* if dictionary would fill window, just replace the history */
|
cannam@128
|
347 if (dictLength >= s->w_size) {
|
cannam@128
|
348 if (wrap == 0) { /* already empty otherwise */
|
cannam@128
|
349 CLEAR_HASH(s);
|
cannam@128
|
350 s->strstart = 0;
|
cannam@128
|
351 s->block_start = 0L;
|
cannam@128
|
352 s->insert = 0;
|
cannam@128
|
353 }
|
cannam@128
|
354 dictionary += dictLength - s->w_size; /* use the tail */
|
cannam@128
|
355 dictLength = s->w_size;
|
cannam@128
|
356 }
|
cannam@128
|
357
|
cannam@128
|
358 /* insert dictionary into window and hash */
|
cannam@128
|
359 avail = strm->avail_in;
|
cannam@128
|
360 next = strm->next_in;
|
cannam@128
|
361 strm->avail_in = dictLength;
|
cannam@128
|
362 strm->next_in = (z_const Bytef *)dictionary;
|
cannam@128
|
363 fill_window(s);
|
cannam@128
|
364 while (s->lookahead >= MIN_MATCH) {
|
cannam@128
|
365 str = s->strstart;
|
cannam@128
|
366 n = s->lookahead - (MIN_MATCH-1);
|
cannam@128
|
367 do {
|
cannam@128
|
368 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
|
cannam@128
|
369 #ifndef FASTEST
|
cannam@128
|
370 s->prev[str & s->w_mask] = s->head[s->ins_h];
|
cannam@128
|
371 #endif
|
cannam@128
|
372 s->head[s->ins_h] = (Pos)str;
|
cannam@128
|
373 str++;
|
cannam@128
|
374 } while (--n);
|
cannam@128
|
375 s->strstart = str;
|
cannam@128
|
376 s->lookahead = MIN_MATCH-1;
|
cannam@128
|
377 fill_window(s);
|
cannam@128
|
378 }
|
cannam@128
|
379 s->strstart += s->lookahead;
|
cannam@128
|
380 s->block_start = (long)s->strstart;
|
cannam@128
|
381 s->insert = s->lookahead;
|
cannam@128
|
382 s->lookahead = 0;
|
cannam@128
|
383 s->match_length = s->prev_length = MIN_MATCH-1;
|
cannam@128
|
384 s->match_available = 0;
|
cannam@128
|
385 strm->next_in = next;
|
cannam@128
|
386 strm->avail_in = avail;
|
cannam@128
|
387 s->wrap = wrap;
|
cannam@128
|
388 return Z_OK;
|
cannam@128
|
389 }
|
cannam@128
|
390
|
cannam@128
|
391 /* ========================================================================= */
|
cannam@128
|
392 int ZEXPORT deflateResetKeep (strm)
|
cannam@128
|
393 z_streamp strm;
|
cannam@128
|
394 {
|
cannam@128
|
395 deflate_state *s;
|
cannam@128
|
396
|
cannam@128
|
397 if (strm == Z_NULL || strm->state == Z_NULL ||
|
cannam@128
|
398 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
|
cannam@128
|
399 return Z_STREAM_ERROR;
|
cannam@128
|
400 }
|
cannam@128
|
401
|
cannam@128
|
402 strm->total_in = strm->total_out = 0;
|
cannam@128
|
403 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
|
cannam@128
|
404 strm->data_type = Z_UNKNOWN;
|
cannam@128
|
405
|
cannam@128
|
406 s = (deflate_state *)strm->state;
|
cannam@128
|
407 s->pending = 0;
|
cannam@128
|
408 s->pending_out = s->pending_buf;
|
cannam@128
|
409
|
cannam@128
|
410 if (s->wrap < 0) {
|
cannam@128
|
411 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
|
cannam@128
|
412 }
|
cannam@128
|
413 s->status = s->wrap ? INIT_STATE : BUSY_STATE;
|
cannam@128
|
414 strm->adler =
|
cannam@128
|
415 #ifdef GZIP
|
cannam@128
|
416 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
|
cannam@128
|
417 #endif
|
cannam@128
|
418 adler32(0L, Z_NULL, 0);
|
cannam@128
|
419 s->last_flush = Z_NO_FLUSH;
|
cannam@128
|
420
|
cannam@128
|
421 _tr_init(s);
|
cannam@128
|
422
|
cannam@128
|
423 return Z_OK;
|
cannam@128
|
424 }
|
cannam@128
|
425
|
cannam@128
|
426 /* ========================================================================= */
|
cannam@128
|
427 int ZEXPORT deflateReset (strm)
|
cannam@128
|
428 z_streamp strm;
|
cannam@128
|
429 {
|
cannam@128
|
430 int ret;
|
cannam@128
|
431
|
cannam@128
|
432 ret = deflateResetKeep(strm);
|
cannam@128
|
433 if (ret == Z_OK)
|
cannam@128
|
434 lm_init(strm->state);
|
cannam@128
|
435 return ret;
|
cannam@128
|
436 }
|
cannam@128
|
437
|
cannam@128
|
438 /* ========================================================================= */
|
cannam@128
|
439 int ZEXPORT deflateSetHeader (strm, head)
|
cannam@128
|
440 z_streamp strm;
|
cannam@128
|
441 gz_headerp head;
|
cannam@128
|
442 {
|
cannam@128
|
443 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
cannam@128
|
444 if (strm->state->wrap != 2) return Z_STREAM_ERROR;
|
cannam@128
|
445 strm->state->gzhead = head;
|
cannam@128
|
446 return Z_OK;
|
cannam@128
|
447 }
|
cannam@128
|
448
|
cannam@128
|
449 /* ========================================================================= */
|
cannam@128
|
450 int ZEXPORT deflatePending (strm, pending, bits)
|
cannam@128
|
451 unsigned *pending;
|
cannam@128
|
452 int *bits;
|
cannam@128
|
453 z_streamp strm;
|
cannam@128
|
454 {
|
cannam@128
|
455 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
cannam@128
|
456 if (pending != Z_NULL)
|
cannam@128
|
457 *pending = strm->state->pending;
|
cannam@128
|
458 if (bits != Z_NULL)
|
cannam@128
|
459 *bits = strm->state->bi_valid;
|
cannam@128
|
460 return Z_OK;
|
cannam@128
|
461 }
|
cannam@128
|
462
|
cannam@128
|
463 /* ========================================================================= */
|
cannam@128
|
464 int ZEXPORT deflatePrime (strm, bits, value)
|
cannam@128
|
465 z_streamp strm;
|
cannam@128
|
466 int bits;
|
cannam@128
|
467 int value;
|
cannam@128
|
468 {
|
cannam@128
|
469 deflate_state *s;
|
cannam@128
|
470 int put;
|
cannam@128
|
471
|
cannam@128
|
472 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
cannam@128
|
473 s = strm->state;
|
cannam@128
|
474 if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
|
cannam@128
|
475 return Z_BUF_ERROR;
|
cannam@128
|
476 do {
|
cannam@128
|
477 put = Buf_size - s->bi_valid;
|
cannam@128
|
478 if (put > bits)
|
cannam@128
|
479 put = bits;
|
cannam@128
|
480 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
|
cannam@128
|
481 s->bi_valid += put;
|
cannam@128
|
482 _tr_flush_bits(s);
|
cannam@128
|
483 value >>= put;
|
cannam@128
|
484 bits -= put;
|
cannam@128
|
485 } while (bits);
|
cannam@128
|
486 return Z_OK;
|
cannam@128
|
487 }
|
cannam@128
|
488
|
cannam@128
|
489 /* ========================================================================= */
|
cannam@128
|
490 int ZEXPORT deflateParams(strm, level, strategy)
|
cannam@128
|
491 z_streamp strm;
|
cannam@128
|
492 int level;
|
cannam@128
|
493 int strategy;
|
cannam@128
|
494 {
|
cannam@128
|
495 deflate_state *s;
|
cannam@128
|
496 compress_func func;
|
cannam@128
|
497 int err = Z_OK;
|
cannam@128
|
498
|
cannam@128
|
499 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
cannam@128
|
500 s = strm->state;
|
cannam@128
|
501
|
cannam@128
|
502 #ifdef FASTEST
|
cannam@128
|
503 if (level != 0) level = 1;
|
cannam@128
|
504 #else
|
cannam@128
|
505 if (level == Z_DEFAULT_COMPRESSION) level = 6;
|
cannam@128
|
506 #endif
|
cannam@128
|
507 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
|
cannam@128
|
508 return Z_STREAM_ERROR;
|
cannam@128
|
509 }
|
cannam@128
|
510 func = configuration_table[s->level].func;
|
cannam@128
|
511
|
cannam@128
|
512 if ((strategy != s->strategy || func != configuration_table[level].func) &&
|
cannam@128
|
513 strm->total_in != 0) {
|
cannam@128
|
514 /* Flush the last buffer: */
|
cannam@128
|
515 err = deflate(strm, Z_BLOCK);
|
cannam@128
|
516 if (err == Z_BUF_ERROR && s->pending == 0)
|
cannam@128
|
517 err = Z_OK;
|
cannam@128
|
518 }
|
cannam@128
|
519 if (s->level != level) {
|
cannam@128
|
520 s->level = level;
|
cannam@128
|
521 s->max_lazy_match = configuration_table[level].max_lazy;
|
cannam@128
|
522 s->good_match = configuration_table[level].good_length;
|
cannam@128
|
523 s->nice_match = configuration_table[level].nice_length;
|
cannam@128
|
524 s->max_chain_length = configuration_table[level].max_chain;
|
cannam@128
|
525 }
|
cannam@128
|
526 s->strategy = strategy;
|
cannam@128
|
527 return err;
|
cannam@128
|
528 }
|
cannam@128
|
529
|
cannam@128
|
530 /* ========================================================================= */
|
cannam@128
|
531 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
|
cannam@128
|
532 z_streamp strm;
|
cannam@128
|
533 int good_length;
|
cannam@128
|
534 int max_lazy;
|
cannam@128
|
535 int nice_length;
|
cannam@128
|
536 int max_chain;
|
cannam@128
|
537 {
|
cannam@128
|
538 deflate_state *s;
|
cannam@128
|
539
|
cannam@128
|
540 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
cannam@128
|
541 s = strm->state;
|
cannam@128
|
542 s->good_match = good_length;
|
cannam@128
|
543 s->max_lazy_match = max_lazy;
|
cannam@128
|
544 s->nice_match = nice_length;
|
cannam@128
|
545 s->max_chain_length = max_chain;
|
cannam@128
|
546 return Z_OK;
|
cannam@128
|
547 }
|
cannam@128
|
548
|
cannam@128
|
549 /* =========================================================================
|
cannam@128
|
550 * For the default windowBits of 15 and memLevel of 8, this function returns
|
cannam@128
|
551 * a close to exact, as well as small, upper bound on the compressed size.
|
cannam@128
|
552 * They are coded as constants here for a reason--if the #define's are
|
cannam@128
|
553 * changed, then this function needs to be changed as well. The return
|
cannam@128
|
554 * value for 15 and 8 only works for those exact settings.
|
cannam@128
|
555 *
|
cannam@128
|
556 * For any setting other than those defaults for windowBits and memLevel,
|
cannam@128
|
557 * the value returned is a conservative worst case for the maximum expansion
|
cannam@128
|
558 * resulting from using fixed blocks instead of stored blocks, which deflate
|
cannam@128
|
559 * can emit on compressed data for some combinations of the parameters.
|
cannam@128
|
560 *
|
cannam@128
|
561 * This function could be more sophisticated to provide closer upper bounds for
|
cannam@128
|
562 * every combination of windowBits and memLevel. But even the conservative
|
cannam@128
|
563 * upper bound of about 14% expansion does not seem onerous for output buffer
|
cannam@128
|
564 * allocation.
|
cannam@128
|
565 */
|
cannam@128
|
566 uLong ZEXPORT deflateBound(strm, sourceLen)
|
cannam@128
|
567 z_streamp strm;
|
cannam@128
|
568 uLong sourceLen;
|
cannam@128
|
569 {
|
cannam@128
|
570 deflate_state *s;
|
cannam@128
|
571 uLong complen, wraplen;
|
cannam@128
|
572 Bytef *str;
|
cannam@128
|
573
|
cannam@128
|
574 /* conservative upper bound for compressed data */
|
cannam@128
|
575 complen = sourceLen +
|
cannam@128
|
576 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
|
cannam@128
|
577
|
cannam@128
|
578 /* if can't get parameters, return conservative bound plus zlib wrapper */
|
cannam@128
|
579 if (strm == Z_NULL || strm->state == Z_NULL)
|
cannam@128
|
580 return complen + 6;
|
cannam@128
|
581
|
cannam@128
|
582 /* compute wrapper length */
|
cannam@128
|
583 s = strm->state;
|
cannam@128
|
584 switch (s->wrap) {
|
cannam@128
|
585 case 0: /* raw deflate */
|
cannam@128
|
586 wraplen = 0;
|
cannam@128
|
587 break;
|
cannam@128
|
588 case 1: /* zlib wrapper */
|
cannam@128
|
589 wraplen = 6 + (s->strstart ? 4 : 0);
|
cannam@128
|
590 break;
|
cannam@128
|
591 case 2: /* gzip wrapper */
|
cannam@128
|
592 wraplen = 18;
|
cannam@128
|
593 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
|
cannam@128
|
594 if (s->gzhead->extra != Z_NULL)
|
cannam@128
|
595 wraplen += 2 + s->gzhead->extra_len;
|
cannam@128
|
596 str = s->gzhead->name;
|
cannam@128
|
597 if (str != Z_NULL)
|
cannam@128
|
598 do {
|
cannam@128
|
599 wraplen++;
|
cannam@128
|
600 } while (*str++);
|
cannam@128
|
601 str = s->gzhead->comment;
|
cannam@128
|
602 if (str != Z_NULL)
|
cannam@128
|
603 do {
|
cannam@128
|
604 wraplen++;
|
cannam@128
|
605 } while (*str++);
|
cannam@128
|
606 if (s->gzhead->hcrc)
|
cannam@128
|
607 wraplen += 2;
|
cannam@128
|
608 }
|
cannam@128
|
609 break;
|
cannam@128
|
610 default: /* for compiler happiness */
|
cannam@128
|
611 wraplen = 6;
|
cannam@128
|
612 }
|
cannam@128
|
613
|
cannam@128
|
614 /* if not default parameters, return conservative bound */
|
cannam@128
|
615 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
|
cannam@128
|
616 return complen + wraplen;
|
cannam@128
|
617
|
cannam@128
|
618 /* default settings: return tight bound for that case */
|
cannam@128
|
619 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
|
cannam@128
|
620 (sourceLen >> 25) + 13 - 6 + wraplen;
|
cannam@128
|
621 }
|
cannam@128
|
622
|
cannam@128
|
623 /* =========================================================================
|
cannam@128
|
624 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
|
cannam@128
|
625 * IN assertion: the stream state is correct and there is enough room in
|
cannam@128
|
626 * pending_buf.
|
cannam@128
|
627 */
|
cannam@128
|
628 local void putShortMSB (s, b)
|
cannam@128
|
629 deflate_state *s;
|
cannam@128
|
630 uInt b;
|
cannam@128
|
631 {
|
cannam@128
|
632 put_byte(s, (Byte)(b >> 8));
|
cannam@128
|
633 put_byte(s, (Byte)(b & 0xff));
|
cannam@128
|
634 }
|
cannam@128
|
635
|
cannam@128
|
636 /* =========================================================================
|
cannam@128
|
637 * Flush as much pending output as possible. All deflate() output goes
|
cannam@128
|
638 * through this function so some applications may wish to modify it
|
cannam@128
|
639 * to avoid allocating a large strm->next_out buffer and copying into it.
|
cannam@128
|
640 * (See also read_buf()).
|
cannam@128
|
641 */
|
cannam@128
|
642 local void flush_pending(strm)
|
cannam@128
|
643 z_streamp strm;
|
cannam@128
|
644 {
|
cannam@128
|
645 unsigned len;
|
cannam@128
|
646 deflate_state *s = strm->state;
|
cannam@128
|
647
|
cannam@128
|
648 _tr_flush_bits(s);
|
cannam@128
|
649 len = s->pending;
|
cannam@128
|
650 if (len > strm->avail_out) len = strm->avail_out;
|
cannam@128
|
651 if (len == 0) return;
|
cannam@128
|
652
|
cannam@128
|
653 zmemcpy(strm->next_out, s->pending_out, len);
|
cannam@128
|
654 strm->next_out += len;
|
cannam@128
|
655 s->pending_out += len;
|
cannam@128
|
656 strm->total_out += len;
|
cannam@128
|
657 strm->avail_out -= len;
|
cannam@128
|
658 s->pending -= len;
|
cannam@128
|
659 if (s->pending == 0) {
|
cannam@128
|
660 s->pending_out = s->pending_buf;
|
cannam@128
|
661 }
|
cannam@128
|
662 }
|
cannam@128
|
663
|
cannam@128
|
664 /* ========================================================================= */
|
cannam@128
|
665 int ZEXPORT deflate (strm, flush)
|
cannam@128
|
666 z_streamp strm;
|
cannam@128
|
667 int flush;
|
cannam@128
|
668 {
|
cannam@128
|
669 int old_flush; /* value of flush param for previous deflate call */
|
cannam@128
|
670 deflate_state *s;
|
cannam@128
|
671
|
cannam@128
|
672 if (strm == Z_NULL || strm->state == Z_NULL ||
|
cannam@128
|
673 flush > Z_BLOCK || flush < 0) {
|
cannam@128
|
674 return Z_STREAM_ERROR;
|
cannam@128
|
675 }
|
cannam@128
|
676 s = strm->state;
|
cannam@128
|
677
|
cannam@128
|
678 if (strm->next_out == Z_NULL ||
|
cannam@128
|
679 (strm->next_in == Z_NULL && strm->avail_in != 0) ||
|
cannam@128
|
680 (s->status == FINISH_STATE && flush != Z_FINISH)) {
|
cannam@128
|
681 ERR_RETURN(strm, Z_STREAM_ERROR);
|
cannam@128
|
682 }
|
cannam@128
|
683 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
|
cannam@128
|
684
|
cannam@128
|
685 s->strm = strm; /* just in case */
|
cannam@128
|
686 old_flush = s->last_flush;
|
cannam@128
|
687 s->last_flush = flush;
|
cannam@128
|
688
|
cannam@128
|
689 /* Write the header */
|
cannam@128
|
690 if (s->status == INIT_STATE) {
|
cannam@128
|
691 #ifdef GZIP
|
cannam@128
|
692 if (s->wrap == 2) {
|
cannam@128
|
693 strm->adler = crc32(0L, Z_NULL, 0);
|
cannam@128
|
694 put_byte(s, 31);
|
cannam@128
|
695 put_byte(s, 139);
|
cannam@128
|
696 put_byte(s, 8);
|
cannam@128
|
697 if (s->gzhead == Z_NULL) {
|
cannam@128
|
698 put_byte(s, 0);
|
cannam@128
|
699 put_byte(s, 0);
|
cannam@128
|
700 put_byte(s, 0);
|
cannam@128
|
701 put_byte(s, 0);
|
cannam@128
|
702 put_byte(s, 0);
|
cannam@128
|
703 put_byte(s, s->level == 9 ? 2 :
|
cannam@128
|
704 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
|
cannam@128
|
705 4 : 0));
|
cannam@128
|
706 put_byte(s, OS_CODE);
|
cannam@128
|
707 s->status = BUSY_STATE;
|
cannam@128
|
708 }
|
cannam@128
|
709 else {
|
cannam@128
|
710 put_byte(s, (s->gzhead->text ? 1 : 0) +
|
cannam@128
|
711 (s->gzhead->hcrc ? 2 : 0) +
|
cannam@128
|
712 (s->gzhead->extra == Z_NULL ? 0 : 4) +
|
cannam@128
|
713 (s->gzhead->name == Z_NULL ? 0 : 8) +
|
cannam@128
|
714 (s->gzhead->comment == Z_NULL ? 0 : 16)
|
cannam@128
|
715 );
|
cannam@128
|
716 put_byte(s, (Byte)(s->gzhead->time & 0xff));
|
cannam@128
|
717 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
|
cannam@128
|
718 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
|
cannam@128
|
719 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
|
cannam@128
|
720 put_byte(s, s->level == 9 ? 2 :
|
cannam@128
|
721 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
|
cannam@128
|
722 4 : 0));
|
cannam@128
|
723 put_byte(s, s->gzhead->os & 0xff);
|
cannam@128
|
724 if (s->gzhead->extra != Z_NULL) {
|
cannam@128
|
725 put_byte(s, s->gzhead->extra_len & 0xff);
|
cannam@128
|
726 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
|
cannam@128
|
727 }
|
cannam@128
|
728 if (s->gzhead->hcrc)
|
cannam@128
|
729 strm->adler = crc32(strm->adler, s->pending_buf,
|
cannam@128
|
730 s->pending);
|
cannam@128
|
731 s->gzindex = 0;
|
cannam@128
|
732 s->status = EXTRA_STATE;
|
cannam@128
|
733 }
|
cannam@128
|
734 }
|
cannam@128
|
735 else
|
cannam@128
|
736 #endif
|
cannam@128
|
737 {
|
cannam@128
|
738 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
|
cannam@128
|
739 uInt level_flags;
|
cannam@128
|
740
|
cannam@128
|
741 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
|
cannam@128
|
742 level_flags = 0;
|
cannam@128
|
743 else if (s->level < 6)
|
cannam@128
|
744 level_flags = 1;
|
cannam@128
|
745 else if (s->level == 6)
|
cannam@128
|
746 level_flags = 2;
|
cannam@128
|
747 else
|
cannam@128
|
748 level_flags = 3;
|
cannam@128
|
749 header |= (level_flags << 6);
|
cannam@128
|
750 if (s->strstart != 0) header |= PRESET_DICT;
|
cannam@128
|
751 header += 31 - (header % 31);
|
cannam@128
|
752
|
cannam@128
|
753 s->status = BUSY_STATE;
|
cannam@128
|
754 putShortMSB(s, header);
|
cannam@128
|
755
|
cannam@128
|
756 /* Save the adler32 of the preset dictionary: */
|
cannam@128
|
757 if (s->strstart != 0) {
|
cannam@128
|
758 putShortMSB(s, (uInt)(strm->adler >> 16));
|
cannam@128
|
759 putShortMSB(s, (uInt)(strm->adler & 0xffff));
|
cannam@128
|
760 }
|
cannam@128
|
761 strm->adler = adler32(0L, Z_NULL, 0);
|
cannam@128
|
762 }
|
cannam@128
|
763 }
|
cannam@128
|
764 #ifdef GZIP
|
cannam@128
|
765 if (s->status == EXTRA_STATE) {
|
cannam@128
|
766 if (s->gzhead->extra != Z_NULL) {
|
cannam@128
|
767 uInt beg = s->pending; /* start of bytes to update crc */
|
cannam@128
|
768
|
cannam@128
|
769 while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
|
cannam@128
|
770 if (s->pending == s->pending_buf_size) {
|
cannam@128
|
771 if (s->gzhead->hcrc && s->pending > beg)
|
cannam@128
|
772 strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
cannam@128
|
773 s->pending - beg);
|
cannam@128
|
774 flush_pending(strm);
|
cannam@128
|
775 beg = s->pending;
|
cannam@128
|
776 if (s->pending == s->pending_buf_size)
|
cannam@128
|
777 break;
|
cannam@128
|
778 }
|
cannam@128
|
779 put_byte(s, s->gzhead->extra[s->gzindex]);
|
cannam@128
|
780 s->gzindex++;
|
cannam@128
|
781 }
|
cannam@128
|
782 if (s->gzhead->hcrc && s->pending > beg)
|
cannam@128
|
783 strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
cannam@128
|
784 s->pending - beg);
|
cannam@128
|
785 if (s->gzindex == s->gzhead->extra_len) {
|
cannam@128
|
786 s->gzindex = 0;
|
cannam@128
|
787 s->status = NAME_STATE;
|
cannam@128
|
788 }
|
cannam@128
|
789 }
|
cannam@128
|
790 else
|
cannam@128
|
791 s->status = NAME_STATE;
|
cannam@128
|
792 }
|
cannam@128
|
793 if (s->status == NAME_STATE) {
|
cannam@128
|
794 if (s->gzhead->name != Z_NULL) {
|
cannam@128
|
795 uInt beg = s->pending; /* start of bytes to update crc */
|
cannam@128
|
796 int val;
|
cannam@128
|
797
|
cannam@128
|
798 do {
|
cannam@128
|
799 if (s->pending == s->pending_buf_size) {
|
cannam@128
|
800 if (s->gzhead->hcrc && s->pending > beg)
|
cannam@128
|
801 strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
cannam@128
|
802 s->pending - beg);
|
cannam@128
|
803 flush_pending(strm);
|
cannam@128
|
804 beg = s->pending;
|
cannam@128
|
805 if (s->pending == s->pending_buf_size) {
|
cannam@128
|
806 val = 1;
|
cannam@128
|
807 break;
|
cannam@128
|
808 }
|
cannam@128
|
809 }
|
cannam@128
|
810 val = s->gzhead->name[s->gzindex++];
|
cannam@128
|
811 put_byte(s, val);
|
cannam@128
|
812 } while (val != 0);
|
cannam@128
|
813 if (s->gzhead->hcrc && s->pending > beg)
|
cannam@128
|
814 strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
cannam@128
|
815 s->pending - beg);
|
cannam@128
|
816 if (val == 0) {
|
cannam@128
|
817 s->gzindex = 0;
|
cannam@128
|
818 s->status = COMMENT_STATE;
|
cannam@128
|
819 }
|
cannam@128
|
820 }
|
cannam@128
|
821 else
|
cannam@128
|
822 s->status = COMMENT_STATE;
|
cannam@128
|
823 }
|
cannam@128
|
824 if (s->status == COMMENT_STATE) {
|
cannam@128
|
825 if (s->gzhead->comment != Z_NULL) {
|
cannam@128
|
826 uInt beg = s->pending; /* start of bytes to update crc */
|
cannam@128
|
827 int val;
|
cannam@128
|
828
|
cannam@128
|
829 do {
|
cannam@128
|
830 if (s->pending == s->pending_buf_size) {
|
cannam@128
|
831 if (s->gzhead->hcrc && s->pending > beg)
|
cannam@128
|
832 strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
cannam@128
|
833 s->pending - beg);
|
cannam@128
|
834 flush_pending(strm);
|
cannam@128
|
835 beg = s->pending;
|
cannam@128
|
836 if (s->pending == s->pending_buf_size) {
|
cannam@128
|
837 val = 1;
|
cannam@128
|
838 break;
|
cannam@128
|
839 }
|
cannam@128
|
840 }
|
cannam@128
|
841 val = s->gzhead->comment[s->gzindex++];
|
cannam@128
|
842 put_byte(s, val);
|
cannam@128
|
843 } while (val != 0);
|
cannam@128
|
844 if (s->gzhead->hcrc && s->pending > beg)
|
cannam@128
|
845 strm->adler = crc32(strm->adler, s->pending_buf + beg,
|
cannam@128
|
846 s->pending - beg);
|
cannam@128
|
847 if (val == 0)
|
cannam@128
|
848 s->status = HCRC_STATE;
|
cannam@128
|
849 }
|
cannam@128
|
850 else
|
cannam@128
|
851 s->status = HCRC_STATE;
|
cannam@128
|
852 }
|
cannam@128
|
853 if (s->status == HCRC_STATE) {
|
cannam@128
|
854 if (s->gzhead->hcrc) {
|
cannam@128
|
855 if (s->pending + 2 > s->pending_buf_size)
|
cannam@128
|
856 flush_pending(strm);
|
cannam@128
|
857 if (s->pending + 2 <= s->pending_buf_size) {
|
cannam@128
|
858 put_byte(s, (Byte)(strm->adler & 0xff));
|
cannam@128
|
859 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
|
cannam@128
|
860 strm->adler = crc32(0L, Z_NULL, 0);
|
cannam@128
|
861 s->status = BUSY_STATE;
|
cannam@128
|
862 }
|
cannam@128
|
863 }
|
cannam@128
|
864 else
|
cannam@128
|
865 s->status = BUSY_STATE;
|
cannam@128
|
866 }
|
cannam@128
|
867 #endif
|
cannam@128
|
868
|
cannam@128
|
869 /* Flush as much pending output as possible */
|
cannam@128
|
870 if (s->pending != 0) {
|
cannam@128
|
871 flush_pending(strm);
|
cannam@128
|
872 if (strm->avail_out == 0) {
|
cannam@128
|
873 /* Since avail_out is 0, deflate will be called again with
|
cannam@128
|
874 * more output space, but possibly with both pending and
|
cannam@128
|
875 * avail_in equal to zero. There won't be anything to do,
|
cannam@128
|
876 * but this is not an error situation so make sure we
|
cannam@128
|
877 * return OK instead of BUF_ERROR at next call of deflate:
|
cannam@128
|
878 */
|
cannam@128
|
879 s->last_flush = -1;
|
cannam@128
|
880 return Z_OK;
|
cannam@128
|
881 }
|
cannam@128
|
882
|
cannam@128
|
883 /* Make sure there is something to do and avoid duplicate consecutive
|
cannam@128
|
884 * flushes. For repeated and useless calls with Z_FINISH, we keep
|
cannam@128
|
885 * returning Z_STREAM_END instead of Z_BUF_ERROR.
|
cannam@128
|
886 */
|
cannam@128
|
887 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
|
cannam@128
|
888 flush != Z_FINISH) {
|
cannam@128
|
889 ERR_RETURN(strm, Z_BUF_ERROR);
|
cannam@128
|
890 }
|
cannam@128
|
891
|
cannam@128
|
892 /* User must not provide more input after the first FINISH: */
|
cannam@128
|
893 if (s->status == FINISH_STATE && strm->avail_in != 0) {
|
cannam@128
|
894 ERR_RETURN(strm, Z_BUF_ERROR);
|
cannam@128
|
895 }
|
cannam@128
|
896
|
cannam@128
|
897 /* Start a new block or continue the current one.
|
cannam@128
|
898 */
|
cannam@128
|
899 if (strm->avail_in != 0 || s->lookahead != 0 ||
|
cannam@128
|
900 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
|
cannam@128
|
901 block_state bstate;
|
cannam@128
|
902
|
cannam@128
|
903 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
|
cannam@128
|
904 (s->strategy == Z_RLE ? deflate_rle(s, flush) :
|
cannam@128
|
905 (*(configuration_table[s->level].func))(s, flush));
|
cannam@128
|
906
|
cannam@128
|
907 if (bstate == finish_started || bstate == finish_done) {
|
cannam@128
|
908 s->status = FINISH_STATE;
|
cannam@128
|
909 }
|
cannam@128
|
910 if (bstate == need_more || bstate == finish_started) {
|
cannam@128
|
911 if (strm->avail_out == 0) {
|
cannam@128
|
912 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
|
cannam@128
|
913 }
|
cannam@128
|
914 return Z_OK;
|
cannam@128
|
915 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
|
cannam@128
|
916 * of deflate should use the same flush parameter to make sure
|
cannam@128
|
917 * that the flush is complete. So we don't have to output an
|
cannam@128
|
918 * empty block here, this will be done at next call. This also
|
cannam@128
|
919 * ensures that for a very small output buffer, we emit at most
|
cannam@128
|
920 * one empty block.
|
cannam@128
|
921 */
|
cannam@128
|
922 }
|
cannam@128
|
923 if (bstate == block_done) {
|
cannam@128
|
924 if (flush == Z_PARTIAL_FLUSH) {
|
cannam@128
|
925 _tr_align(s);
|
cannam@128
|
926 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
|
cannam@128
|
927 _tr_stored_block(s, (char*)0, 0L, 0);
|
cannam@128
|
928 /* For a full flush, this empty block will be recognized
|
cannam@128
|
929 * as a special marker by inflate_sync().
|
cannam@128
|
930 */
|
cannam@128
|
931 if (flush == Z_FULL_FLUSH) {
|
cannam@128
|
932 CLEAR_HASH(s); /* forget history */
|
cannam@128
|
933 if (s->lookahead == 0) {
|
cannam@128
|
934 s->strstart = 0;
|
cannam@128
|
935 s->block_start = 0L;
|
cannam@128
|
936 s->insert = 0;
|
cannam@128
|
937 }
|
cannam@128
|
938 }
|
cannam@128
|
939 }
|
cannam@128
|
940 flush_pending(strm);
|
cannam@128
|
941 if (strm->avail_out == 0) {
|
cannam@128
|
942 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
|
cannam@128
|
943 return Z_OK;
|
cannam@128
|
944 }
|
cannam@128
|
945 }
|
cannam@128
|
946 }
|
cannam@128
|
947 Assert(strm->avail_out > 0, "bug2");
|
cannam@128
|
948
|
cannam@128
|
949 if (flush != Z_FINISH) return Z_OK;
|
cannam@128
|
950 if (s->wrap <= 0) return Z_STREAM_END;
|
cannam@128
|
951
|
cannam@128
|
952 /* Write the trailer */
|
cannam@128
|
953 #ifdef GZIP
|
cannam@128
|
954 if (s->wrap == 2) {
|
cannam@128
|
955 put_byte(s, (Byte)(strm->adler & 0xff));
|
cannam@128
|
956 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
|
cannam@128
|
957 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
|
cannam@128
|
958 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
|
cannam@128
|
959 put_byte(s, (Byte)(strm->total_in & 0xff));
|
cannam@128
|
960 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
|
cannam@128
|
961 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
|
cannam@128
|
962 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
|
cannam@128
|
963 }
|
cannam@128
|
964 else
|
cannam@128
|
965 #endif
|
cannam@128
|
966 {
|
cannam@128
|
967 putShortMSB(s, (uInt)(strm->adler >> 16));
|
cannam@128
|
968 putShortMSB(s, (uInt)(strm->adler & 0xffff));
|
cannam@128
|
969 }
|
cannam@128
|
970 flush_pending(strm);
|
cannam@128
|
971 /* If avail_out is zero, the application will call deflate again
|
cannam@128
|
972 * to flush the rest.
|
cannam@128
|
973 */
|
cannam@128
|
974 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
|
cannam@128
|
975 return s->pending != 0 ? Z_OK : Z_STREAM_END;
|
cannam@128
|
976 }
|
cannam@128
|
977
|
cannam@128
|
978 /* ========================================================================= */
|
cannam@128
|
979 int ZEXPORT deflateEnd (strm)
|
cannam@128
|
980 z_streamp strm;
|
cannam@128
|
981 {
|
cannam@128
|
982 int status;
|
cannam@128
|
983
|
cannam@128
|
984 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
|
cannam@128
|
985
|
cannam@128
|
986 status = strm->state->status;
|
cannam@128
|
987 if (status != INIT_STATE &&
|
cannam@128
|
988 status != EXTRA_STATE &&
|
cannam@128
|
989 status != NAME_STATE &&
|
cannam@128
|
990 status != COMMENT_STATE &&
|
cannam@128
|
991 status != HCRC_STATE &&
|
cannam@128
|
992 status != BUSY_STATE &&
|
cannam@128
|
993 status != FINISH_STATE) {
|
cannam@128
|
994 return Z_STREAM_ERROR;
|
cannam@128
|
995 }
|
cannam@128
|
996
|
cannam@128
|
997 /* Deallocate in reverse order of allocations: */
|
cannam@128
|
998 TRY_FREE(strm, strm->state->pending_buf);
|
cannam@128
|
999 TRY_FREE(strm, strm->state->head);
|
cannam@128
|
1000 TRY_FREE(strm, strm->state->prev);
|
cannam@128
|
1001 TRY_FREE(strm, strm->state->window);
|
cannam@128
|
1002
|
cannam@128
|
1003 ZFREE(strm, strm->state);
|
cannam@128
|
1004 strm->state = Z_NULL;
|
cannam@128
|
1005
|
cannam@128
|
1006 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
|
cannam@128
|
1007 }
|
cannam@128
|
1008
|
cannam@128
|
1009 /* =========================================================================
|
cannam@128
|
1010 * Copy the source state to the destination state.
|
cannam@128
|
1011 * To simplify the source, this is not supported for 16-bit MSDOS (which
|
cannam@128
|
1012 * doesn't have enough memory anyway to duplicate compression states).
|
cannam@128
|
1013 */
|
cannam@128
|
1014 int ZEXPORT deflateCopy (dest, source)
|
cannam@128
|
1015 z_streamp dest;
|
cannam@128
|
1016 z_streamp source;
|
cannam@128
|
1017 {
|
cannam@128
|
1018 #ifdef MAXSEG_64K
|
cannam@128
|
1019 return Z_STREAM_ERROR;
|
cannam@128
|
1020 #else
|
cannam@128
|
1021 deflate_state *ds;
|
cannam@128
|
1022 deflate_state *ss;
|
cannam@128
|
1023 ushf *overlay;
|
cannam@128
|
1024
|
cannam@128
|
1025
|
cannam@128
|
1026 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
|
cannam@128
|
1027 return Z_STREAM_ERROR;
|
cannam@128
|
1028 }
|
cannam@128
|
1029
|
cannam@128
|
1030 ss = source->state;
|
cannam@128
|
1031
|
cannam@128
|
1032 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
|
cannam@128
|
1033
|
cannam@128
|
1034 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
|
cannam@128
|
1035 if (ds == Z_NULL) return Z_MEM_ERROR;
|
cannam@128
|
1036 dest->state = (struct internal_state FAR *) ds;
|
cannam@128
|
1037 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
|
cannam@128
|
1038 ds->strm = dest;
|
cannam@128
|
1039
|
cannam@128
|
1040 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
|
cannam@128
|
1041 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
|
cannam@128
|
1042 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
|
cannam@128
|
1043 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
|
cannam@128
|
1044 ds->pending_buf = (uchf *) overlay;
|
cannam@128
|
1045
|
cannam@128
|
1046 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
|
cannam@128
|
1047 ds->pending_buf == Z_NULL) {
|
cannam@128
|
1048 deflateEnd (dest);
|
cannam@128
|
1049 return Z_MEM_ERROR;
|
cannam@128
|
1050 }
|
cannam@128
|
1051 /* following zmemcpy do not work for 16-bit MSDOS */
|
cannam@128
|
1052 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
|
cannam@128
|
1053 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
|
cannam@128
|
1054 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
|
cannam@128
|
1055 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
|
cannam@128
|
1056
|
cannam@128
|
1057 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
|
cannam@128
|
1058 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
|
cannam@128
|
1059 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
|
cannam@128
|
1060
|
cannam@128
|
1061 ds->l_desc.dyn_tree = ds->dyn_ltree;
|
cannam@128
|
1062 ds->d_desc.dyn_tree = ds->dyn_dtree;
|
cannam@128
|
1063 ds->bl_desc.dyn_tree = ds->bl_tree;
|
cannam@128
|
1064
|
cannam@128
|
1065 return Z_OK;
|
cannam@128
|
1066 #endif /* MAXSEG_64K */
|
cannam@128
|
1067 }
|
cannam@128
|
1068
|
cannam@128
|
1069 /* ===========================================================================
|
cannam@128
|
1070 * Read a new buffer from the current input stream, update the adler32
|
cannam@128
|
1071 * and total number of bytes read. All deflate() input goes through
|
cannam@128
|
1072 * this function so some applications may wish to modify it to avoid
|
cannam@128
|
1073 * allocating a large strm->next_in buffer and copying from it.
|
cannam@128
|
1074 * (See also flush_pending()).
|
cannam@128
|
1075 */
|
cannam@128
|
1076 local int read_buf(strm, buf, size)
|
cannam@128
|
1077 z_streamp strm;
|
cannam@128
|
1078 Bytef *buf;
|
cannam@128
|
1079 unsigned size;
|
cannam@128
|
1080 {
|
cannam@128
|
1081 unsigned len = strm->avail_in;
|
cannam@128
|
1082
|
cannam@128
|
1083 if (len > size) len = size;
|
cannam@128
|
1084 if (len == 0) return 0;
|
cannam@128
|
1085
|
cannam@128
|
1086 strm->avail_in -= len;
|
cannam@128
|
1087
|
cannam@128
|
1088 zmemcpy(buf, strm->next_in, len);
|
cannam@128
|
1089 if (strm->state->wrap == 1) {
|
cannam@128
|
1090 strm->adler = adler32(strm->adler, buf, len);
|
cannam@128
|
1091 }
|
cannam@128
|
1092 #ifdef GZIP
|
cannam@128
|
1093 else if (strm->state->wrap == 2) {
|
cannam@128
|
1094 strm->adler = crc32(strm->adler, buf, len);
|
cannam@128
|
1095 }
|
cannam@128
|
1096 #endif
|
cannam@128
|
1097 strm->next_in += len;
|
cannam@128
|
1098 strm->total_in += len;
|
cannam@128
|
1099
|
cannam@128
|
1100 return (int)len;
|
cannam@128
|
1101 }
|
cannam@128
|
1102
|
cannam@128
|
1103 /* ===========================================================================
|
cannam@128
|
1104 * Initialize the "longest match" routines for a new zlib stream
|
cannam@128
|
1105 */
|
cannam@128
|
1106 local void lm_init (s)
|
cannam@128
|
1107 deflate_state *s;
|
cannam@128
|
1108 {
|
cannam@128
|
1109 s->window_size = (ulg)2L*s->w_size;
|
cannam@128
|
1110
|
cannam@128
|
1111 CLEAR_HASH(s);
|
cannam@128
|
1112
|
cannam@128
|
1113 /* Set the default configuration parameters:
|
cannam@128
|
1114 */
|
cannam@128
|
1115 s->max_lazy_match = configuration_table[s->level].max_lazy;
|
cannam@128
|
1116 s->good_match = configuration_table[s->level].good_length;
|
cannam@128
|
1117 s->nice_match = configuration_table[s->level].nice_length;
|
cannam@128
|
1118 s->max_chain_length = configuration_table[s->level].max_chain;
|
cannam@128
|
1119
|
cannam@128
|
1120 s->strstart = 0;
|
cannam@128
|
1121 s->block_start = 0L;
|
cannam@128
|
1122 s->lookahead = 0;
|
cannam@128
|
1123 s->insert = 0;
|
cannam@128
|
1124 s->match_length = s->prev_length = MIN_MATCH-1;
|
cannam@128
|
1125 s->match_available = 0;
|
cannam@128
|
1126 s->ins_h = 0;
|
cannam@128
|
1127 #ifndef FASTEST
|
cannam@128
|
1128 #ifdef ASMV
|
cannam@128
|
1129 match_init(); /* initialize the asm code */
|
cannam@128
|
1130 #endif
|
cannam@128
|
1131 #endif
|
cannam@128
|
1132 }
|
cannam@128
|
1133
|
cannam@128
|
1134 #ifndef FASTEST
|
cannam@128
|
1135 /* ===========================================================================
|
cannam@128
|
1136 * Set match_start to the longest match starting at the given string and
|
cannam@128
|
1137 * return its length. Matches shorter or equal to prev_length are discarded,
|
cannam@128
|
1138 * in which case the result is equal to prev_length and match_start is
|
cannam@128
|
1139 * garbage.
|
cannam@128
|
1140 * IN assertions: cur_match is the head of the hash chain for the current
|
cannam@128
|
1141 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
|
cannam@128
|
1142 * OUT assertion: the match length is not greater than s->lookahead.
|
cannam@128
|
1143 */
|
cannam@128
|
1144 #ifndef ASMV
|
cannam@128
|
1145 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
|
cannam@128
|
1146 * match.S. The code will be functionally equivalent.
|
cannam@128
|
1147 */
|
cannam@128
|
1148 local uInt longest_match(s, cur_match)
|
cannam@128
|
1149 deflate_state *s;
|
cannam@128
|
1150 IPos cur_match; /* current match */
|
cannam@128
|
1151 {
|
cannam@128
|
1152 unsigned chain_length = s->max_chain_length;/* max hash chain length */
|
cannam@128
|
1153 register Bytef *scan = s->window + s->strstart; /* current string */
|
cannam@128
|
1154 register Bytef *match; /* matched string */
|
cannam@128
|
1155 register int len; /* length of current match */
|
cannam@128
|
1156 int best_len = s->prev_length; /* best match length so far */
|
cannam@128
|
1157 int nice_match = s->nice_match; /* stop if match long enough */
|
cannam@128
|
1158 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
|
cannam@128
|
1159 s->strstart - (IPos)MAX_DIST(s) : NIL;
|
cannam@128
|
1160 /* Stop when cur_match becomes <= limit. To simplify the code,
|
cannam@128
|
1161 * we prevent matches with the string of window index 0.
|
cannam@128
|
1162 */
|
cannam@128
|
1163 Posf *prev = s->prev;
|
cannam@128
|
1164 uInt wmask = s->w_mask;
|
cannam@128
|
1165
|
cannam@128
|
1166 #ifdef UNALIGNED_OK
|
cannam@128
|
1167 /* Compare two bytes at a time. Note: this is not always beneficial.
|
cannam@128
|
1168 * Try with and without -DUNALIGNED_OK to check.
|
cannam@128
|
1169 */
|
cannam@128
|
1170 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
|
cannam@128
|
1171 register ush scan_start = *(ushf*)scan;
|
cannam@128
|
1172 register ush scan_end = *(ushf*)(scan+best_len-1);
|
cannam@128
|
1173 #else
|
cannam@128
|
1174 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
|
cannam@128
|
1175 register Byte scan_end1 = scan[best_len-1];
|
cannam@128
|
1176 register Byte scan_end = scan[best_len];
|
cannam@128
|
1177 #endif
|
cannam@128
|
1178
|
cannam@128
|
1179 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
|
cannam@128
|
1180 * It is easy to get rid of this optimization if necessary.
|
cannam@128
|
1181 */
|
cannam@128
|
1182 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
|
cannam@128
|
1183
|
cannam@128
|
1184 /* Do not waste too much time if we already have a good match: */
|
cannam@128
|
1185 if (s->prev_length >= s->good_match) {
|
cannam@128
|
1186 chain_length >>= 2;
|
cannam@128
|
1187 }
|
cannam@128
|
1188 /* Do not look for matches beyond the end of the input. This is necessary
|
cannam@128
|
1189 * to make deflate deterministic.
|
cannam@128
|
1190 */
|
cannam@128
|
1191 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
|
cannam@128
|
1192
|
cannam@128
|
1193 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
|
cannam@128
|
1194
|
cannam@128
|
1195 do {
|
cannam@128
|
1196 Assert(cur_match < s->strstart, "no future");
|
cannam@128
|
1197 match = s->window + cur_match;
|
cannam@128
|
1198
|
cannam@128
|
1199 /* Skip to next match if the match length cannot increase
|
cannam@128
|
1200 * or if the match length is less than 2. Note that the checks below
|
cannam@128
|
1201 * for insufficient lookahead only occur occasionally for performance
|
cannam@128
|
1202 * reasons. Therefore uninitialized memory will be accessed, and
|
cannam@128
|
1203 * conditional jumps will be made that depend on those values.
|
cannam@128
|
1204 * However the length of the match is limited to the lookahead, so
|
cannam@128
|
1205 * the output of deflate is not affected by the uninitialized values.
|
cannam@128
|
1206 */
|
cannam@128
|
1207 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
|
cannam@128
|
1208 /* This code assumes sizeof(unsigned short) == 2. Do not use
|
cannam@128
|
1209 * UNALIGNED_OK if your compiler uses a different size.
|
cannam@128
|
1210 */
|
cannam@128
|
1211 if (*(ushf*)(match+best_len-1) != scan_end ||
|
cannam@128
|
1212 *(ushf*)match != scan_start) continue;
|
cannam@128
|
1213
|
cannam@128
|
1214 /* It is not necessary to compare scan[2] and match[2] since they are
|
cannam@128
|
1215 * always equal when the other bytes match, given that the hash keys
|
cannam@128
|
1216 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
|
cannam@128
|
1217 * strstart+3, +5, ... up to strstart+257. We check for insufficient
|
cannam@128
|
1218 * lookahead only every 4th comparison; the 128th check will be made
|
cannam@128
|
1219 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
|
cannam@128
|
1220 * necessary to put more guard bytes at the end of the window, or
|
cannam@128
|
1221 * to check more often for insufficient lookahead.
|
cannam@128
|
1222 */
|
cannam@128
|
1223 Assert(scan[2] == match[2], "scan[2]?");
|
cannam@128
|
1224 scan++, match++;
|
cannam@128
|
1225 do {
|
cannam@128
|
1226 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
|
cannam@128
|
1227 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
|
cannam@128
|
1228 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
|
cannam@128
|
1229 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
|
cannam@128
|
1230 scan < strend);
|
cannam@128
|
1231 /* The funny "do {}" generates better code on most compilers */
|
cannam@128
|
1232
|
cannam@128
|
1233 /* Here, scan <= window+strstart+257 */
|
cannam@128
|
1234 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
|
cannam@128
|
1235 if (*scan == *match) scan++;
|
cannam@128
|
1236
|
cannam@128
|
1237 len = (MAX_MATCH - 1) - (int)(strend-scan);
|
cannam@128
|
1238 scan = strend - (MAX_MATCH-1);
|
cannam@128
|
1239
|
cannam@128
|
1240 #else /* UNALIGNED_OK */
|
cannam@128
|
1241
|
cannam@128
|
1242 if (match[best_len] != scan_end ||
|
cannam@128
|
1243 match[best_len-1] != scan_end1 ||
|
cannam@128
|
1244 *match != *scan ||
|
cannam@128
|
1245 *++match != scan[1]) continue;
|
cannam@128
|
1246
|
cannam@128
|
1247 /* The check at best_len-1 can be removed because it will be made
|
cannam@128
|
1248 * again later. (This heuristic is not always a win.)
|
cannam@128
|
1249 * It is not necessary to compare scan[2] and match[2] since they
|
cannam@128
|
1250 * are always equal when the other bytes match, given that
|
cannam@128
|
1251 * the hash keys are equal and that HASH_BITS >= 8.
|
cannam@128
|
1252 */
|
cannam@128
|
1253 scan += 2, match++;
|
cannam@128
|
1254 Assert(*scan == *match, "match[2]?");
|
cannam@128
|
1255
|
cannam@128
|
1256 /* We check for insufficient lookahead only every 8th comparison;
|
cannam@128
|
1257 * the 256th check will be made at strstart+258.
|
cannam@128
|
1258 */
|
cannam@128
|
1259 do {
|
cannam@128
|
1260 } while (*++scan == *++match && *++scan == *++match &&
|
cannam@128
|
1261 *++scan == *++match && *++scan == *++match &&
|
cannam@128
|
1262 *++scan == *++match && *++scan == *++match &&
|
cannam@128
|
1263 *++scan == *++match && *++scan == *++match &&
|
cannam@128
|
1264 scan < strend);
|
cannam@128
|
1265
|
cannam@128
|
1266 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
|
cannam@128
|
1267
|
cannam@128
|
1268 len = MAX_MATCH - (int)(strend - scan);
|
cannam@128
|
1269 scan = strend - MAX_MATCH;
|
cannam@128
|
1270
|
cannam@128
|
1271 #endif /* UNALIGNED_OK */
|
cannam@128
|
1272
|
cannam@128
|
1273 if (len > best_len) {
|
cannam@128
|
1274 s->match_start = cur_match;
|
cannam@128
|
1275 best_len = len;
|
cannam@128
|
1276 if (len >= nice_match) break;
|
cannam@128
|
1277 #ifdef UNALIGNED_OK
|
cannam@128
|
1278 scan_end = *(ushf*)(scan+best_len-1);
|
cannam@128
|
1279 #else
|
cannam@128
|
1280 scan_end1 = scan[best_len-1];
|
cannam@128
|
1281 scan_end = scan[best_len];
|
cannam@128
|
1282 #endif
|
cannam@128
|
1283 }
|
cannam@128
|
1284 } while ((cur_match = prev[cur_match & wmask]) > limit
|
cannam@128
|
1285 && --chain_length != 0);
|
cannam@128
|
1286
|
cannam@128
|
1287 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
|
cannam@128
|
1288 return s->lookahead;
|
cannam@128
|
1289 }
|
cannam@128
|
1290 #endif /* ASMV */
|
cannam@128
|
1291
|
cannam@128
|
1292 #else /* FASTEST */
|
cannam@128
|
1293
|
cannam@128
|
1294 /* ---------------------------------------------------------------------------
|
cannam@128
|
1295 * Optimized version for FASTEST only
|
cannam@128
|
1296 */
|
cannam@128
|
1297 local uInt longest_match(s, cur_match)
|
cannam@128
|
1298 deflate_state *s;
|
cannam@128
|
1299 IPos cur_match; /* current match */
|
cannam@128
|
1300 {
|
cannam@128
|
1301 register Bytef *scan = s->window + s->strstart; /* current string */
|
cannam@128
|
1302 register Bytef *match; /* matched string */
|
cannam@128
|
1303 register int len; /* length of current match */
|
cannam@128
|
1304 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
|
cannam@128
|
1305
|
cannam@128
|
1306 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
|
cannam@128
|
1307 * It is easy to get rid of this optimization if necessary.
|
cannam@128
|
1308 */
|
cannam@128
|
1309 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
|
cannam@128
|
1310
|
cannam@128
|
1311 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
|
cannam@128
|
1312
|
cannam@128
|
1313 Assert(cur_match < s->strstart, "no future");
|
cannam@128
|
1314
|
cannam@128
|
1315 match = s->window + cur_match;
|
cannam@128
|
1316
|
cannam@128
|
1317 /* Return failure if the match length is less than 2:
|
cannam@128
|
1318 */
|
cannam@128
|
1319 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
|
cannam@128
|
1320
|
cannam@128
|
1321 /* The check at best_len-1 can be removed because it will be made
|
cannam@128
|
1322 * again later. (This heuristic is not always a win.)
|
cannam@128
|
1323 * It is not necessary to compare scan[2] and match[2] since they
|
cannam@128
|
1324 * are always equal when the other bytes match, given that
|
cannam@128
|
1325 * the hash keys are equal and that HASH_BITS >= 8.
|
cannam@128
|
1326 */
|
cannam@128
|
1327 scan += 2, match += 2;
|
cannam@128
|
1328 Assert(*scan == *match, "match[2]?");
|
cannam@128
|
1329
|
cannam@128
|
1330 /* We check for insufficient lookahead only every 8th comparison;
|
cannam@128
|
1331 * the 256th check will be made at strstart+258.
|
cannam@128
|
1332 */
|
cannam@128
|
1333 do {
|
cannam@128
|
1334 } while (*++scan == *++match && *++scan == *++match &&
|
cannam@128
|
1335 *++scan == *++match && *++scan == *++match &&
|
cannam@128
|
1336 *++scan == *++match && *++scan == *++match &&
|
cannam@128
|
1337 *++scan == *++match && *++scan == *++match &&
|
cannam@128
|
1338 scan < strend);
|
cannam@128
|
1339
|
cannam@128
|
1340 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
|
cannam@128
|
1341
|
cannam@128
|
1342 len = MAX_MATCH - (int)(strend - scan);
|
cannam@128
|
1343
|
cannam@128
|
1344 if (len < MIN_MATCH) return MIN_MATCH - 1;
|
cannam@128
|
1345
|
cannam@128
|
1346 s->match_start = cur_match;
|
cannam@128
|
1347 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
|
cannam@128
|
1348 }
|
cannam@128
|
1349
|
cannam@128
|
1350 #endif /* FASTEST */
|
cannam@128
|
1351
|
cannam@128
|
1352 #ifdef DEBUG
|
cannam@128
|
1353 /* ===========================================================================
|
cannam@128
|
1354 * Check that the match at match_start is indeed a match.
|
cannam@128
|
1355 */
|
cannam@128
|
1356 local void check_match(s, start, match, length)
|
cannam@128
|
1357 deflate_state *s;
|
cannam@128
|
1358 IPos start, match;
|
cannam@128
|
1359 int length;
|
cannam@128
|
1360 {
|
cannam@128
|
1361 /* check that the match is indeed a match */
|
cannam@128
|
1362 if (zmemcmp(s->window + match,
|
cannam@128
|
1363 s->window + start, length) != EQUAL) {
|
cannam@128
|
1364 fprintf(stderr, " start %u, match %u, length %d\n",
|
cannam@128
|
1365 start, match, length);
|
cannam@128
|
1366 do {
|
cannam@128
|
1367 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
|
cannam@128
|
1368 } while (--length != 0);
|
cannam@128
|
1369 z_error("invalid match");
|
cannam@128
|
1370 }
|
cannam@128
|
1371 if (z_verbose > 1) {
|
cannam@128
|
1372 fprintf(stderr,"\\[%d,%d]", start-match, length);
|
cannam@128
|
1373 do { putc(s->window[start++], stderr); } while (--length != 0);
|
cannam@128
|
1374 }
|
cannam@128
|
1375 }
|
cannam@128
|
1376 #else
|
cannam@128
|
1377 # define check_match(s, start, match, length)
|
cannam@128
|
1378 #endif /* DEBUG */
|
cannam@128
|
1379
|
cannam@128
|
1380 /* ===========================================================================
|
cannam@128
|
1381 * Fill the window when the lookahead becomes insufficient.
|
cannam@128
|
1382 * Updates strstart and lookahead.
|
cannam@128
|
1383 *
|
cannam@128
|
1384 * IN assertion: lookahead < MIN_LOOKAHEAD
|
cannam@128
|
1385 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
|
cannam@128
|
1386 * At least one byte has been read, or avail_in == 0; reads are
|
cannam@128
|
1387 * performed for at least two bytes (required for the zip translate_eol
|
cannam@128
|
1388 * option -- not supported here).
|
cannam@128
|
1389 */
|
cannam@128
|
1390 local void fill_window(s)
|
cannam@128
|
1391 deflate_state *s;
|
cannam@128
|
1392 {
|
cannam@128
|
1393 register unsigned n, m;
|
cannam@128
|
1394 register Posf *p;
|
cannam@128
|
1395 unsigned more; /* Amount of free space at the end of the window. */
|
cannam@128
|
1396 uInt wsize = s->w_size;
|
cannam@128
|
1397
|
cannam@128
|
1398 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
|
cannam@128
|
1399
|
cannam@128
|
1400 do {
|
cannam@128
|
1401 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
|
cannam@128
|
1402
|
cannam@128
|
1403 /* Deal with !@#$% 64K limit: */
|
cannam@128
|
1404 if (sizeof(int) <= 2) {
|
cannam@128
|
1405 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
|
cannam@128
|
1406 more = wsize;
|
cannam@128
|
1407
|
cannam@128
|
1408 } else if (more == (unsigned)(-1)) {
|
cannam@128
|
1409 /* Very unlikely, but possible on 16 bit machine if
|
cannam@128
|
1410 * strstart == 0 && lookahead == 1 (input done a byte at time)
|
cannam@128
|
1411 */
|
cannam@128
|
1412 more--;
|
cannam@128
|
1413 }
|
cannam@128
|
1414 }
|
cannam@128
|
1415
|
cannam@128
|
1416 /* If the window is almost full and there is insufficient lookahead,
|
cannam@128
|
1417 * move the upper half to the lower one to make room in the upper half.
|
cannam@128
|
1418 */
|
cannam@128
|
1419 if (s->strstart >= wsize+MAX_DIST(s)) {
|
cannam@128
|
1420
|
cannam@128
|
1421 zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
|
cannam@128
|
1422 s->match_start -= wsize;
|
cannam@128
|
1423 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
|
cannam@128
|
1424 s->block_start -= (long) wsize;
|
cannam@128
|
1425
|
cannam@128
|
1426 /* Slide the hash table (could be avoided with 32 bit values
|
cannam@128
|
1427 at the expense of memory usage). We slide even when level == 0
|
cannam@128
|
1428 to keep the hash table consistent if we switch back to level > 0
|
cannam@128
|
1429 later. (Using level 0 permanently is not an optimal usage of
|
cannam@128
|
1430 zlib, so we don't care about this pathological case.)
|
cannam@128
|
1431 */
|
cannam@128
|
1432 n = s->hash_size;
|
cannam@128
|
1433 p = &s->head[n];
|
cannam@128
|
1434 do {
|
cannam@128
|
1435 m = *--p;
|
cannam@128
|
1436 *p = (Pos)(m >= wsize ? m-wsize : NIL);
|
cannam@128
|
1437 } while (--n);
|
cannam@128
|
1438
|
cannam@128
|
1439 n = wsize;
|
cannam@128
|
1440 #ifndef FASTEST
|
cannam@128
|
1441 p = &s->prev[n];
|
cannam@128
|
1442 do {
|
cannam@128
|
1443 m = *--p;
|
cannam@128
|
1444 *p = (Pos)(m >= wsize ? m-wsize : NIL);
|
cannam@128
|
1445 /* If n is not on any hash chain, prev[n] is garbage but
|
cannam@128
|
1446 * its value will never be used.
|
cannam@128
|
1447 */
|
cannam@128
|
1448 } while (--n);
|
cannam@128
|
1449 #endif
|
cannam@128
|
1450 more += wsize;
|
cannam@128
|
1451 }
|
cannam@128
|
1452 if (s->strm->avail_in == 0) break;
|
cannam@128
|
1453
|
cannam@128
|
1454 /* If there was no sliding:
|
cannam@128
|
1455 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
|
cannam@128
|
1456 * more == window_size - lookahead - strstart
|
cannam@128
|
1457 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
|
cannam@128
|
1458 * => more >= window_size - 2*WSIZE + 2
|
cannam@128
|
1459 * In the BIG_MEM or MMAP case (not yet supported),
|
cannam@128
|
1460 * window_size == input_size + MIN_LOOKAHEAD &&
|
cannam@128
|
1461 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
|
cannam@128
|
1462 * Otherwise, window_size == 2*WSIZE so more >= 2.
|
cannam@128
|
1463 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
|
cannam@128
|
1464 */
|
cannam@128
|
1465 Assert(more >= 2, "more < 2");
|
cannam@128
|
1466
|
cannam@128
|
1467 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
|
cannam@128
|
1468 s->lookahead += n;
|
cannam@128
|
1469
|
cannam@128
|
1470 /* Initialize the hash value now that we have some input: */
|
cannam@128
|
1471 if (s->lookahead + s->insert >= MIN_MATCH) {
|
cannam@128
|
1472 uInt str = s->strstart - s->insert;
|
cannam@128
|
1473 s->ins_h = s->window[str];
|
cannam@128
|
1474 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
|
cannam@128
|
1475 #if MIN_MATCH != 3
|
cannam@128
|
1476 Call UPDATE_HASH() MIN_MATCH-3 more times
|
cannam@128
|
1477 #endif
|
cannam@128
|
1478 while (s->insert) {
|
cannam@128
|
1479 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
|
cannam@128
|
1480 #ifndef FASTEST
|
cannam@128
|
1481 s->prev[str & s->w_mask] = s->head[s->ins_h];
|
cannam@128
|
1482 #endif
|
cannam@128
|
1483 s->head[s->ins_h] = (Pos)str;
|
cannam@128
|
1484 str++;
|
cannam@128
|
1485 s->insert--;
|
cannam@128
|
1486 if (s->lookahead + s->insert < MIN_MATCH)
|
cannam@128
|
1487 break;
|
cannam@128
|
1488 }
|
cannam@128
|
1489 }
|
cannam@128
|
1490 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
|
cannam@128
|
1491 * but this is not important since only literal bytes will be emitted.
|
cannam@128
|
1492 */
|
cannam@128
|
1493
|
cannam@128
|
1494 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
|
cannam@128
|
1495
|
cannam@128
|
1496 /* If the WIN_INIT bytes after the end of the current data have never been
|
cannam@128
|
1497 * written, then zero those bytes in order to avoid memory check reports of
|
cannam@128
|
1498 * the use of uninitialized (or uninitialised as Julian writes) bytes by
|
cannam@128
|
1499 * the longest match routines. Update the high water mark for the next
|
cannam@128
|
1500 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
|
cannam@128
|
1501 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
|
cannam@128
|
1502 */
|
cannam@128
|
1503 if (s->high_water < s->window_size) {
|
cannam@128
|
1504 ulg curr = s->strstart + (ulg)(s->lookahead);
|
cannam@128
|
1505 ulg init;
|
cannam@128
|
1506
|
cannam@128
|
1507 if (s->high_water < curr) {
|
cannam@128
|
1508 /* Previous high water mark below current data -- zero WIN_INIT
|
cannam@128
|
1509 * bytes or up to end of window, whichever is less.
|
cannam@128
|
1510 */
|
cannam@128
|
1511 init = s->window_size - curr;
|
cannam@128
|
1512 if (init > WIN_INIT)
|
cannam@128
|
1513 init = WIN_INIT;
|
cannam@128
|
1514 zmemzero(s->window + curr, (unsigned)init);
|
cannam@128
|
1515 s->high_water = curr + init;
|
cannam@128
|
1516 }
|
cannam@128
|
1517 else if (s->high_water < (ulg)curr + WIN_INIT) {
|
cannam@128
|
1518 /* High water mark at or above current data, but below current data
|
cannam@128
|
1519 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
|
cannam@128
|
1520 * to end of window, whichever is less.
|
cannam@128
|
1521 */
|
cannam@128
|
1522 init = (ulg)curr + WIN_INIT - s->high_water;
|
cannam@128
|
1523 if (init > s->window_size - s->high_water)
|
cannam@128
|
1524 init = s->window_size - s->high_water;
|
cannam@128
|
1525 zmemzero(s->window + s->high_water, (unsigned)init);
|
cannam@128
|
1526 s->high_water += init;
|
cannam@128
|
1527 }
|
cannam@128
|
1528 }
|
cannam@128
|
1529
|
cannam@128
|
1530 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
|
cannam@128
|
1531 "not enough room for search");
|
cannam@128
|
1532 }
|
cannam@128
|
1533
|
cannam@128
|
1534 /* ===========================================================================
|
cannam@128
|
1535 * Flush the current block, with given end-of-file flag.
|
cannam@128
|
1536 * IN assertion: strstart is set to the end of the current match.
|
cannam@128
|
1537 */
|
cannam@128
|
1538 #define FLUSH_BLOCK_ONLY(s, last) { \
|
cannam@128
|
1539 _tr_flush_block(s, (s->block_start >= 0L ? \
|
cannam@128
|
1540 (charf *)&s->window[(unsigned)s->block_start] : \
|
cannam@128
|
1541 (charf *)Z_NULL), \
|
cannam@128
|
1542 (ulg)((long)s->strstart - s->block_start), \
|
cannam@128
|
1543 (last)); \
|
cannam@128
|
1544 s->block_start = s->strstart; \
|
cannam@128
|
1545 flush_pending(s->strm); \
|
cannam@128
|
1546 Tracev((stderr,"[FLUSH]")); \
|
cannam@128
|
1547 }
|
cannam@128
|
1548
|
cannam@128
|
1549 /* Same but force premature exit if necessary. */
|
cannam@128
|
1550 #define FLUSH_BLOCK(s, last) { \
|
cannam@128
|
1551 FLUSH_BLOCK_ONLY(s, last); \
|
cannam@128
|
1552 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
|
cannam@128
|
1553 }
|
cannam@128
|
1554
|
cannam@128
|
1555 /* ===========================================================================
|
cannam@128
|
1556 * Copy without compression as much as possible from the input stream, return
|
cannam@128
|
1557 * the current block state.
|
cannam@128
|
1558 * This function does not insert new strings in the dictionary since
|
cannam@128
|
1559 * uncompressible data is probably not useful. This function is used
|
cannam@128
|
1560 * only for the level=0 compression option.
|
cannam@128
|
1561 * NOTE: this function should be optimized to avoid extra copying from
|
cannam@128
|
1562 * window to pending_buf.
|
cannam@128
|
1563 */
|
cannam@128
|
1564 local block_state deflate_stored(s, flush)
|
cannam@128
|
1565 deflate_state *s;
|
cannam@128
|
1566 int flush;
|
cannam@128
|
1567 {
|
cannam@128
|
1568 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
|
cannam@128
|
1569 * to pending_buf_size, and each stored block has a 5 byte header:
|
cannam@128
|
1570 */
|
cannam@128
|
1571 ulg max_block_size = 0xffff;
|
cannam@128
|
1572 ulg max_start;
|
cannam@128
|
1573
|
cannam@128
|
1574 if (max_block_size > s->pending_buf_size - 5) {
|
cannam@128
|
1575 max_block_size = s->pending_buf_size - 5;
|
cannam@128
|
1576 }
|
cannam@128
|
1577
|
cannam@128
|
1578 /* Copy as much as possible from input to output: */
|
cannam@128
|
1579 for (;;) {
|
cannam@128
|
1580 /* Fill the window as much as possible: */
|
cannam@128
|
1581 if (s->lookahead <= 1) {
|
cannam@128
|
1582
|
cannam@128
|
1583 Assert(s->strstart < s->w_size+MAX_DIST(s) ||
|
cannam@128
|
1584 s->block_start >= (long)s->w_size, "slide too late");
|
cannam@128
|
1585
|
cannam@128
|
1586 fill_window(s);
|
cannam@128
|
1587 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
|
cannam@128
|
1588
|
cannam@128
|
1589 if (s->lookahead == 0) break; /* flush the current block */
|
cannam@128
|
1590 }
|
cannam@128
|
1591 Assert(s->block_start >= 0L, "block gone");
|
cannam@128
|
1592
|
cannam@128
|
1593 s->strstart += s->lookahead;
|
cannam@128
|
1594 s->lookahead = 0;
|
cannam@128
|
1595
|
cannam@128
|
1596 /* Emit a stored block if pending_buf will be full: */
|
cannam@128
|
1597 max_start = s->block_start + max_block_size;
|
cannam@128
|
1598 if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
|
cannam@128
|
1599 /* strstart == 0 is possible when wraparound on 16-bit machine */
|
cannam@128
|
1600 s->lookahead = (uInt)(s->strstart - max_start);
|
cannam@128
|
1601 s->strstart = (uInt)max_start;
|
cannam@128
|
1602 FLUSH_BLOCK(s, 0);
|
cannam@128
|
1603 }
|
cannam@128
|
1604 /* Flush if we may have to slide, otherwise block_start may become
|
cannam@128
|
1605 * negative and the data will be gone:
|
cannam@128
|
1606 */
|
cannam@128
|
1607 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
|
cannam@128
|
1608 FLUSH_BLOCK(s, 0);
|
cannam@128
|
1609 }
|
cannam@128
|
1610 }
|
cannam@128
|
1611 s->insert = 0;
|
cannam@128
|
1612 if (flush == Z_FINISH) {
|
cannam@128
|
1613 FLUSH_BLOCK(s, 1);
|
cannam@128
|
1614 return finish_done;
|
cannam@128
|
1615 }
|
cannam@128
|
1616 if ((long)s->strstart > s->block_start)
|
cannam@128
|
1617 FLUSH_BLOCK(s, 0);
|
cannam@128
|
1618 return block_done;
|
cannam@128
|
1619 }
|
cannam@128
|
1620
|
cannam@128
|
1621 /* ===========================================================================
|
cannam@128
|
1622 * Compress as much as possible from the input stream, return the current
|
cannam@128
|
1623 * block state.
|
cannam@128
|
1624 * This function does not perform lazy evaluation of matches and inserts
|
cannam@128
|
1625 * new strings in the dictionary only for unmatched strings or for short
|
cannam@128
|
1626 * matches. It is used only for the fast compression options.
|
cannam@128
|
1627 */
|
cannam@128
|
1628 local block_state deflate_fast(s, flush)
|
cannam@128
|
1629 deflate_state *s;
|
cannam@128
|
1630 int flush;
|
cannam@128
|
1631 {
|
cannam@128
|
1632 IPos hash_head; /* head of the hash chain */
|
cannam@128
|
1633 int bflush; /* set if current block must be flushed */
|
cannam@128
|
1634
|
cannam@128
|
1635 for (;;) {
|
cannam@128
|
1636 /* Make sure that we always have enough lookahead, except
|
cannam@128
|
1637 * at the end of the input file. We need MAX_MATCH bytes
|
cannam@128
|
1638 * for the next match, plus MIN_MATCH bytes to insert the
|
cannam@128
|
1639 * string following the next match.
|
cannam@128
|
1640 */
|
cannam@128
|
1641 if (s->lookahead < MIN_LOOKAHEAD) {
|
cannam@128
|
1642 fill_window(s);
|
cannam@128
|
1643 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
|
cannam@128
|
1644 return need_more;
|
cannam@128
|
1645 }
|
cannam@128
|
1646 if (s->lookahead == 0) break; /* flush the current block */
|
cannam@128
|
1647 }
|
cannam@128
|
1648
|
cannam@128
|
1649 /* Insert the string window[strstart .. strstart+2] in the
|
cannam@128
|
1650 * dictionary, and set hash_head to the head of the hash chain:
|
cannam@128
|
1651 */
|
cannam@128
|
1652 hash_head = NIL;
|
cannam@128
|
1653 if (s->lookahead >= MIN_MATCH) {
|
cannam@128
|
1654 INSERT_STRING(s, s->strstart, hash_head);
|
cannam@128
|
1655 }
|
cannam@128
|
1656
|
cannam@128
|
1657 /* Find the longest match, discarding those <= prev_length.
|
cannam@128
|
1658 * At this point we have always match_length < MIN_MATCH
|
cannam@128
|
1659 */
|
cannam@128
|
1660 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
|
cannam@128
|
1661 /* To simplify the code, we prevent matches with the string
|
cannam@128
|
1662 * of window index 0 (in particular we have to avoid a match
|
cannam@128
|
1663 * of the string with itself at the start of the input file).
|
cannam@128
|
1664 */
|
cannam@128
|
1665 s->match_length = longest_match (s, hash_head);
|
cannam@128
|
1666 /* longest_match() sets match_start */
|
cannam@128
|
1667 }
|
cannam@128
|
1668 if (s->match_length >= MIN_MATCH) {
|
cannam@128
|
1669 check_match(s, s->strstart, s->match_start, s->match_length);
|
cannam@128
|
1670
|
cannam@128
|
1671 _tr_tally_dist(s, s->strstart - s->match_start,
|
cannam@128
|
1672 s->match_length - MIN_MATCH, bflush);
|
cannam@128
|
1673
|
cannam@128
|
1674 s->lookahead -= s->match_length;
|
cannam@128
|
1675
|
cannam@128
|
1676 /* Insert new strings in the hash table only if the match length
|
cannam@128
|
1677 * is not too large. This saves time but degrades compression.
|
cannam@128
|
1678 */
|
cannam@128
|
1679 #ifndef FASTEST
|
cannam@128
|
1680 if (s->match_length <= s->max_insert_length &&
|
cannam@128
|
1681 s->lookahead >= MIN_MATCH) {
|
cannam@128
|
1682 s->match_length--; /* string at strstart already in table */
|
cannam@128
|
1683 do {
|
cannam@128
|
1684 s->strstart++;
|
cannam@128
|
1685 INSERT_STRING(s, s->strstart, hash_head);
|
cannam@128
|
1686 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
|
cannam@128
|
1687 * always MIN_MATCH bytes ahead.
|
cannam@128
|
1688 */
|
cannam@128
|
1689 } while (--s->match_length != 0);
|
cannam@128
|
1690 s->strstart++;
|
cannam@128
|
1691 } else
|
cannam@128
|
1692 #endif
|
cannam@128
|
1693 {
|
cannam@128
|
1694 s->strstart += s->match_length;
|
cannam@128
|
1695 s->match_length = 0;
|
cannam@128
|
1696 s->ins_h = s->window[s->strstart];
|
cannam@128
|
1697 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
|
cannam@128
|
1698 #if MIN_MATCH != 3
|
cannam@128
|
1699 Call UPDATE_HASH() MIN_MATCH-3 more times
|
cannam@128
|
1700 #endif
|
cannam@128
|
1701 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
|
cannam@128
|
1702 * matter since it will be recomputed at next deflate call.
|
cannam@128
|
1703 */
|
cannam@128
|
1704 }
|
cannam@128
|
1705 } else {
|
cannam@128
|
1706 /* No match, output a literal byte */
|
cannam@128
|
1707 Tracevv((stderr,"%c", s->window[s->strstart]));
|
cannam@128
|
1708 _tr_tally_lit (s, s->window[s->strstart], bflush);
|
cannam@128
|
1709 s->lookahead--;
|
cannam@128
|
1710 s->strstart++;
|
cannam@128
|
1711 }
|
cannam@128
|
1712 if (bflush) FLUSH_BLOCK(s, 0);
|
cannam@128
|
1713 }
|
cannam@128
|
1714 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
|
cannam@128
|
1715 if (flush == Z_FINISH) {
|
cannam@128
|
1716 FLUSH_BLOCK(s, 1);
|
cannam@128
|
1717 return finish_done;
|
cannam@128
|
1718 }
|
cannam@128
|
1719 if (s->last_lit)
|
cannam@128
|
1720 FLUSH_BLOCK(s, 0);
|
cannam@128
|
1721 return block_done;
|
cannam@128
|
1722 }
|
cannam@128
|
1723
|
cannam@128
|
1724 #ifndef FASTEST
|
cannam@128
|
1725 /* ===========================================================================
|
cannam@128
|
1726 * Same as above, but achieves better compression. We use a lazy
|
cannam@128
|
1727 * evaluation for matches: a match is finally adopted only if there is
|
cannam@128
|
1728 * no better match at the next window position.
|
cannam@128
|
1729 */
|
cannam@128
|
1730 local block_state deflate_slow(s, flush)
|
cannam@128
|
1731 deflate_state *s;
|
cannam@128
|
1732 int flush;
|
cannam@128
|
1733 {
|
cannam@128
|
1734 IPos hash_head; /* head of hash chain */
|
cannam@128
|
1735 int bflush; /* set if current block must be flushed */
|
cannam@128
|
1736
|
cannam@128
|
1737 /* Process the input block. */
|
cannam@128
|
1738 for (;;) {
|
cannam@128
|
1739 /* Make sure that we always have enough lookahead, except
|
cannam@128
|
1740 * at the end of the input file. We need MAX_MATCH bytes
|
cannam@128
|
1741 * for the next match, plus MIN_MATCH bytes to insert the
|
cannam@128
|
1742 * string following the next match.
|
cannam@128
|
1743 */
|
cannam@128
|
1744 if (s->lookahead < MIN_LOOKAHEAD) {
|
cannam@128
|
1745 fill_window(s);
|
cannam@128
|
1746 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
|
cannam@128
|
1747 return need_more;
|
cannam@128
|
1748 }
|
cannam@128
|
1749 if (s->lookahead == 0) break; /* flush the current block */
|
cannam@128
|
1750 }
|
cannam@128
|
1751
|
cannam@128
|
1752 /* Insert the string window[strstart .. strstart+2] in the
|
cannam@128
|
1753 * dictionary, and set hash_head to the head of the hash chain:
|
cannam@128
|
1754 */
|
cannam@128
|
1755 hash_head = NIL;
|
cannam@128
|
1756 if (s->lookahead >= MIN_MATCH) {
|
cannam@128
|
1757 INSERT_STRING(s, s->strstart, hash_head);
|
cannam@128
|
1758 }
|
cannam@128
|
1759
|
cannam@128
|
1760 /* Find the longest match, discarding those <= prev_length.
|
cannam@128
|
1761 */
|
cannam@128
|
1762 s->prev_length = s->match_length, s->prev_match = s->match_start;
|
cannam@128
|
1763 s->match_length = MIN_MATCH-1;
|
cannam@128
|
1764
|
cannam@128
|
1765 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
|
cannam@128
|
1766 s->strstart - hash_head <= MAX_DIST(s)) {
|
cannam@128
|
1767 /* To simplify the code, we prevent matches with the string
|
cannam@128
|
1768 * of window index 0 (in particular we have to avoid a match
|
cannam@128
|
1769 * of the string with itself at the start of the input file).
|
cannam@128
|
1770 */
|
cannam@128
|
1771 s->match_length = longest_match (s, hash_head);
|
cannam@128
|
1772 /* longest_match() sets match_start */
|
cannam@128
|
1773
|
cannam@128
|
1774 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
|
cannam@128
|
1775 #if TOO_FAR <= 32767
|
cannam@128
|
1776 || (s->match_length == MIN_MATCH &&
|
cannam@128
|
1777 s->strstart - s->match_start > TOO_FAR)
|
cannam@128
|
1778 #endif
|
cannam@128
|
1779 )) {
|
cannam@128
|
1780
|
cannam@128
|
1781 /* If prev_match is also MIN_MATCH, match_start is garbage
|
cannam@128
|
1782 * but we will ignore the current match anyway.
|
cannam@128
|
1783 */
|
cannam@128
|
1784 s->match_length = MIN_MATCH-1;
|
cannam@128
|
1785 }
|
cannam@128
|
1786 }
|
cannam@128
|
1787 /* If there was a match at the previous step and the current
|
cannam@128
|
1788 * match is not better, output the previous match:
|
cannam@128
|
1789 */
|
cannam@128
|
1790 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
|
cannam@128
|
1791 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
|
cannam@128
|
1792 /* Do not insert strings in hash table beyond this. */
|
cannam@128
|
1793
|
cannam@128
|
1794 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
|
cannam@128
|
1795
|
cannam@128
|
1796 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
|
cannam@128
|
1797 s->prev_length - MIN_MATCH, bflush);
|
cannam@128
|
1798
|
cannam@128
|
1799 /* Insert in hash table all strings up to the end of the match.
|
cannam@128
|
1800 * strstart-1 and strstart are already inserted. If there is not
|
cannam@128
|
1801 * enough lookahead, the last two strings are not inserted in
|
cannam@128
|
1802 * the hash table.
|
cannam@128
|
1803 */
|
cannam@128
|
1804 s->lookahead -= s->prev_length-1;
|
cannam@128
|
1805 s->prev_length -= 2;
|
cannam@128
|
1806 do {
|
cannam@128
|
1807 if (++s->strstart <= max_insert) {
|
cannam@128
|
1808 INSERT_STRING(s, s->strstart, hash_head);
|
cannam@128
|
1809 }
|
cannam@128
|
1810 } while (--s->prev_length != 0);
|
cannam@128
|
1811 s->match_available = 0;
|
cannam@128
|
1812 s->match_length = MIN_MATCH-1;
|
cannam@128
|
1813 s->strstart++;
|
cannam@128
|
1814
|
cannam@128
|
1815 if (bflush) FLUSH_BLOCK(s, 0);
|
cannam@128
|
1816
|
cannam@128
|
1817 } else if (s->match_available) {
|
cannam@128
|
1818 /* If there was no match at the previous position, output a
|
cannam@128
|
1819 * single literal. If there was a match but the current match
|
cannam@128
|
1820 * is longer, truncate the previous match to a single literal.
|
cannam@128
|
1821 */
|
cannam@128
|
1822 Tracevv((stderr,"%c", s->window[s->strstart-1]));
|
cannam@128
|
1823 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
|
cannam@128
|
1824 if (bflush) {
|
cannam@128
|
1825 FLUSH_BLOCK_ONLY(s, 0);
|
cannam@128
|
1826 }
|
cannam@128
|
1827 s->strstart++;
|
cannam@128
|
1828 s->lookahead--;
|
cannam@128
|
1829 if (s->strm->avail_out == 0) return need_more;
|
cannam@128
|
1830 } else {
|
cannam@128
|
1831 /* There is no previous match to compare with, wait for
|
cannam@128
|
1832 * the next step to decide.
|
cannam@128
|
1833 */
|
cannam@128
|
1834 s->match_available = 1;
|
cannam@128
|
1835 s->strstart++;
|
cannam@128
|
1836 s->lookahead--;
|
cannam@128
|
1837 }
|
cannam@128
|
1838 }
|
cannam@128
|
1839 Assert (flush != Z_NO_FLUSH, "no flush?");
|
cannam@128
|
1840 if (s->match_available) {
|
cannam@128
|
1841 Tracevv((stderr,"%c", s->window[s->strstart-1]));
|
cannam@128
|
1842 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
|
cannam@128
|
1843 s->match_available = 0;
|
cannam@128
|
1844 }
|
cannam@128
|
1845 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
|
cannam@128
|
1846 if (flush == Z_FINISH) {
|
cannam@128
|
1847 FLUSH_BLOCK(s, 1);
|
cannam@128
|
1848 return finish_done;
|
cannam@128
|
1849 }
|
cannam@128
|
1850 if (s->last_lit)
|
cannam@128
|
1851 FLUSH_BLOCK(s, 0);
|
cannam@128
|
1852 return block_done;
|
cannam@128
|
1853 }
|
cannam@128
|
1854 #endif /* FASTEST */
|
cannam@128
|
1855
|
cannam@128
|
1856 /* ===========================================================================
|
cannam@128
|
1857 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
|
cannam@128
|
1858 * one. Do not maintain a hash table. (It will be regenerated if this run of
|
cannam@128
|
1859 * deflate switches away from Z_RLE.)
|
cannam@128
|
1860 */
|
cannam@128
|
1861 local block_state deflate_rle(s, flush)
|
cannam@128
|
1862 deflate_state *s;
|
cannam@128
|
1863 int flush;
|
cannam@128
|
1864 {
|
cannam@128
|
1865 int bflush; /* set if current block must be flushed */
|
cannam@128
|
1866 uInt prev; /* byte at distance one to match */
|
cannam@128
|
1867 Bytef *scan, *strend; /* scan goes up to strend for length of run */
|
cannam@128
|
1868
|
cannam@128
|
1869 for (;;) {
|
cannam@128
|
1870 /* Make sure that we always have enough lookahead, except
|
cannam@128
|
1871 * at the end of the input file. We need MAX_MATCH bytes
|
cannam@128
|
1872 * for the longest run, plus one for the unrolled loop.
|
cannam@128
|
1873 */
|
cannam@128
|
1874 if (s->lookahead <= MAX_MATCH) {
|
cannam@128
|
1875 fill_window(s);
|
cannam@128
|
1876 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
|
cannam@128
|
1877 return need_more;
|
cannam@128
|
1878 }
|
cannam@128
|
1879 if (s->lookahead == 0) break; /* flush the current block */
|
cannam@128
|
1880 }
|
cannam@128
|
1881
|
cannam@128
|
1882 /* See how many times the previous byte repeats */
|
cannam@128
|
1883 s->match_length = 0;
|
cannam@128
|
1884 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
|
cannam@128
|
1885 scan = s->window + s->strstart - 1;
|
cannam@128
|
1886 prev = *scan;
|
cannam@128
|
1887 if (prev == *++scan && prev == *++scan && prev == *++scan) {
|
cannam@128
|
1888 strend = s->window + s->strstart + MAX_MATCH;
|
cannam@128
|
1889 do {
|
cannam@128
|
1890 } while (prev == *++scan && prev == *++scan &&
|
cannam@128
|
1891 prev == *++scan && prev == *++scan &&
|
cannam@128
|
1892 prev == *++scan && prev == *++scan &&
|
cannam@128
|
1893 prev == *++scan && prev == *++scan &&
|
cannam@128
|
1894 scan < strend);
|
cannam@128
|
1895 s->match_length = MAX_MATCH - (int)(strend - scan);
|
cannam@128
|
1896 if (s->match_length > s->lookahead)
|
cannam@128
|
1897 s->match_length = s->lookahead;
|
cannam@128
|
1898 }
|
cannam@128
|
1899 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
|
cannam@128
|
1900 }
|
cannam@128
|
1901
|
cannam@128
|
1902 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
|
cannam@128
|
1903 if (s->match_length >= MIN_MATCH) {
|
cannam@128
|
1904 check_match(s, s->strstart, s->strstart - 1, s->match_length);
|
cannam@128
|
1905
|
cannam@128
|
1906 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
|
cannam@128
|
1907
|
cannam@128
|
1908 s->lookahead -= s->match_length;
|
cannam@128
|
1909 s->strstart += s->match_length;
|
cannam@128
|
1910 s->match_length = 0;
|
cannam@128
|
1911 } else {
|
cannam@128
|
1912 /* No match, output a literal byte */
|
cannam@128
|
1913 Tracevv((stderr,"%c", s->window[s->strstart]));
|
cannam@128
|
1914 _tr_tally_lit (s, s->window[s->strstart], bflush);
|
cannam@128
|
1915 s->lookahead--;
|
cannam@128
|
1916 s->strstart++;
|
cannam@128
|
1917 }
|
cannam@128
|
1918 if (bflush) FLUSH_BLOCK(s, 0);
|
cannam@128
|
1919 }
|
cannam@128
|
1920 s->insert = 0;
|
cannam@128
|
1921 if (flush == Z_FINISH) {
|
cannam@128
|
1922 FLUSH_BLOCK(s, 1);
|
cannam@128
|
1923 return finish_done;
|
cannam@128
|
1924 }
|
cannam@128
|
1925 if (s->last_lit)
|
cannam@128
|
1926 FLUSH_BLOCK(s, 0);
|
cannam@128
|
1927 return block_done;
|
cannam@128
|
1928 }
|
cannam@128
|
1929
|
cannam@128
|
1930 /* ===========================================================================
|
cannam@128
|
1931 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
|
cannam@128
|
1932 * (It will be regenerated if this run of deflate switches away from Huffman.)
|
cannam@128
|
1933 */
|
cannam@128
|
1934 local block_state deflate_huff(s, flush)
|
cannam@128
|
1935 deflate_state *s;
|
cannam@128
|
1936 int flush;
|
cannam@128
|
1937 {
|
cannam@128
|
1938 int bflush; /* set if current block must be flushed */
|
cannam@128
|
1939
|
cannam@128
|
1940 for (;;) {
|
cannam@128
|
1941 /* Make sure that we have a literal to write. */
|
cannam@128
|
1942 if (s->lookahead == 0) {
|
cannam@128
|
1943 fill_window(s);
|
cannam@128
|
1944 if (s->lookahead == 0) {
|
cannam@128
|
1945 if (flush == Z_NO_FLUSH)
|
cannam@128
|
1946 return need_more;
|
cannam@128
|
1947 break; /* flush the current block */
|
cannam@128
|
1948 }
|
cannam@128
|
1949 }
|
cannam@128
|
1950
|
cannam@128
|
1951 /* Output a literal byte */
|
cannam@128
|
1952 s->match_length = 0;
|
cannam@128
|
1953 Tracevv((stderr,"%c", s->window[s->strstart]));
|
cannam@128
|
1954 _tr_tally_lit (s, s->window[s->strstart], bflush);
|
cannam@128
|
1955 s->lookahead--;
|
cannam@128
|
1956 s->strstart++;
|
cannam@128
|
1957 if (bflush) FLUSH_BLOCK(s, 0);
|
cannam@128
|
1958 }
|
cannam@128
|
1959 s->insert = 0;
|
cannam@128
|
1960 if (flush == Z_FINISH) {
|
cannam@128
|
1961 FLUSH_BLOCK(s, 1);
|
cannam@128
|
1962 return finish_done;
|
cannam@128
|
1963 }
|
cannam@128
|
1964 if (s->last_lit)
|
cannam@128
|
1965 FLUSH_BLOCK(s, 0);
|
cannam@128
|
1966 return block_done;
|
cannam@128
|
1967 }
|